L p pinching and compactness theorems for compact riemannian manifolds
Séminaire de théorie spectrale et géométrie, Tome 6 (1987-1988), pp. 81-89.
@article{TSG_1987-1988__6__81_0,
     author = {Yang, Deane},
     title = {$L^p$ pinching and compactness theorems for compact riemannian manifolds},
     journal = {S\'eminaire de th\'eorie spectrale et g\'eom\'etrie},
     pages = {81--89},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {6},
     year = {1987-1988},
     mrnumber = {1046260},
     zbl = {0937.53501},
     language = {en},
     url = {http://www.numdam.org/item/TSG_1987-1988__6__81_0/}
}
TY  - JOUR
AU  - Yang, Deane
TI  - $L^p$ pinching and compactness theorems for compact riemannian manifolds
JO  - Séminaire de théorie spectrale et géométrie
PY  - 1987-1988
SP  - 81
EP  - 89
VL  - 6
PB  - Institut Fourier
PP  - Grenoble
UR  - http://www.numdam.org/item/TSG_1987-1988__6__81_0/
LA  - en
ID  - TSG_1987-1988__6__81_0
ER  - 
%0 Journal Article
%A Yang, Deane
%T $L^p$ pinching and compactness theorems for compact riemannian manifolds
%J Séminaire de théorie spectrale et géométrie
%D 1987-1988
%P 81-89
%V 6
%I Institut Fourier
%C Grenoble
%U http://www.numdam.org/item/TSG_1987-1988__6__81_0/
%G en
%F TSG_1987-1988__6__81_0
Yang, Deane. $L^p$ pinching and compactness theorems for compact riemannian manifolds. Séminaire de théorie spectrale et géométrie, Tome 6 (1987-1988), pp. 81-89. http://www.numdam.org/item/TSG_1987-1988__6__81_0/

[BK] Buser P., Karcher H. - Gromov's almost flat manifolds, Astérisque 81, 1981. | Numdam | MR | Zbl

[CE] Cheeger J. Ebin D.G. - Comparison Theorems in Riemannian Geometry, New York : American-Elsevier, 1975. | MR | Zbl

[C] Croke C. - Some isoperimetric inequalities and eigenvalue estimates, Ann. scient. Éc. Norm. Sup., 13 ( 1980), 419-435. | Numdam | MR | Zbl

[G1] Gao L.Z. - Einstein manifolds I, preprint.

[G2] Gao L.Z. - Ln/2 curvature pinching, preprint

[G3] Gao L.Z. - Convergence of Riemannian manifolds, Ricci pinching, and Ln/2-curvature pinching, preprint.

[GW] Greene R.E., Wu H. - Lipschitz convergence of Riemannian manifolds, Pacific J. Math. | MR | Zbl

[GLP] Gromov M., La Fontaine J., Pansu P. - Structures métriques pour les variétés riemanniennes, Paris, Cedic, 1981. | MR | Zbl

[H] Hamilton R.S. - Three-manifolds with positive Ricci curvature, J. Diff. Geom., 17 ( 1982), 255-306. | MR | Zbl

[M] Min - Oo. - Almost Einstein manifolds of negative Ricci curvature, preprint | MR

[P1] Peters S. - Cheeger1's finiteness theorem for diffeomorphism classes of Riemannian manifolds, J. für die reine und angewandte Mathematik, 349 ( 1984), 77-82. | EuDML | MR | Zbl

[P2] Peters S. - Convergence of Riemannian manifolds, Compositio Math. | EuDML | Numdam | MR | Zbl