Groupe D'ÉTUDE DE THÉORIES STABLES

Anand Pillay
 The models of a non-multidimensional ω-stable theory

Groupe d'étude de théories stables, tome 3 (1980-1982), exp. no 10, p. 1-22
http://www.numdam.org/item?id=STS_1980-1982__3_A10_0
© Groupe d'étude de théories stables
(Secrétariat mathématique, Paris), 1980-1982, tous droits réservés.
L'accès aux archives de la collection «Groupe d'étude de théories stables » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

THE HODELS OF A NON-NULTDI:TETOTAL w-S'ABIE THFORY
by Anand PILLAY (*)
[University of Manchester]

I give a (self-contained) account of the classification of the models of a nonmultidimensional w-stable theory. This result is the generalisation of the Baldwin-Lachlan-iorley classification of the models of an N_{1}-categorical theory, and incluaes of course the possible spectra that can occur. (Remember that the spectrum of a theory T is given by the function $I(-, T)$, where for x a cardinal, $I(\varkappa, T)$ is the number of models of T of power n, up to isomorphism.) The crude idea is that, instead of a model of T being deterined by the cardinalfty of one indiscernible set (as when T is κ_{1}-categorical), a model of T is now determined by the cardinalities of each member of a fixed "independent" family of indiscernible sets.

I assume the basic facts about stability, forking, definability, rank, etc., which can be found in [4] or even [5].
T will be a countable complete w-stable theory. The w-stability of T furnishes us with several nice properties. The most important of these will be :
(i) for any subset A of a model M of T, there is a (real) prime model of $\operatorname{Th}(\mathrm{M}, \mathrm{a}), a \in \mathrm{~A}$,
(ii) if $M=T$ and $p \in S(M)$, then there is a finite $A \subset M$ such that p is definable over A (thus p does not fork over A and $p \upharpoonright A$ is stationary),
(iii) all types over arbitrary subsets are ranked by Morley rank.

I will also follow the usual practice of working in a large sufficiently saturated model of T.

I. Atrongly regular types.

Strongly regular types are generalisations of types of fiorley rank 1., degree 1 . If $p \in S(\mathbb{M})$, I denote by $M(p)$, the model which is prime over $\mathbb{M} \cup\{\vec{a}\}$, where $\operatorname{tp}(\overline{\mathrm{a}} / \mathbb{1})=\mathrm{p}$. This model might also be denoted by $\mathrm{M}(\overline{\mathrm{a}})$, and is unique up to Misomorphism.

Definition 1.1. - Let $p \in S_{1}(I), p$ not algebraic and $\psi(x) \in p$ (might countain parameters from M) . The pair (p, φ) is said to be strongly regular if whenever $b \in \mathbb{H}(\mathrm{p}), \mathrm{b} \notin \mathbb{M}$ and $\mathbb{M}(\mathrm{p}) \mid=\varphi(\mathrm{b})$, then $\operatorname{tp}(\mathrm{b} / \mathrm{H})=\mathrm{p} \cdot \mathrm{p}$ is said to be
(*) Anard PILLAY, Dept of Mathematics, The University, HANCHESTER, M13 9PL (Grande-Bretagne).
strongly regular if there is $\varphi \in p$ such that (p, φ) is strongly regular.
LEHAA 1.2. - Suppose that p and $q \in S(i i), p$ is stronglv regular and q is realised in $M(p)$. Then p is realised in $\mathbb{H}(q)$, (We assume q is not algebraic).

Proof. - Suppose that (p, p) is strongly regular. Let a realise p, and $\bar{b} \in \mathbb{M}(a)$ such that \bar{b} realises q. It is clear that a and \bar{b} are note independant over $M(\bar{b} \notin M)$. Thus there is a formula $\alpha(x, \bar{y})$ over \mathbb{M} such that $\mathbb{M}(a) \models \alpha(\mathrm{a}, \overline{\mathrm{b}})$, but $\operatorname{Mi}(\mathrm{a}) \models \neg \alpha(\mathrm{m}, \overline{\mathrm{b}})$ for all $\mathrm{m} \in \mathbb{H}$. Note that $" \varphi(\mathrm{x}) \wedge \omega(\mathrm{x}, \overline{\mathrm{b}}) \mathrm{N}$ is consistent. Now $\mathbb{H}(\mathrm{q})=\mathbb{M}(\overline{\mathrm{b}})<\operatorname{H}(\mathrm{a})$, and let $c \in \operatorname{H}(\overline{\mathrm{~b}})$ such that $\mathbb{M}(\mathrm{b}) \hat{=}=\psi(\mathrm{c}) \wedge \checkmark(\mathrm{c}, \overline{\mathrm{b}})$. Then $\mathrm{c} \nexists \mathbb{M}, \quad \mathrm{c} \in \mathbb{M}(\mathrm{a})$ and $\mathbb{M}(\mathrm{a}) \mid=\psi(\mathrm{c})$. Thus $\operatorname{tp}(c / \mathrm{i})=p$, and so p is realised in $M(q)$.

Definition 1.3. - Let p and q be strongly regular types over in such that q is realised in $M(p)$. Then we say that p and q are equivalent, $p \sim q$.
(By lemma 1.2, this definition makes sense).
The next lenima shows that "enough" strongly regular types exist.
LEMFA 1.4. - Suppose that $M<N$, the $L(M)$ formula $\varphi(x)$ is "augmented" in N, and a is chosen in $\varphi^{N}-M$ such that $\operatorname{tp}(a / M)$ has least possible Morley rank. Then $\operatorname{tp}(a / \mathbb{M})$ is strongly regular.

Proof. - (Let $R(-)$ denote Forley rank). Let $R(\operatorname{tp}(a / i i))=\omega$, and pick $L(i I)-$ formula $\psi(x)$ such that $|-\psi(x) \rightarrow \varphi(x), N|=\psi(a)$ and $R(y(x))=\psi$, and degree $(\psi(x))=1$. Now $N(a)<N$, and so it is clear that ($\operatorname{tp}(a / N), \psi$) is strongly regular.

Definition 1.5. - Let $p(\overline{\bar{x}})$ and $q(\bar{y})$ be types over $M . p$ and q are said to be perpendicular $(p \perp q)$ if $p(\bar{x}) \cup q(\bar{y})$ deteraines a complete $\bar{x} \wedge \bar{y}$ type over \mathbb{M}.

Note. - If $p(\bar{x})$ and $q(\vec{y})$ are types over a model if, then $p \perp q$ if, and only if, whenever \bar{a} and \bar{b} realise p and q respectively, then \bar{a} and \bar{b} are independent over M.

Fact 1.6. - Let \bar{a} and \bar{b} be independent over M. Let A be a atomic over $M \cup\{\bar{a}\}$ and B atomic over $M \cup\{\bar{b}\}$. Then A and B are independent over M.

Now the proof of lemma 1.2 actually implies that if $\operatorname{tp}(a / r)$ is strongly regular and $\bar{b} \in M(a)-M$, then $\operatorname{tp}(a / M \cup\{\bar{b}\})$ is isolated. A simple consequence of this and fact 1.6 is the following :

Obscrvation 1.7. - Let $p_{1}, p_{2}, q_{1}, q_{2}$ be all strongly regular types over M such that $p_{1} \sim p_{2}$ and $q_{1} \sim q_{2}$. Then $p_{1} \perp q_{1}$ if, and only if, $p_{2} \perp q_{2}$.

PROPOSITION 1.8. - Let p and q be strongly regular types over M. Then p and q are perpendicular if, and only if, p and q are not equivalent.

Proof. - It is clear that if p and q are equivalent then they are not perpendicular. Conversely, assume that p and q are not equivalont. Te wish to show that they are perpendicular. By 1.7 , we can assume that $R(p)=\alpha$ is minimal among strongly regular types over M equivalent to p, and siiilarly for q, with $R(q)=\beta$. So we can find formulae $p(x)$ and $\psi(x)$, both of degree 1 , and of rank ψ and p respectively, such that (p, φ) and (q, ψ) are strongly regular. Suppose (without loss) that $u \leqslant \beta$. Now if p and q are not perpendicular, then there are realisations a and b of p and q respectively, such that a and b are not independent over H. As in the proof of 1.2 , if follows that $\varphi(x)$ is "augmented" in $M(b)$ (i. e. $\varphi^{M(b)}-M$ is nonempty). By lemma 1.4, there is $c \in \varphi^{I \cdot(b)}-M$, such that $t p\left(c / \Gamma_{1}\right)$ is strongly regnlar. Clearly, $t p(c / i)$ is equivalent to q, and $R(\operatorname{tp}(c / \mathbb{M})) \leqslant \alpha$. If $R(\operatorname{tp}(c / \mathbb{M}))=\alpha$, then clearly $\operatorname{tp}(c / \mathbb{M})=p$, which contradicts the non-equivalence of p and q. On the other hand, if $R(\operatorname{tp}(c / \mathbb{M}))<\alpha$, then we contradict the mininal cioice of $R(q)$. Thus the proposition is proved.

