@article{TSG_1987-1988__6__81_0, author = {Yang, Deane}, title = {$L^p$ pinching and compactness theorems for compact riemannian manifolds}, journal = {S\'eminaire de th\'eorie spectrale et g\'eom\'etrie}, pages = {81--89}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {6}, year = {1987-1988}, mrnumber = {1046260}, zbl = {0937.53501}, language = {en}, url = {http://www.numdam.org/item/TSG_1987-1988__6__81_0/} }
TY - JOUR AU - Yang, Deane TI - $L^p$ pinching and compactness theorems for compact riemannian manifolds JO - Séminaire de théorie spectrale et géométrie PY - 1987-1988 SP - 81 EP - 89 VL - 6 PB - Institut Fourier PP - Grenoble UR - http://www.numdam.org/item/TSG_1987-1988__6__81_0/ LA - en ID - TSG_1987-1988__6__81_0 ER -
%0 Journal Article %A Yang, Deane %T $L^p$ pinching and compactness theorems for compact riemannian manifolds %J Séminaire de théorie spectrale et géométrie %D 1987-1988 %P 81-89 %V 6 %I Institut Fourier %C Grenoble %U http://www.numdam.org/item/TSG_1987-1988__6__81_0/ %G en %F TSG_1987-1988__6__81_0
Yang, Deane. $L^p$ pinching and compactness theorems for compact riemannian manifolds. Séminaire de théorie spectrale et géométrie, Tome 6 (1987-1988), pp. 81-89. http://www.numdam.org/item/TSG_1987-1988__6__81_0/
[BK] Gromov's almost flat manifolds, Astérisque 81, 1981. | Numdam | MR | Zbl
, -[CE] Comparison Theorems in Riemannian Geometry, New York : American-Elsevier, 1975. | MR | Zbl
-[C] Some isoperimetric inequalities and eigenvalue estimates, Ann. scient. Éc. Norm. Sup., 13 ( 1980), 419-435. | Numdam | MR | Zbl
-[G1] Einstein manifolds I, preprint.
-[G2] Ln/2 curvature pinching, preprint
-[G3] Convergence of Riemannian manifolds, Ricci pinching, and Ln/2-curvature pinching, preprint.
-[GW] Lipschitz convergence of Riemannian manifolds, Pacific J. Math. | MR | Zbl
, -[GLP] Structures métriques pour les variétés riemanniennes, Paris, Cedic, 1981. | MR | Zbl
, , -[H] Three-manifolds with positive Ricci curvature, J. Diff. Geom., 17 ( 1982), 255-306. | MR | Zbl
-[M] Almost Einstein manifolds of negative Ricci curvature, preprint | MR
-[P1] Cheeger1's finiteness theorem for diffeomorphism classes of Riemannian manifolds, J. für die reine und angewandte Mathematik, 349 ( 1984), 77-82. | EuDML | MR | Zbl
-[P2] Convergence of Riemannian manifolds, Compositio Math. | EuDML | Numdam | MR | Zbl
-