Lines of curvature and umbilic points on surfaces
Séminaire de théorie spectrale et géométrie, Tome 10 (1991-1992), pp. 9-12.
@article{TSG_1991-1992__10__9_0,
     author = {Sotomayor, Jorge},
     title = {Lines of curvature and umbilic points on surfaces},
     journal = {S\'eminaire de th\'eorie spectrale et g\'eom\'etrie},
     pages = {9--12},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {10},
     year = {1991-1992},
     mrnumber = {1715907},
     language = {en},
     url = {http://www.numdam.org/item/TSG_1991-1992__10__9_0/}
}
TY  - JOUR
AU  - Sotomayor, Jorge
TI  - Lines of curvature and umbilic points on surfaces
JO  - Séminaire de théorie spectrale et géométrie
PY  - 1991-1992
SP  - 9
EP  - 12
VL  - 10
PB  - Institut Fourier
PP  - Grenoble
UR  - http://www.numdam.org/item/TSG_1991-1992__10__9_0/
LA  - en
ID  - TSG_1991-1992__10__9_0
ER  - 
%0 Journal Article
%A Sotomayor, Jorge
%T Lines of curvature and umbilic points on surfaces
%J Séminaire de théorie spectrale et géométrie
%D 1991-1992
%P 9-12
%V 10
%I Institut Fourier
%C Grenoble
%U http://www.numdam.org/item/TSG_1991-1992__10__9_0/
%G en
%F TSG_1991-1992__10__9_0
Sotomayor, Jorge. Lines of curvature and umbilic points on surfaces. Séminaire de théorie spectrale et géométrie, Tome 10 (1991-1992), pp. 9-12. http://www.numdam.org/item/TSG_1991-1992__10__9_0/

[Da] Darboux G. - Sur la forme des lignes de courbure dans le voisinage d'un ombilic, Leçons sur la théorie des surfaces, IV, Note 7, Gauthier Villars, Paris, 1896.

[Fi] Fischer G. - Mathematical Models, Vieweg, 1986. | MR

[H-CV] Hilbert D., Cohn Vossen S. - Geometry and the Imagination, Chelsea, 1952. | MR | Zbl

[Ga] Garcia R. - Linhas de curvatura de hipersuperficies imersas no espaço R4, Thesis 1989; Preprint IMPA, F-027/89. See also : Anais da Acad; Bras. Ciencias, 64, 1, 1992.

[Ga-S,l] Garcia R. , Sotomayor J. - Lines of curvature near singular points of implicit surfaces, To appear in Bulletin des Sciences Mathématiques. | MR | Zbl

[Ga-S,2] Garcia R. , Sotomayor J. - Lines of curvature near principal cycles, Annals of global analysis and geometry, 10, 3, 1992. | MR | Zbl

[G-S,l] Gutierrez C , Sotomayor J. - Structurally stable configurations of lines of principal curvature, Astérisque, 98-99, 1982. | Numdam | MR | Zbl

[G-S,2] Gutierrez C , Sotomayor J. - An approximation theorem for immersions with structurally stable configurations of lines of principal curvature, Springer Lect. Notes in Math., 1007, 1983. | MR | Zbl

[G-S,3] Gutierrez C , Sotomayor J. - Lines of curvature on surfaces immers ed with constant mean curvature, Trans. Amer. Math. Soc.,232, 2, 1986. | MR | Zbl

[G-S,4] Gutierrez C, Sotomayor J. - Lines of principal curvature on surfaces with Whitney umbrella singularities, Tôhoku Mathematical Journal, 38, 4, 1986. | MR | Zbl

[G-S,5] Gutierrez C, Sotomayor J. - Closed lines of curvature and bifurcation, Bolet. Soc. Bras. Mat., 17, 1986. | MR | Zbl

[G-S,6] Gutierrez C, Sotomayor J. - Periodic lines of curvature bifurcating from Darbouxian umbilic connections, Springer Lect. Notes on Math.,1455, 1991. | MR | Zbl

[G-S,7] Gutierrez C, Sotomayor J. - Configurations of principal lines of curvature and their bifurcations, Aportaciones Matemáticas, Soc. Mat. de México, Notas de Investigacion, n° l , 1985. | MR | Zbl

[G-S,8] Gutierrez C, Sotomayor J. - Lines of curvature and ombilic points on surfaces, Text of course delivered at the 18th Brazilian Math. Colloquium, IMPA, 1991.

[G-S,9] Gutierrez C, Sotomayor J. - Bifurcations of umbilic points and related principal cycles, Preprint, IMPA, 1992. | Zbl

[G-S, et al] Gutierrez C, Sotomayor J., Guadalupe I., Tribuzy R. - Lines of curvature on surfaces minimally immersed on constantly curved 4-spaces, Pitman Res., Notes in Math. Series, 160, Longman, 1987. | Zbl

[M] Monge G. - Sur les lignes de courbure de la surface de l'ellipsoïde, Journ. de l'Ecole Polytechnique, IIe cah., 1796.

[S] Sotomayor J. - Closed principal lines for Weingarten immersions, Annals of Global Analysis and Geometry, 5, 1, 1987. | MR | Zbl