PROPOSIIION 1.9. - Let $H<M^{\prime}, p \in S_{1}\left(A_{i}\right)$ and p^{\prime} the nonforking extension (or heir) of p over M^{\prime}. Then p is strongly regular if, and only if, p^{\prime} is strongly regular.

Proof. - First suppose that p^{\prime} is strongly regular. Then there is an $L\left(l_{1}\right)$ formula $\varphi(x)$ such that $\left(p^{\prime}, \varphi\right)$ is strongly regular (Any $L\left(M^{\prime}\right)$ formula $\varphi(x) \in p^{\prime}$ such that degree $(\varphi)=1$, and $R(\varphi)=R\left(p^{\prime}\right)$ will suffice. But $p^{\prime} p^{\prime}$, and $R(p)=R\left(p^{\prime}\right)$. Thus φ can be chosen over $\left.M\right)$. We show that (p, φ) is strongly regular. Let a realise p^{\prime}. So $\operatorname{tp}(a / \mathbb{N})=p$, and $H(p)=M(a)<M^{\prime}(a)$. Let $b \in M(a), b \notin M$ and b satisfy φ. Now b and a are not independent over M. Thus $b \not \equiv \mathbb{M}^{\prime}$. But then $\operatorname{tp}\left(b / \mathbb{N}^{\prime}\right)=p^{\prime}$ (by strong regularity of (p^{\prime}, φ).) Thus $\operatorname{tp}(b / H)=p$. So (p, φ) is strongly regular.

Conversely, suppose that $\varphi(x) \in p$, and (p, φ) is strongly regular. Let a realise p^{\prime}. If (p^{\prime}, φ) is not strongly regular, then there is b in $\varphi^{M^{\prime}(a)}-M^{\prime}$ such that $t p\left(b / M^{\prime}\right) \neq p$. Now p^{\prime} is definable by a schema d, over M (where d also defines p), and also a and b are not independent over Mt. Thus there are L-formulae $\psi(y, \bar{z})$ and $\alpha(x, y, \bar{w})$, and \bar{c} and \bar{d} in $\overline{\mathrm{D}}, \mathrm{y}$ such that

$$
M^{\prime}(a) \mid=(\Perp y)(\varphi(y) \wedge \psi(y, \bar{c}) \wedge \longrightarrow d(\psi)(\bar{c}) \wedge u(a, y, \bar{d}))
$$

where the formula $\alpha(x, y, \bar{w})$ is not represented in p^{\prime} (so neither in p). But $\operatorname{tp}(\mathrm{a} / \mathrm{II})$ is the heir of $\operatorname{tp}(\mathrm{a} / \mathrm{II})$. Thus we can find \bar{c}^{\prime} and $\overline{\mathrm{a}}^{\prime}$ in A such that

$$
M(a) \mid=(y y)\left(\varphi(y) A \ddot{\psi}\left(y, \bar{c}^{\prime}\right) \wedge \longrightarrow d(\psi)\left(\bar{c}^{\prime}\right) \wedge \alpha\left(a, y, \bar{d}^{\prime}\right)\right)
$$

If we let b^{\prime} be such $a y$ in $M(a)$, then $b^{\prime} H, H(a) \mid=\psi\left(b^{\prime}\right)$ and $t_{p}\left(b^{\prime} / 1\right) ; p$. This contradicts the fact that (p, φ) is strongly regular, and completes the proof.

Definition 1.10. - Let A be a subset (of the big model), $p \in S_{1}(A)$ a stationary type, and $\varphi(x) \in p$. We call (p, φ) strongly regular if there is a model M countaining A and nonforking extension p^{\prime} of p over M such that (p^{\prime}, φ) is $s t r o n g l y$ regular. Again p will be called strongly regular if there is $\varphi(x)$ such that (p, φ) is strongly regular.

Wote. - If follows immediately from 1.9 that for $p \in S_{1}(A), p$ is strongly regular if, and only if, for all M extending A and nonforking extension p of p to $\mathrm{l}, \mathrm{p}^{\prime}$ is strongly regular.

PROPOSITION 1.11. - Let p and q be strongly regular types over 1 , and let p^{\prime} and q^{\prime} be their respective heirs over $M^{\prime}<M$. Then $p \perp q$ if, and only if, $p^{\prime}+q^{\prime}$ 。

Proof. - Suppose that p dans q are not jerpendicular. Then there are realisations a and b of p and q ressectively, such that a and b are not independent over \mathbb{M}. Let $a^{\prime} \wedge b^{\prime}$ realise the heir of $\operatorname{tp}\left(a^{\wedge} b / M\right)$ over M^{\prime}. Then $\operatorname{tp}\left(a^{\prime} / 4^{\prime}\right)=p^{\prime}, \operatorname{tp}\left(b^{\prime} / I^{\prime}\right)=q^{\prime}$, and a^{\prime} and b^{\prime} are not independent over M^{\prime}. Thus $p^{\prime} \notin q^{\prime}$.

Conversely, suppose that p and q are perpendicular. We may again suppose that p and q are chosen with minimal rank in their equivalence classes. So we have (p, φ) strongly regular, with $R(p)=R(\varphi)=\alpha$, and (q, ψ) strongly regular, with $R(q)=R(\psi)=\beta$, and suppose $\alpha \leqslant \beta$. So (p^{\prime}, φ) and (q^{\prime}, ψ) are strongly regular. If p^{\prime} and q^{\prime} are not perpendicular, then again if follows that $\varphi(x)$ is augmented in $M^{\prime}\left(q^{\prime}\right)$. As q^{\prime} is the heir of q, it is easy to prove that $\varphi(x)$ is augmented in $M(q)$, but thjis will again contradict the minimal choice of $R(q)$. So the proposition is proved.

By propositions 1.8 and 1.11 , we have :

COROLLAPY 1.12. - Let p and q be strongly regular types over M, and $M^{M}<M^{\prime}$, and p^{\prime}, q^{\prime} the heirs of p and q over M^{\prime}. Then $p \sim q$ if, and only if, $p^{\prime} \sim q^{\prime}$ 。

Definition 1.13. - Let $p(\bar{x})$ and $q(\bar{y})$ be in $S(A)$, where A is an arbitrary subset. Then p and q are said to be orthogonal if for all $B \supset A$ and nonforking extensions p^{\prime} and q^{\prime} of p and q over $B, p^{\prime}(\bar{x}) \cup q^{\prime}(\bar{y})$ determines a complete type over B.

PROPOSITION 1.14. - Let p and q be strongly regular types over A. Then the following are equivalent :
(i) p and q are orthogonal,
(ii) for some $M=A, \quad(M$ a model $)$, and nonforking extensions p^{\prime}, q^{\prime} of p, q over H, p^{\prime} and q^{\prime} are perpendicular.

Proof. - By proposition 1.11.
Note. - It was shown in [3] that if p and q are any.types over M, and p^{\prime}, q^{\prime} their heirs over some $M^{\prime}>\mathrm{M}^{\prime}$, then $p \perp q$ if, and only if, $p^{\prime} \perp q^{\prime}$. It follows that proposition 1.14 holds without the hypothesis that p and q are strongly regular. However 1.14 in its present form will suffice for our needs.

Given strongly regular types p and q over A, we will call p and q equivalent if they are not orthogonal. By 1.8 and 1.14 , this is consistent with def. 1.3.

I complete this section with a couple of observations which will be of use later on.

LEMHA 1.15. - Let $\left\{p_{i} ; i \in I\right\}$ be a set of stationary pairwise orthogonal types over A. For each $i \in I$, let $\left\{a_{j}^{i} ; j<Y_{i} j\right.$ be an independent set of realisarions of p_{i} over A. Then $\left\{a_{j}^{i} ; i \in I, j<r_{i}\right\}$ is independent over A.

