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WELL-DEFINABLE TYPES OVER SUBSETS

An and PILLAY

Théories stables
(B. POIZAT)
Vol. 3, 1980-1982, n° 2, 4. p.

In this short note I give a "direct proof of a beautiful result of elementary
stability theory. The result is that for T . stable, if d 1 and d 2 are "good"
defining schemae over a set A, and d (A) = d2(A) , then for all B ~ A ,

d~(B) = d2(B) , that is, d I and d 2 are equivalent. This result does not men-
tion forking, although the "usual" proof of it uses forking. Our proof will be
forking-free. In fact, we show directly that if the result fails then T has the

order property.

T is conplete, and we work, as usual, in a very saturated model of T . I

recall the following definitions.

Definition 1. - Let A be a set of parameters (i. e. a subset of the big mo-

dels), and n  ~ . Let x denote an n-tuple of variables. An n-schema over A ,
is a map d which associates to each L-formula ~) an L(A)-formula
jq (§) . # (§) is denoted dcp (~) . A schema over A is just an n-schema over A

for some n  w .

Definition 2. - Let d be a schema over A . Let B be a set. Then

Note. - B is usually taken to include A. d(B) need neither be consistent

nor complete.

Definition 3. - d is said to be a good defining schema over A ~ if d is a

schema over A and zoreover for all B, d(B) E S(B) , i. e. d(B) is consis-

tent and conplete.

Fact 4. - Let d be a schema over A . Then the following are equivalent,
(i) d is a good defining schema over A J
(ii) for some model A ~ E 

(iii) for each y) and finite collection {03C6j(x, yj) : i  m}
of L-formulae, we have

. ( ) Anand PILLAR Dept of Mathematics, The University, MANCHESTER, M13 9PL
( Grande-Bretagne) .
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and

Remember that, even for T stable there may be a schema d over a set A such

that d(A) E S(A) and d is not a good defining schema. It is also easy to manu-

facture examples of d , d 2 schemae over A such that d~ is a good defining
schema over .~ ~ ~2 is not a good defining schema over A and d 1 (A) = d 2 (A) .
If d is a schema over a model M ~ and d(M) E S(M) , then, by Fact 4, d is

a good defining schema Moreover, it is easy to see that if d’ is another schema

over M such that d’ r (1B::) , then d and d’ are equivalent. ( d . and d’

are said to be equivalent if, for all B ~ d(B) = d’ (B) . ) This holds whether T

is stable or not.

The following is an example of a theory T (unstable of course) for which there

are good defining schemae d~ and d2 over a set A such that = d2(L) ,
but d. and d2 are not equivalent. Let T be ) . Let M = (Q ~ ) ~
and let a , b be elements of the big model such that

So tp (b/M) . It is easy to see that both tp(a/M) and tp(b/M) are

definable over ~ . (For example, for each y a &#x3E; y if, and only if,
~ y = y . ) Let d 1 and d 2 be defining schemae over ~ for tp(a/M) and

tp(b/M) . respectively. So (by Fact 4) both d~ and d are good defining schemae
over . Also d1(Ø) = d2(Ø’) = the unique 1-type of T over Ø. But of course
d~ and d2 are not equivalent ( as d~ d 2 (M) ) .

The main property of good defining schemae that we use, is the following (which
is trivial) :

Fact 5. - Let d be a good defining schema over Let qJ (x ~ ) E L . Let B

be a set and b ~ b’ E B be such that Then d(B)
if, and only d( B) .

As we are proving things "from scratch" here, we give the following standard
lennna :

LEMMA 6. - Let T be stable. Suppose that d , d~ are good defining schemae
over A and that d~ and d2(A) . Then

Proof. - Without loss of generality let us assume that tp(b/A u ’å) = u ä) ,
but, for some b) and -)Cp(~x~ ’5) (A ub) .
Now we define äi’ ’5i for i~ as follows, a- = z , ~+ i is a
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realisation of u (~ ~ b~ : 1~ n)) and is a realisation of

u ~ " b~ : i ~ n) u (5~)) . It is then easy to using Fact 5, that

= 03C6(ai b.) if, and only if, i  j. Thus T has the order property, which con-
tradicts stability.

PROPOSITION 7. - Let T be stable. Let d. ~ d be good defining schemae over
A such that = d (A) . Then for all B ~ d (B) = d (B) .

Proof. - Without loss of generality, let us assume that A = .
If the proposition fails then we have, for some formula 03C6(x, y) and tuple b ,

B) e d~(b) and -)cp(~ ~ b) e d~(b) .
We now define inductively a.. and B. for i  uj such that

(i) = 

(ii) ~= bj if~ and only if~ for all i ~ j  (ju y

(iii) b0 ... an-1 bn-1) = b1 ... an bn) for 1 $: n  03C9,
(iv) " 

a1 
" 

b1 
" 

... 

" 

an " bn) = 
" 

a1 b1 
" 

... 

" 

a 
" 

bn), for

n  (u 

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 

(v) b~ ~ ... ~ ~ ~ = d,(a, ~ b~ ~ ... ~ ~ ~ b,,,) , for

n ~ (~ ~ ~ ~ ~ ~ ’

First let a0 be any realisation of d (Ø), and let b0 be a tuple such that
= tp(b) and = d1(b0). Clearly (i) is satisfied, as is (iv) .

The satisfaction of (ii) is given by Fact 5 and the fact that *b) e d.(b) .
(v) follows from the fact that d. ($) = d~($) ,
Now suppose that ~ and b~ have been defined for i ~ n satisiying the re-

quirements. We proceed to define and 

First let ~~ be a realisation of d~(~ ~ b~.... ~ a~ b )  Now by in-
duction hypothesis

and

It follows from Fact 5 that

By (3t) ~ we can find b’ such that
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Thus we have, using the induction hypothesis,

The trouble is that we might not have t= b’) . To overcome this, we let al
be a realisation of a 1 " b 1 " 

... 
" b’ ) . As tp (hi) = tp (h) for

all i ~ n and also tp (b’ ) = tp(b), it follows that

Now by (iv) of the induction hypothesis and the definition it follows that

Now lemma 6 (md the definition imply that

Then (I) and (II) iroply that

Thus we can find b 1 such that
n+

Now we check the satisfaction of conditions (ii)-( v), for

follows from the induction hypothesis, (**), (***), (****) and (III). (iii)
is a consequence of (*’ ) and (III). (iv) (with n + 1 in place of n ) is by the
definition of a’ and (III). (v) (again with n + 1 in place of n ) is by the

definition of a 

Thus the induction can be carried whereby condition (ii) says that T has

the order property, contradicting stability. So Proposition 7 is proved.

Let me briefly remark on how Proposition 7 follows easily given forking theory.
One just needs to observe that (for T stable), if d is a good defining schema
over A then

(a) is stationary, and

(b) for any B ~ 1‘x ~ d(B) is the nonforking extension to B of 


