Compactness of isospectral sets
Séminaire de théorie spectrale et géométrie, Tome S9 (1991), pp. 39-42.
@article{TSG_1991__S9__39_0,
     author = {Brooks, Robert},
     title = {Compactness of isospectral sets},
     journal = {S\'eminaire de th\'eorie spectrale et g\'eom\'etrie},
     pages = {39--42},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {S9},
     year = {1991},
     language = {en},
     url = {http://www.numdam.org/item/TSG_1991__S9__39_0/}
}
TY  - JOUR
AU  - Brooks, Robert
TI  - Compactness of isospectral sets
JO  - Séminaire de théorie spectrale et géométrie
PY  - 1991
SP  - 39
EP  - 42
VL  - S9
PB  - Institut Fourier
PP  - Grenoble
UR  - http://www.numdam.org/item/TSG_1991__S9__39_0/
LA  - en
ID  - TSG_1991__S9__39_0
ER  - 
%0 Journal Article
%A Brooks, Robert
%T Compactness of isospectral sets
%J Séminaire de théorie spectrale et géométrie
%D 1991
%P 39-42
%V S9
%I Institut Fourier
%C Grenoble
%U http://www.numdam.org/item/TSG_1991__S9__39_0/
%G en
%F TSG_1991__S9__39_0
Brooks, Robert. Compactness of isospectral sets. Séminaire de théorie spectrale et géométrie, Tome S9 (1991), pp. 39-42. http://www.numdam.org/item/TSG_1991__S9__39_0/

[B] R. Brooks, "Constructing Isospectral Manifolds," Amer. Math. Month. 95 ( 1988), pp. 823-839 | MR | Zbl

[BPP] R. Brooks, P. Perry, and P. Petersen, "Compactness and Finiteness Theorems for Isospectral Manifolds," preprint. | Zbl

[Ch] J. Cheeger, "Finiteness Theorems for Riemannian Manifolds," Amer. J. Math. 92 ( 1970), pp. 61-74 | MR | Zbl

[Cg] S.Y. Cheng, "Eigenvalue Comparison Theorems and its Geometric Applications," Math. Zeit. 143( 1975) pp. 289-297 | EuDML | MR | Zbl

[Gi] P. Gilkey, "Leading Terms in the Asymptotics of the Heat Equation," in R. Durrett and M. Pinsky, Geometry of Random Motion. Contemp. Math 73 ( 1988), pp.7 | MR | Zbl

[OPS] Osgood, R. Phillips, and P. Sarnak, "Compact Isospectral Sets of Surfaces," J. Funct. Anal. 80 ( 1988), pp. 212-234 | MR | Zbl

[Su] T. Sunada, "Riemannian Coverings and Isospectral Manifolds," Ann. Math. 121 ( 1985), pp. 169 - 186 | MR | Zbl