Proof. - It suffices to show that if $\bar{a}_{1}, \bar{a}_{2}, \ldots, \bar{a}_{n}$ is independent over A, and $\operatorname{tp}(\bar{b} / A)$ and $\operatorname{tp}\left(\bar{a}_{i} / A\right)$ are orthogonal for $i=1, \ldots, n$, then $\left\{\bar{a}_{1}, \bar{a}_{2}, \ldots, \bar{a}_{n}, \bar{b}\right\}$ is independent over A. This we show by induction. So suppose that we already have $\left\{\bar{a}_{1}, \ldots, \bar{a}_{r}, \bar{b}\right\}$ is independent over A, where $r<n$. Thus $\operatorname{tp}\left(\bar{b} /\left\{\bar{a}_{1}, \ldots, \bar{a}_{r} j \cup A\right)\right.$ does not fork over A, and we know anyway that $\operatorname{tp}\left(\bar{a}_{r+1} /\left\{\bar{a}_{1}, \ldots, \bar{a}_{r}\right\} \cup A\right)$ does not fork over A. Thus by the orthogonality of $\operatorname{tp}(\overline{\mathrm{b}} / \mathrm{A})$ and $\operatorname{tp}\left(\overline{\mathrm{a}}_{r+1} / A\right), \overline{\mathrm{a}}_{r+1}$ and $\overline{\mathrm{b}}$ are independent over $A \cup\left\{a_{1}, \ldots, a_{r}\right\}$. Thus $\left\{\bar{a}_{1}, \ldots, \bar{a}_{r}, \bar{a}_{r+1}, \bar{b}\right\}$ is independent over A.

LERA 1.16. - Let Pi be a model, and $\left\{p_{i} ; i \in I\right\}$ a maximal collection of pairwise orthogonal strongly regular types over M. Let $A \subset M$ be such that each p_{i} is definable over A, and for each $i \in I$, let $\left.\overline{\left\{_{j}^{i}\right.} ; j<\gamma_{i}\right\}$ be a maximal independent set of realisations of $p_{i} \upharpoonright A$ in M. Then $J=\left\{a_{j}^{i} ; i \in I, j<y_{i}\right\}$ is independent over A, and moreover \mathbb{M} is minimal over $A \cup J$.

Proof. - By 1.14, the types $p_{i} \upharpoonright A$ are strongly regular and pairwise orthogonal. Thus the indepandence of J over A follows by 1.15 .

Suppose that A were not minimal over $A \cup J$. Then there would be a model N such that $A \cup J \subset N \nsupseteq M$. By 1.4 , we can find $a \in M-N$ such that $\operatorname{tp}(a / N)$ is strongly regular. Let $p=\operatorname{tp}(a / N)$, and let p^{\prime} be the heir of p over M. So p^{\prime} is strongly regular (1.9), and by the choice of the p_{i}^{\prime} s there is $s \in I$ such that p^{\prime} and p_{s} are not orthogonal. But p_{s} does not fork over N, and so $p_{s} \uparrow N$ is strongly regular and not orthogonal to p (by prop. 1.9 and prop. 1.11). Thus $p_{s} \Gamma N$ and p are equivalent, and so $p_{s} \Gamma N$ is realised in $N(a)$, where we can assume that $N(a)<M$. Let $c \in N(a)$ realise $p_{s} \uparrow N$. Then, as $p_{S} \uparrow N$ does not fork over A, if follows that c and $\left\{a_{j}^{s} ; j<r_{S}\right\}$ are independent over A. But this contradicts the maximal choice of the independent set $\left\{a_{j}^{s} ; j<Y_{s}\right\}$ of realisations of $p_{S} \uparrow A$ in M. So the lemma is proved.
II. Dimension.

Let M_{i} be a model, $A \subset \mathbb{M}$ and $p \in S(A)$. A set I of tuples from M will be called a basis for p in M, if I is a set of realisations of p in M, independent over A, and maximal such (Note that if p is stationary, then I is also indiscernible over A).

PROPONITION II.1. - Suppose that $p \in S(A), A \subset M$ and p has some infinite basis in I. Then all bases for p in have the same cardinality.

Proof. - If not, then it is clear that there are bases I and J of p in M with J infinite and $|I|<|J|$. As I is maximal, for each $\bar{c} \in J$, $\operatorname{tp}(\bar{c} / I \cup A)$ forks over A. So there is some finite $I_{\bar{c}} \cup I$ such that $\operatorname{tp}\left(\bar{c} / I_{\bar{c}} \cup A\right)$ forks over A.
s̃o by the cardinality difference, there is finite $I^{\prime} \subset I$ and $\bar{c}_{n} \in J$ for $n<\omega$, such that $\operatorname{tp}\left(\bar{c}_{n} / I^{\prime} \cup A\right)$ forks over A, for each $n<w$. But then, as the $c_{n}^{\prime} s$ are independent over A, we have for each $n<w, \operatorname{tp}\left(\bar{c}_{n+1} /\left\{\bar{c}_{0}, \ldots, \bar{c}_{n}\right\} \cup I^{\prime} \cup A\right)$ forks over $A \cup\left\{\bar{c}_{0}, \ldots, \bar{c}_{n}\right\}$, and thus $\left.\operatorname{tp}\left(I: / \bar{c}_{0}, \ldots, \bar{c}_{n}, \bar{c}_{n+1}\right\} \cup A\right)$ forks over $\left\{\bar{c}_{0}, \ldots, \bar{c}_{n}\right\} \cup A$. But this contradicts superstability.

Definition II.2. - If all bases of p in have the same cardinality, then we define $\operatorname{dim}(p, M)$ to be this cardinality.

Note. - We will see later on that if $p \in S(A)$ is strongly regular and $A \subset M$, then $\operatorname{dim}(p, M)$ is always defined.

Let I be an infinite indiscernible set (maybe of tuples), and B an arbitrary set. Recall that $\operatorname{Av}(I / B)$ is defined as follows : for $\bar{b} \in B, \varphi(\bar{x}, \bar{b}) \in \operatorname{Av}(I / B)$ if, for cofinitely many \bar{c} in I, we have $\mid=\varphi(\bar{c}, \bar{b})$. Then $\operatorname{Av}(I / B)$ is a complete and consistent type over B. Horeover, suppose that p is a stationary type over A, and I is an infinite independent set of realisations of p over A (so I is indiscernible over A), and $B \geqslant A$. Then $A v(I / B)$ is precisely p^{\prime} the nonforking extension of p over B.

LEMAA II. 3.
(i) Let I be an infinite indiscernible set over A, and I prime over A U I. Then I is a maximal indiscernible set over A in H.
(ii) Let $I \cup\{c\}$ be an infinite indiscernjble set over A, and let N be prime over $A \cup I$. Then $\operatorname{tp}(c / A \cup I) \mid-\operatorname{Av}(I / \mathbb{M})$.
(iii) Let p be a stationary type over A, and I an independent set of realisations of p over A. Let I_{1} be an infinite subset of I, and M be prime over $A \cup I_{1}$, and let p^{\prime} denote the nonforking extension of p over M. Then $I-I_{1}$ is an indepondent (over M) set of realisations of p^{\prime}.

Proof.
(i) If I is not maximal indiscernible over A in il , extend it by c in M. Now $\operatorname{tp}(c / A \cup I)$ is isolated by a formula $\alpha(x, \bar{a}, \bar{d})$, where $\bar{a} \in A$ and $\bar{d} C_{I}$. In particular, $H \mid=u(x, \bar{a}, \bar{d})-->x \neq c^{\prime}$ for all $c^{\prime} \in I$ (as $\left.c \notin I\right)$. But M $\mid=\alpha(c, \bar{a}, \bar{d}), I \cup\{c\}$ is indiscernible over A and I is infinite. Thus we can find c^{\prime} in I such that $M \mid=\alpha\left(c^{\prime}, \bar{a}, \bar{d}\right)$, and this is a contradiction.
(ii) I show that if $I \cup\{c\}$ is indiscernible over A, then $\operatorname{tp}(c / \mathbb{F})=\operatorname{Av}(I / \mathbb{M})$ (where $\overline{\mathrm{H}}$ is prime over $\mathrm{A} \cup I$). So let $\varphi(\mathrm{x}, \overline{\mathrm{m}}) \in \operatorname{Av}(\mathrm{I} / \mathbb{H})$, where $\overline{\mathrm{m}} \in \mathbb{M}$. I will show that this formula is satisfied by c. Now $\operatorname{tp}(\bar{m} / A \cup I)$ is isolated by a formula $\varphi(\bar{y}, \bar{a}, \bar{d})$ where $\bar{a} \in A$ and $\bar{d} \subset I$. Now as $\varphi(x, \bar{m})$ is satisfied by cofinitely many members of I, there is $c^{\prime} \in I, c^{\prime} \notin d^{\prime}$ such that $\mathrm{H} \mid=\varphi\left(\mathrm{c}^{\prime}, \overline{\mathrm{m}}\right)$. Thus $\mathrm{H} \mid=v \overline{\mathrm{y}}\left(\varphi(\overline{\mathrm{y}}, \overline{\mathrm{a}}, \overline{\mathrm{d}}) \rightarrow \varphi\left(\mathrm{c}^{\prime}, \overline{\mathrm{y}}\right)\right)$. But $\operatorname{tp}\left(c^{\wedge} \overline{\mathrm{d}} / \overline{\mathrm{a}}\right)=\operatorname{tp}\left(\mathrm{c}^{\wedge} \overline{\mathrm{d}} / \overline{\mathrm{a}}\right)$. So we have $\mid=\forall \overline{\mathrm{y}}(\varphi(\overline{\mathrm{y}}, \overline{\mathrm{a}}, \overline{\mathrm{d}}) \rightarrow \psi(\mathrm{c}, \overline{\mathrm{y}}))$, whereby $\mid=p(\mathrm{c}, \overline{\mathrm{m}})$, and we finish.
(iii) Let c_{1}, \ldots, c_{n} be in $I-I_{1}$. We must show that c_{1}, \ldots, c_{n} is an independent set of realisations of p^{\prime} over M. Let p^{n} denote $\operatorname{tp}\left(c_{1} \wedge \ldots \wedge c_{n} / A\right)$. Then I can be considered (by partitioning it into n-tuples) as an independent set of realisations over A of p^{n}. But then by (ii) and the remarks preceding this lemma, $\operatorname{tp}\left(c_{1} \wedge \ldots \wedge c_{n} / \mathbb{M}\right)$ does not fork over A, and this is just what we want.

LEMTA II.4.
(i) Let p and q be equivalent strongly regular types over a model \mathbb{M}, and let $N>M$. If I is a basis of p in N, then there is a basis J of c in N with $|I| \leqslant|J|$.
(ii) Let p and q be equivalent strongly regular types over a set A, and let $N \Rightarrow A$. If p has an infinite basis in N, then so does q, and moreover $\operatorname{dim}(p, M)=\operatorname{dim}(q, H)$.

Proof.

(i) Let I be a basis of p in \mathbb{N}, and write I as $\left\{a_{\alpha} ; \alpha<\mu_{\}}\right.$. Define models M_{c} in N for $\psi<\pi$, and elements b_{α} for $\alpha<\pi$, as follows : $M_{0}=M_{N}$, $\mathrm{Mi}_{\alpha+1}=M_{\alpha}\left(a_{\omega}\right)$, and $M_{\delta}=U_{\alpha<\delta} M_{\alpha}$. Clearly $\operatorname{tp}\left(a_{\alpha} / M_{\alpha}\right)$ is the heir of p over M_{α} and so strongly regular and equivalent to a_{α}, the heir of c over ${ }_{\alpha}$ (by 1.12). Thus c_{α} is realised in $M_{\alpha+1}$, and let b_{α} be such a realisation. By fact 1.6, $\left\{b_{\alpha} ; \alpha<\pi\right\}$ is an independent set of realisations of 1 over M, and so can be extended to a maximal such set in N.
(ii) It is enough by II. 1 and symmetry to show that if p has an infinite basis I in N, then q has a basis J in N with $|I| \leqslant|J|$. So let I be an infinite basis of p in \mathbb{N}. Partition I as $I_{1} \cup I_{2}$, where I_{1} is infinite and $|I|=\left|I_{2}\right|$. Let H^{\prime} be an elementary substructure of N which is prime over

A $\cup I_{1}$. Let p^{\prime} be the nonforking extension of p over M^{\prime}. Then by II.3 (iii), I_{2} is a basis of p^{\prime} in N. But p^{\prime} is strongly regular and equivalent to q^{\prime}, the (strongly regular) nonforking extension of q over M'. So by (i) there is a basis J^{\prime} of q^{\prime} in N, with $\left|J^{\prime}\right| \geqslant\left|I_{2}\right|=|I|$. But J^{\prime} is clearly an independent set of realisations of q in \mathbb{N} and so can be extended to a basis J of q in \mathbb{N}, and clearly $|I| \leqslant|J|$.

Let p be a stationary type over A, and let $\bar{a}_{1}, \bar{a}_{2}, \ldots, \bar{a}_{n}$ an independent set of realisations of p over A. Then I will denote $\operatorname{tp}\left(\bar{a}_{1} \wedge \ldots \wedge \bar{a}_{n} / A\right)$ by p^{n}.

PROPOSITIUN II.5. - Let p and q be strongly regular types over a set A, and suppose that, for all $n, m<\omega, p^{n}(\bar{x}) \cup q^{m}(\bar{y})$ determines a complete type over A. Then p and q are orthogonal.

Proof. - So suppose that, for all $n, m<\omega, p^{n}(\bar{x}) \cup q^{m}(\bar{y})$ is complete. It follows that if I is an independent set of realisations of p over A, and J is an independent set of realisations of q over A, then I and J are independent over A. Now pick I and J as in the last sentence, and such that both are infinite and $|I|<|J|$. Let M be prime over $A \cup J \cup I$. I assert that I is a basis for p in M. Note first that I is indiscernible over $A U^{J}$. Now if c were a realisation of p in M such that $I U\{c\}$ were independent over A, then by our hypothesis, $I \cup\{c\}$ and J would be independent over A, and thus $I \cup\{c\}$ would be indiscernible over $A \cup J$, contradicting lemma II. 3 (i). Thus I is a basis for p in M, and so $\operatorname{dim}(p, H)=|I|$. But clearly $\operatorname{dim}(q, H) \geqslant|J|>|I|$. So by lemma II.4, p and q are not equivalent, that is, p and q are orthogonal.

Note. - Proposition II. 5 is actually true without the restriction that p and q be strongly regular (although we will not need this here). This fact, together with lemna 1.15 characterises orthogonality for types over sets.

LIFHA II.6. - Let $p \in S_{1}(A)$ and (p, φ) strongly regular. Suppose that $B P A$ and that p^{\prime} and q are in $S_{1}(B)$, where p^{\prime} is the nonforking extension of p over $B, q \neq p^{\prime}$, and $\varphi \in q$. Then p^{\prime} and q are orthogonal.

Proof. - It is enough to prove this in the case where B is a model, say M, and in this case it is enough to show that p^{\prime} and q are perpendicular. So let a and b be realizations of p^{\prime} and q respectively. I show that a and b are independent over \mathbb{H}. Now as $q \neq p^{\prime}$, there is some $L(H)$ fornula $\psi(x)$ such that $\psi(x) \in q$ but $\neg \psi(x) \in p$. Suppose that $\alpha(x, y)$ is an $L(M)$-formula such that $\mid=\alpha(b, a)$. Thus $\mid=(4 x)(\psi(x) \wedge \alpha(x, a))$. So

$$
\mathbb{M}(a) \mid=(a x)(\varphi(x) \wedge \varphi(x) \wedge u(x, a)) .
$$

Let $c \in M(a)$ be such that $M(a) \mid=\varphi(c) \wedge \dot{Y}(c) \wedge u(c, a)$. So c satisfies $\varphi(x)$ but c does not realise p^{\prime}. Thus $c \in M$ (by strong regularity of ($\left.p^{\prime}, \varphi\right)$). Thus we have shown that $\operatorname{tp}(a / M \cup\{b\})$ is the heir of p^{\prime}, whereby a and b are indepondent over M.

If follows from lema II. 6 that if p is strongly regular then p is regular ($p \in S(A)$ is said to be regular if whenever $B \supset A, p^{\prime}$ is the nonforking extension of p over B and q is a forking extension of p over B, then p^{\prime} and q are orthogonal). Now for regular types the "nonforking" notion of independence on realisations of such types satisfies the familiar exchange principle. Namely: let $p \in S(A)$ be regular, $A \subset M$, and let \bar{a}_{i}, for $i<n$, and \bar{b} realise p in H, where $\left\{\bar{a}_{i} ; i \leqslant n\right\}$ is a basis for p in l . Let \bar{a}_{m} be the first eloment such that $\operatorname{tp}\left(\bar{b} /\left\{\bar{a}_{i} ; i \leqslant m\right\}\right)$ forks over in. Then $\left\{\bar{a}_{0}, \ldots, \bar{a}_{m-1}, \bar{b}, \bar{a}_{m+1}, \ldots, \bar{a}_{n-1}\right\}$ is a basis for p in M. (This is a simple consequence of regularity and the basis properties of forking). Thus we have :

PROPONITION II.7. - Let $p \in S_{1}(A)$ be strongly regular, and $A \subset$ Pi. Then all bases for p in M have the same cardinality (and thus we can speak of dim (p, M)).

PROPOSITION II.8. - Let p and q be equivalent strongly regular types over a model N, and let $N>N$. Then $\operatorname{dim}(p, N)=\operatorname{dim}(q, N)$.

Proof. - By lemma II. 4 and proposition II.8.

I recall the following :

Fact II.9. - Let $p \in S(\mathbb{M})$ and $\varphi(\bar{x}) \in p$. Then p does not fork over $U \varphi^{M}$ 。
LEMMA II. 10. - Let $p \in S_{1}(A),(p, \varphi)$ strongly regular, and $A \subset M<N$. Let p^{\prime} denote the nonforking extension of p over M. Let I_{1} be a basis for p in M, and let I_{2} be an independent over M set of realisations of p^{\prime} in N, and finally let $c \in \mathbb{N}$ and $\operatorname{tp}\left(c / I_{1} \cup I_{2} \cup A\right)$ is the nonforking extension of p over $I_{1} \cup I_{2} \cup A$. Then $\operatorname{tp}\left(c / I_{2} \cup M\right)$ does not fork over A (and thus $I_{2} \cup\{c\}$ is an independent set of realisations of p^{\prime} in N, over M.)

Proof. - It is enough to show that $\operatorname{tp}\left(\{c\} \cup I_{2} / T\right)$ does not fork over A. By fact II.9, it is enough to show that $\operatorname{tp}\left(i c j \cup I_{2} / \varphi \cup M\right.$) does not fork over A. Now, by hypothesis, $t_{p}\left(I_{2} / \varphi \in A\right)$ does not fork over A, and thus it suffices to prove that $\operatorname{tp}\left(c / I_{2} \cup \varphi^{M} \cup A\right)$ does not fork over $I_{2} \cup A$. But $I_{1} \subset \varphi^{M}$, and we know that $\operatorname{tp}\left(c / I_{2} \cup I_{1} \cup A\right)$ dues not fork over $I_{2} \cup A$. So this leaves us having to prove that

$$
\operatorname{tp}\left(c / I_{2} \cup \varphi^{M} \cup A\right) \text { does not fork over } I_{2} \cup I_{1} \cup A
$$

Let $\bar{d} \subset \varphi^{\bar{I}}$, and $d \in \varphi^{\Gamma i}$, and suppose that we already know that $\operatorname{tp}\left(c / I_{2} \cup I_{1} \cup \bar{d} \cup A\right)$ does not fork over $I_{2} \cup I_{1} \cup A$. Now it is clear that $\operatorname{tp}\left(d / I_{2} \cup I_{1} \cup \vec{d} \cup A\right) \neq \operatorname{tp}\left(c / I_{2} \cup I_{1} \cup \bar{d} \cup A\right)$ (either $\operatorname{tp}(d / A) \neq p$, or d and I_{1} are dependent over $A ;$. But d satisfies $\varphi(x)$. So by strong regularity of (\bar{p}, φ) and lemma II.6, c and d are independent over $I_{2} \cup I_{1} \cup \bar{d} \cup A$. Thus $\operatorname{tp}\left(c / I_{2} \cup I_{1} \cup \bar{d} \wedge d \cup A\right)$ does not fork over $I_{2} \cup I_{1} \cup A . S o(\%)$ is proved, and so also the lemma.

PROPOSIMION II. 11. - Let $p \in S(A)$ be strongly regular, $A \subset M<N$, and p^{\prime} the nonforking extension of p over M. Then $\operatorname{dim}(p, N)=\operatorname{dim}(p, H i)+\operatorname{dim}\left(p^{\prime}, N\right)$

Proof. - By lemma II.10, if I_{1} is a basis for p in M, and I_{2} is a basis for p^{r} in \mathbb{N}, then $I_{1} \cup I_{2}$ is a basis for p in \mathbb{N}.

III. Non-multidimensional theories.

Definition III.1.
(i) Let \mathbb{H} be a model of T. Then $\mu(M)$ denotes the maximum number of pairwise orthogonal strongly regular types over M.
(ii) T will be said to be multidimensional if for any λ there is a model M of T with $\mu(i i) \geqslant \lambda$. Otherwise T is said to be non-multidimensional.

I now give some background on material to come. Firstly, if p_{1} is a type over a finite set \bar{a}, then p_{1} can be written in the form $p(\bar{x}, \bar{a})$ (so $p(\bar{x}, \bar{y})$ is a type over \varnothing). lioreover, if $\operatorname{tp}(\bar{a})=\operatorname{tp}(\bar{b})$, then $p(\bar{x}, \bar{b})$ is in $S(\bar{b})$, and. for exemple, $p(\bar{x}, \bar{a})$ is strongly regular if, and only if, $p(\bar{x}, \bar{b})$ is strongly regular.

Secondly, suppose that $p \in S(A)$, and $q \in S(B)$ (A and B subsets of the big model). Then, because p and q are not types over the same set it does not make immediate sense to speak of, for example, p and q being orthogonal or not orthogonal. However we can interpret this to mean that for some C which includes A and B, any nonforling extensions of p and q over C are orthogonal (or not orthogonal, as the case might be). (We assuise p and q to be stationary). Then by the results in section I, p and q will be orthogonal if, and only if, for any $C A \cup B n$ the nonforking extensions of p and q over C are orthogonal.

Finally, we assurie familiarity with the notion of strong type (denoted stp). The important facts are the following assuming w-stability. If $p \in \mathcal{S}_{n}(A)$, then there is $E \in \mathrm{FE}_{\mathrm{n}}(\mathrm{A})$ (that is, $\mathrm{E}(\overline{\mathrm{x}}, \overline{\mathrm{y}})$ is an equivalence relation on n -tuples, definable over A, and with a finite number of classes), such that if \bar{a} and \bar{b} realise p then \bar{a} and \bar{b} have the same strong type over $A(\operatorname{stp}(\bar{a} / A)=\operatorname{stp}(\bar{b} / A))$ if, and only if, $\mid=E(\bar{a}, \bar{b})$. Also, if I is independent over A, and all
elements of I have the same strong type over A, then I is indiscernible over A. Ploreover, if I and J are two such sets, and the elements of I and J have the same type over A, then $\operatorname{tp}(I / A)=\operatorname{tp}(J / A)$. (In the cases in which we shall be interested, A will be the empty set and so will be omitted.) (Also $\operatorname{stp}(\bar{a} / A)=\operatorname{stp}(\bar{b} / B) \quad$ implies $\operatorname{tp}(\bar{a} / A)=\operatorname{tp}(\bar{b} / A)$.

PROPOSITION III.2. - The following are equivalent (for the theory T).
(i) For all M, $\mu(\mathbb{M}) \leqslant i$
(ii) T is non-multidimensional.
(iii) If $p(x, \bar{a}) \in S(\bar{a})$ is strongly regular, and $\operatorname{stp}(\bar{a})=\operatorname{stp}(\bar{b})$, then $p(x, \bar{a})$ and $p(x, \bar{b})$ are not orthogonal (that is equivalent).

Proof. -

(i) implies (ii) is immediate.
(ii) \Longrightarrow (iii) : Suppose that $p(x, \bar{a}) \in S(\bar{a})$ is strongly regular, $\operatorname{stp}(\bar{a})=\operatorname{stp}(\bar{b})$, but $p(x, \bar{a})$ and $p(x, \bar{b})$ are orthogonal. First we can assume that \bar{a} and \bar{b} are independent (For if not, then choose \bar{c} sueh that \bar{c} and $\overline{\mathrm{a}} \wedge \overline{\mathrm{b}}$ are independent, and $\operatorname{stp}(\overline{\mathrm{c}})=\operatorname{stp}(\overline{\mathrm{a}})=\operatorname{stp}(\overline{\mathrm{b}})$. Then $\mathrm{p}(\mathrm{x}, \overline{\mathrm{a}})$ and $\mathrm{p}(\mathrm{x}, \overline{\mathrm{c}})$ are orthogonal). Let λ be any cardinal, and let $\left\{\overline{\mathrm{a}}_{\alpha} ; \alpha<\lambda\right\}$ be an independent set of realisations of $\operatorname{tp}(\bar{a})$, such that $\bar{a}_{0}=\bar{a}, \bar{a}_{1}=\bar{b}$, and, for all $\alpha<\lambda, \operatorname{stp}\left(\bar{a}_{\alpha}\right)=\operatorname{stp}(a)$. So $\left\{\bar{a}_{\alpha} ; \alpha<\lambda\right\}$ is indiscernible, and, for $\alpha<\beta<\lambda, p\left(x, \bar{a}_{\alpha}\right)$ and $p\left(x, \bar{a}_{\beta}\right)$ are orthogonal, (and strongly regular). Let M be a model containing all the \bar{a}_{α}. For each $\alpha<\lambda$, let p_{α} be the nonforking extension of $p\left(x, \bar{a}_{\alpha}\right)$ over M. Then the p_{α} are pairwise orthogonal strongly regular types over M. Thus T is multidimensional.
(iii) \Rightarrow (i) : Let M be a model, and $q \in S(M)$ strongly regular. There is finite \bar{a} in M such that q is definable over \bar{a}. So $p=q\lceil\bar{a}$ is strongly regular, and q is the unique nouforking extension of p over \mathbb{M}. Thus it suffices to show that there are at most io pairwise orthogonal strongly regular types over finite sets. Now there are only ${ }^{\circ} \delta$ many possible types of finite sets. Moreover for any \bar{a}, there are at most δ_{0} types in $S_{1}(\bar{a})$. Also for any \bar{a} and strongly regular $p(x, \bar{a}) \in S_{1}(\bar{a})$, there can be only finitely many pairwise orthogonal types of the form $p(x, \bar{b})$, where $\operatorname{tp}(\bar{b})=\operatorname{tp}(\bar{a})$ (by (iii) and the paragraph preceding this proposition). Thus we finish.

PROPOSITION III.3. - Let T be non-multidimensional and N a model of T. Then there is a countable $M<N$, and a set $J \subset N, J$ independent over M such that N is minimal over $M \cup J$.

Proof. - By III.2, $\mu(N)$ is countable. So we can find countable $\mathbb{M}<N$ such that each of some maximal collection of pairwise orthogonal strongly regular types over N , is definable over M . Now use lemma 1.16.
T will be maid to be unidimensional if, for each $M \mid=T, \mu(M)=1$.
PROPOSITION III.4. - T is unidimensional if, and only if, T is
Proof. - Suppose that T is not unidinensional and let M be a model and p, q orthogonal strongly regular types over M. Assume that p and q are chosen with least possible Morley ranks in their respective equivalence classes, say $R(p)=\alpha$, $R(q)=\beta, \alpha \leqslant \beta$, and (p, φ) is strongly regular, where $R(\varphi)=\alpha$. As in the proof of $1.8, \varphi(\mathbb{x})$ is not augmented in $M(q)$, and this, as is well known contradicts \varkappa_{1}-categoricity.

Conversely, suppose that T is unidirensional. Let M_{0} be the prime model of T. Then there is a strongly regular type p over M_{0}. If N is any model of T, then \mathbb{M}_{0} is elementarily embedded in N, and p^{1} the heir of p over \mathbb{N}, is strongly regular, and so is essentially the only strongly regular type over N. So N is prime over M_{O} and a basis for p^{\prime} in N. Such a basis is just a Norley sequence of p over \mathbb{N}, and its type is determined. Thus if $\left|N_{1}\right|=\left|N_{2}\right|=\lambda>$ is , then N_{1} is prime over $M_{0} \cup I$ and N_{2} is prime over $M_{0} \cup J$, where I and J muist both have cardinality λ, and have the same type over M_{0}. So $N_{1} \cong N_{2}$.

PROPOSITION III.5. - Let T be non-multidimensional, and $p(x, \bar{a})$ a strongly regular type in $S(\bar{a})$. Suppose that $\operatorname{stp}(\bar{b})=\operatorname{stp}(\bar{a})$ and M contains \bar{a} and \bar{b}. Then $\operatorname{dim}(p(x, \bar{a}), \mathbb{M})=\operatorname{dim}(p(x, \bar{b}), \mathbb{M})$.

Proof. - Suppose first that \bar{a} and \bar{b} are independent (over \varnothing). Let $\mathbb{M}_{1}<M_{-}$ be prime over $\bar{a} \wedge \bar{b}$, and let p_{1}, q_{1} be the nonforking extensions of $p(\bar{x}, \bar{a})$ and $p(x, \bar{b})$ over M_{1}. Now $\operatorname{tp}(\bar{a} \wedge \bar{b})=\operatorname{tp}(\bar{b} \wedge \bar{a})$, and thus $\left(M_{1}, \bar{a}, \bar{b}\right) \cong\left(M_{1}, \bar{b}, \bar{a}\right)$, whereby $\operatorname{dim}\left(p(x, \bar{a}), M_{1}\right)=\operatorname{dim}\left(p(x, \bar{b}), M_{1}\right)$. By III.2, p_{1} and q_{1} are equivalent, and thus $\operatorname{dim}\left(p_{1}, \mathbb{H}\right)=\operatorname{dim}\left(q_{1}, M\right)$. Thus by II.11, $\operatorname{dim}(p(x, \bar{a}), \mathbb{M})=\operatorname{dim}(p(x, \bar{b}), M)$.

Now in the gensral case, let \bar{c} be such that $\operatorname{stp}(\bar{c})=\operatorname{stp}(\bar{a})=\operatorname{stp}(\bar{b})$, and \bar{c} and $\bar{a}{ }^{\wedge} \bar{b}$ are independent (over \varnothing). Let $M^{\prime}=\mu(\bar{c})$, and p^{\prime}, q^{\prime} the nonforking extensions of $p(x, \bar{a})$ and $p(x, \bar{b})$ over M. Then $\operatorname{dim}\left(p^{\prime}, M^{\prime}\right)=\operatorname{dim}\left(q^{\prime}, M^{\prime}\right) \quad\left(a s p^{\prime}\right.$ and q^{\prime} are steongly regular and equivalent), and both these dimensions are finite (otherwise $\mathbb{M}^{\prime}-M^{\prime}$ contains an infinite independent set over M, each element of which is dependent on \bar{c} over M; which contradicts suverstability). But by the first part of the proof,

$$
\operatorname{dim}\left(p(x, \bar{c}), M^{\prime}\right)=\operatorname{dim}\left(p(x, \bar{a}), M^{\prime}\right)=\operatorname{dim}\left(p(x, \bar{b}), M^{\prime}\right)
$$

and we know that

$$
\operatorname{dim}\left(p(x, \bar{a}), M^{\prime}\right)=\operatorname{dim}(p(x, \bar{a}), H)+\operatorname{dim}\left(p^{\prime}, M^{\prime}\right)
$$

and

$$
\operatorname{dim}\left(p(x, \bar{b}), M^{\prime}\right)=\operatorname{dim}(p(x, \bar{b}), M)+\operatorname{dim}\left(q^{\prime}, M 1\right) \quad(I I .11) .
$$

Thus $\operatorname{dim}(p(x, \bar{a}), \mathbb{M})=\operatorname{dim}(p(x, \bar{b}), \mathbb{M})$, and we finish.
I now proceed to show that in the non-multidimensional case, all strongly regular types can be taken as being definable over the prime model of T (and thtus in proposition III.3, M can be taken to be M_{0} the prime model of T).

LEMA III.6. - Let T be non-multidimensional. Let $M<M$, $\neq N$ be models. Then there is $c \in \mathbb{N}-\mathbb{N}^{\prime}$, such that $\operatorname{tp}\left(c / M^{\prime}\right)$ is strongly regular, and $t p\left(c / M^{\prime}\right)$ does not fork over M.

Proof. - Choose $c \in N-M$, such that $\operatorname{tp}(c / M)$ is of least possible Norley rank. Thus clearly there is $\bar{a} \in M$ and $\varphi(x, \bar{a}) \in \operatorname{tp}(c / \bar{i})$, and for all $d \in(\varphi(x, a))^{\mathbb{N}}-\mathbb{M}^{\prime}, \quad \operatorname{tp}(d / \mathbb{M})=\operatorname{tp}(c / \mathbb{M})$. Let us denote $\operatorname{tp}(c / \mathbb{M})$ by p. Now if $\operatorname{tp}\left(c / M^{\prime}\right)$ does not fork over M (and so is the nonforking extension of p), then it is clear that $\left(t_{p}\left(c / M^{\prime}\right), \varphi\right)$ is strongly regular, and we finish. No let us assurie that $\operatorname{tp}\left(c / M^{\prime}\right)$ forks over M, and we seek a contradiction. Now, as $\operatorname{tp}\left(c / M^{\prime}\right)$ forks over li (by our assumption), $R\left(t p\left(c / M^{\prime}\right)\right)<R(p)$. We can clearly assume that c has been chosen also to satisfy $R\left(t p\left(c / M^{\prime}\right)\right)$ being as small as possible (among those x in N - Mor which $\operatorname{tp}(x / M)=p$). So $\operatorname{tp}\left(c / \mathbb{M}^{\prime}\right)$ is strongly regular (I.4). Now let \bar{b}_{0} be chosen in M^{\prime} such that $t p\left(c / \mathbb{N}^{1}\right)$ is definable over \bar{b}_{0}, and let $q\left(x, \bar{b}_{0}\right)$ denote $\operatorname{tp}\left(c / \bar{b}_{0}\right)$. Thus $q\left(x, \bar{b}_{0}\right)$ is strongly regular. Now let \bar{b}_{1} be such that $\operatorname{tp}\left(\bar{b}_{1} / \mathbb{M}\right)=\operatorname{tp}\left(\overline{\mathrm{b}}_{0} / \mathbb{M}\right)$ and $\overline{\mathrm{b}}_{0}$ and $\overline{\mathrm{b}}_{1}$ are independent over M.

Thus $\operatorname{stp}\left(\bar{b}_{0}\right)=\operatorname{stp}\left(\bar{b}_{1}\right)$ (this is easy), and so by III.2, $q\left(x, \bar{b}_{0}\right)$ and $q\left(x, \bar{b}_{1}\right)$ are equivalent. Let q_{0} and q_{1} be the nonforking extensions $f, q\left(x, \bar{b}_{0}\right)$ and $q\left(x ; \bar{b}_{1}\right)$ respectively over $M \cup\left\{\bar{b}_{0}, \bar{b}_{1}\right\}$. (So in particular $q_{0}\left\lceil\mathrm{i} \cup \bar{b}_{0}=\operatorname{tp}\left(c / \mathbb{M} \cup \bar{b}_{0}\right)\right.$.) so q_{0} and q_{1} are strongly regular types over the same set which are not orthogonal. Thus by II.5, there are $n, m<w$ such that $q_{0}^{n}(\bar{x}) \cup q_{1}^{m}(\bar{y})$ is not a complete type over $M \cup\left\{\bar{b}_{0}, \bar{b}_{1}\right\}$. Thus (as q_{0} and q_{1} are stationary), there are c_{1}, \ldots, c_{n} indenendent realisations of q_{0} over $M \cup\left\{\bar{b}_{0}, \bar{b}_{1}\right\}$, and d_{1}, \ldots, d_{m} independent realisations of q_{1} over $\operatorname{M} U\left\{\bar{b}_{0}, \bar{b}_{1}\right\}$ such that $\left\{c_{1}, \ldots, c_{n}\right\}$ and $\left\{d_{1}, \ldots, d_{m}\right\}$ are not independent over $M \cup\left\{\bar{b}_{0}, \bar{b}_{1}\right\}$. By minimalising m, we can assume that $\left\{c_{1}, \ldots, c_{n}\right\}$ and $\left\{d_{1}, \ldots, d_{m-1}\right\}$ are independent over $M \cup\left\{\bar{b}_{0}, \bar{b}_{1}\right\}$. Let us denote $\left\langle e_{1}, \ldots, c_{n}\right\rangle$ by \bar{c} and $\left\langle d_{1}, \ldots, d_{m-1}\right\rangle$ by $\frac{1}{d}$. A assert that

$$
\begin{equation*}
\overline{\mathrm{b}}_{0} \wedge \overline{\mathrm{c}} \text { and } \overline{\mathrm{b}}_{1} \wedge \overline{\mathrm{~d}} \text { are independent over } \mathbb{M} . \tag{*}
\end{equation*}
$$

First note that $\operatorname{tp}\left(\bar{d}_{\mathrm{d}}^{\bar{b}_{0}} \cup \bar{b}_{1} \cup \mathbb{M}\right)$ does not fork over $\bar{b}_{1} \cup \mathbb{I}$, and that $\operatorname{tp}\left(\stackrel{\rightharpoonup}{b}_{1} / \bar{b}_{0} \cup M\right)$ does not fork over M. Thus $\operatorname{tp}\left(\bar{b}_{1} \wedge \bar{d} / \bar{b}_{0} \cup \mathbb{M}\right)$ does not fork over M , and so

$$
\begin{equation*}
\operatorname{tp}\left(\bar{b}_{0} / \bar{b}_{1} \wedge \bar{d} \cup \mathbb{M}\right) \text { does not fork over } \mathbb{M} \tag{i}
\end{equation*}
$$

Also $\operatorname{tp}\left(\bar{c} \cdot / \bar{b}_{O} \cup \bar{b}_{1} \wedge \bar{d} \cup M\right)$ does not fork over $M \cup \bar{b}_{0}$. This together with (i) yields $\operatorname{tp}\left(\bar{b}_{0} \wedge \bar{c} \cdot / \bar{b}_{1} \wedge \bar{d} \cup \mathbb{M}\right)$ does not fork over \mathbb{M}, which means (${ }^{\text {(}}$)

Note also that $\operatorname{tp}\left(c_{n} /\left\{c_{1}, \ldots, c_{n-1}\right\} \cup \bar{d} \cup \bar{b}_{0} \cup \bar{b}_{1} \cup \mathbb{M}\right)$ does not fork over $M \cup\left\{\bar{b}_{0}, \bar{b}_{1}\right\}$, but that
(*) $\operatorname{tp}\left(c_{n} /\left\{c_{1}, \ldots, c_{n-1}\right\} \cup \bar{d} \wedge d_{n} \cup \bar{b}_{0} \cup \bar{b}_{1} \cup \mathbb{M}\right)$ does not fork over $\mathbb{M} \cup\left\{\bar{b}_{0}, \bar{b}_{1}\right\}$
Now $\operatorname{tp}\left(c_{n} / \mathbb{N} \cup \bar{b}_{0}\right)=\operatorname{tp}\left(c / \mathbb{M} \cup \bar{b}_{0}\right)$. इ̇o we can assume that $c_{n}=c$ (leave \bar{b}_{0} fixed out shift around the other c_{i} 's, the d_{i} 's and \bar{b}_{1} so as to preserve the type of everything over M), let us denote d_{m} by d. So $\operatorname{tp}\left(d \wedge \bar{b}_{1} / \mathbb{M}\right)=\operatorname{tp}\left(c \wedge \bar{b}_{0} / \mathbb{N}\right)$, whereby $\operatorname{tp}(d / \mathbb{M})=p$, and $\operatorname{tp}\left(d / \mathbb{I} \cup \bar{b}_{1}\right)$ forks over M, and so there is finite $\Delta \subset I$ such that
$(\cdots) \quad R\left(\operatorname{tp}\left(d / M \quad \bar{b}_{1}\right), \Delta, 2\right)<R(p, \Delta, 2)=r$.
Let us now sum up the information obtained ; denoting now $\left\langle c_{1}, \ldots, c_{n-1}\right\rangle$ by \bar{c}, and as before $\left\langle d_{1}, \ldots, d_{m-1}\right\rangle$ by \bar{d}.
(a) c and \bar{c} are indenendent over if $\cup \bar{b}_{0}$.
(b) $\bar{b}_{C} \wedge \bar{c} \wedge c$ and $\bar{b}_{1} \wedge \bar{d}$ are independent over n (by (*)).
(c) There is a formula $x(x, \bar{z})$ and $\bar{e} M$ such that $\mid=x\left(c, \lambda^{\wedge} \bar{d}^{\wedge} \bar{c}^{\wedge} \bar{b}_{0}{ }^{\wedge} \bar{b}_{1} \wedge \bar{e}\right)$, but $x(x, \bar{z})$ is not in bound $(t p(c / \bar{b}))$ (and so $\chi(x, \bar{z})$ is not represented in $\operatorname{tp}(c / r i))(b y(\%))$.
(d) There is an $L(H)$ formula $\psi(\bar{x}, \bar{w})$ such that d satisfies $\psi\left(x, \bar{b}_{1}\right)$ and $R\left({ }_{\psi}\left(x, b_{1}\right), \Delta, 2\right)<r \quad(b y(r+x))$.
(remember for any type q and finite $\Delta^{c} L$, there is finite subtype of q, say q^{\prime} such that $\left.\mathbf{R}(q, \Delta, 2)=R\left(q^{\prime}, \Delta, 2\right).\right)$

Remember that d also satisfies the formula $\varphi(x, \bar{a})$. Thus by (c) and (d), we have
$I=(\Perp y)\left(\varphi(y, \bar{a}) \wedge \chi\left(c, y^{\wedge} \bar{d}^{\wedge} \bar{c}^{\wedge} \bar{b}_{0} \wedge^{\wedge} \bar{b}_{1} \wedge \bar{e}\right) \wedge \psi\left(y, \bar{b}_{1}\right) \quad \operatorname{HR}\left(\psi\left(x, \bar{b}_{1}\right), \Delta, 2\right)<r "\right)$.
By (b) we can find $\overline{\mathrm{b}} \underset{1}{\prime}$ and $\overline{\mathrm{d}}$, in \bar{M} such that

$$
\mid=(\Perp y)\left(\varphi (y , \overline { a }) \wedge x \left(c, y^{\wedge} \bar{d}^{\left.\left.\prime \wedge \bar{c}^{\wedge} \bar{b}_{0}^{\wedge} \bar{b}_{1}^{\prime} \wedge \bar{e}\right) \wedge \psi\left(y, \bar{b}_{1}^{\prime}\right) \wedge \operatorname{~R~}\left(\psi\left(x, \bar{b}_{1}^{\prime}\right), \Delta, 2\right)<r "\right) .}\right.\right.
$$

Now by (a) and the fact that $\operatorname{tp}\left(c / M^{\prime}\right)$ is definable over $M \cup \bar{b}_{0}$, we can find $\bar{c}^{\prime} \circ$ in' such that
$N \mid=(\forall y)\left(\psi(y, \bar{a}) \wedge X\left(c, y \bar{d}^{\prime} \wedge \bar{c}^{\wedge} \bar{b}_{0} \wedge \bar{b}_{1}^{\wedge} \bar{e}\right) \wedge \psi\left(y, \bar{b}_{1}^{\prime}\right) \wedge " R\left(\psi\left(x, \bar{b}_{1}^{\prime}\right), \Delta, 2\right)<r "\right)$.
Fick $a \in \mathbb{N}$ to be such $a \operatorname{y}$ as given above. First note that $a \notin \mathbb{M}^{\prime}$, for if not then $x(x, \bar{z})$ would be represented in $t p(c / i I)$, contradicting (c). Thus as a satisfies $\varphi(\bar{x}, \bar{a})$, we must have $t p(a / M)=p$ (by choice of p and $\varphi(x, \bar{a})$). But now, as a satisfies $\psi\left(x, \bar{b}_{1}^{\prime}\right)$ and $R\left(\psi\left(x, \bar{b}_{1}^{j}\right), \Delta, 2\right)<r=R(p, \Delta, 2)$, we must have that $\operatorname{tp}(a / \mathbb{M}) \neq \mathrm{p}$. This contradiction proves the lemma.

PROPOSITION III.7. - Let $M<M^{\prime}$ be models of T, where T is non-multidimensional, and let $p \in S\left(M^{\prime}\right)$ be strongly regular. Then there is $\left.q \in S^{\prime \prime} A^{\prime}\right)$, such that q is strongly regular, q is equivalent of p, and q does not fork over M 。

Proof. - Lemma III. 6 gives us c in $H^{\prime}(p)$ - II such that $t p\left(c / N^{\prime}\right)$ is strongly regular, and does not fork over M. Clearly $\operatorname{tp}\left(c / \mathbb{N}^{\prime}\right)$ is equivalent to p.

COROLLARY III.8. - Let T be non-multidimensional. Let H be a model, A a set, and N prime over $M \cup A$. Then N is minimal over $M \cup A$.

Proof. - If not, there is model H^{\prime} sucin that $M \cup A \subset H^{\prime} \nless N$. Lemma III. 6 gives us $c \in \mathbb{N}-\mathbb{M}^{\prime}$ such that $\operatorname{tp}\left(c / M^{\prime}\right)$ does not fork over \mathbb{M}^{\prime}. But $\operatorname{tp}(c / \mathbb{M})$ is not isolated, and $\operatorname{tp}(c / \mathbb{M} \cup A)$ is isolated, whereby $\operatorname{tp}(c / \mathbb{M} \cup A)$ forks over M, and so $\operatorname{tp}\left(c / \mathbb{M}^{1}\right)$ forks over M. Contradiction.

Let me now state a few obvious things. Let us assume T to be non-multidimensional, and let M_{0} be the prime model of T. Let $\left\{p_{i} ; i<\mu \leqslant i \gamma\right\}$ be a maximal collection of pairwise orthogonal strongly regular types over M_{0}. Let N be any model of T. So M_{0} is elementarily embedded in N, and let p_{i}^{\prime} for $i<\mu$, be the heirs of the p_{i} over N. Then $\left\{p_{i}^{\prime} ; i<\mu\right\}$ is a maximal collection of pairwise orthogonal strongly regular types over N. For choose strongly regular $c \in S(N)$. By III.7, q is equivalent of $q \in S(N)$, where p is strongly regular and does not fork over \mathbb{M}_{0}. But there is $i<\mu$ such that $p \upharpoonright \mathbb{N}_{O}$ is equivalent to p_{i} and so p is equivalent to p_{i}^{\prime}, and so q is equivalant to p_{i}^{\prime}.

IV . The spectrum.

In this section T will be assumed to be non-multidimensional, and ${ }_{0}$ will denote the prime model of T.

First, some more preliminary results.

LEiHA IV.1. - Let H be a model, $\bar{a} \in M, p(x, \bar{a}) \in S(\bar{a})$ be strongly regular, and $\operatorname{tp}(\bar{a})$ isolated. Suppose that $\bar{b} \in M, \operatorname{tp}(\bar{b})=\operatorname{tp}(\bar{a})$ and $p(x, \bar{b})$ is equivalent to $p(x, \bar{a})$. Then $\operatorname{dim}(p(x, \bar{a}), M)=\operatorname{dim}(p(x, \bar{b}), M)$.

Proof. - Let $M_{0}<M_{1}$ be a copy of the prime model such that $\bar{a} \in M_{0}$. It is easy
to find $\bar{c} \in \mathrm{M}_{0}$ such that $\operatorname{stp}(\bar{c})=\operatorname{stp}(\bar{b})$. By III.2, $p(x, \bar{b})$ and $p(x, \bar{c})$ are equivalent. Thus $p(x, \bar{a})$ and $p(x, \bar{c})$ are equivalent. Let p_{1} and p_{2} be the nonforking extensions of $p(x, \bar{a})$ and $p(x, \bar{c})$ over H_{0}. So p_{1} and p_{2} are equivalent and strongly regular, and thus by I.I. $8, \operatorname{dim}\left(p_{1}, M_{1}\right)=\operatorname{dim}\left(p_{2}, M\right)$. But it is clear that $\left(M_{0}, \bar{a}\right)=\left(M_{0}, \bar{c}\right)$, and so $\operatorname{dim}\left(p(x, \bar{a}), M_{0}\right)=\operatorname{dim}\left(p(x, \bar{c}), M_{0}\right)$. Thus by II.11, we have

$$
\operatorname{dim}\left(\mathrm{p}(\mathrm{x}, \overline{\mathrm{a}}), \mathrm{rin}^{n}\right)=\operatorname{dim}(\mathrm{p}(\mathrm{x}, \overline{\mathrm{c}}), \mathrm{M})
$$

But by III.5,

$$
\operatorname{dim}(\mathrm{p}(\mathrm{x}, \overline{\mathrm{c}}), \mathrm{M})=\operatorname{dim}(\mathrm{p}(\mathrm{x}, \overline{\mathrm{~b}}), \mathrm{H}),
$$

and so we have

$$
\operatorname{dim}(p(x, \bar{a}), M)=\operatorname{dim}(p(x, \bar{b}), H),
$$

as desired.
LEHMA IV.2. (which does not need non-multidimensionality). - Let $p \in S\left(M_{0}\right), p$ definable over $\bar{a} \in M_{0}, p_{1}=p \Gamma \bar{a}$, and p_{1} has an infinite basis in M_{0} (thus $\left.\operatorname{dim}\left(p_{1}, M_{0}\right)=i \delta\right)$. Then $M_{0}(p) \geq M_{0}$.

Proof. - $M_{0}(p)$ is countable, and thus it is enough to show that $M_{0}(p)$ is atomic (i. e. realises only isolated trpes). Let $\bar{c} \in \mathbb{M}_{0}(p)$ be such that $\operatorname{tp}\left(\bar{c} / M_{0}\right)=p$ and $M_{0}(p)$ is atowic over $M_{0} \cup \bar{c}$. It is enough to show that $M_{0} \cup \bar{c}$ is atomic. No let $\bar{b} \in M_{0}$. I show that $\operatorname{tp}(\bar{b} \wedge \bar{c})$ is isolated, in fact that $\operatorname{tp}(\bar{a} \wedge \bar{b} \wedge \bar{c})$ is isolated. Let \bar{c}_{i}, for $i<\omega$, be a basis for $p_{1}=p$ \bar{a} in l_{0}. Then by superstability, there must be $i<\omega$ such that \bar{c}_{i} and \bar{b} are independent over \bar{a}. Then clearly $\operatorname{tp}\left(\bar{a} \wedge \bar{b} \wedge \bar{c}_{i}\right)=\operatorname{tp}(\bar{a} \wedge \bar{b} \wedge \bar{c})$, and $\operatorname{tp}\left(\bar{a} \wedge \bar{b} \wedge \bar{c}_{i}\right)$ is isolated, as it is realised in the prime model \bar{H}_{0}. So we fini,sh.

Note. - An extension of the above proof shows that if $p \in S(\mathbb{N})$ and for some $\bar{a} \in \mathbb{M}$ over which p is definable, $p \wedge \bar{a}$ has an infinite basis in M, then for all $\bar{a} \in M$ over which p is definable $p \upharpoonright \bar{a}$ has an infinite basis in M.

COROLLARY IV. 3. - Let $\left\{p_{i} ; i<n\left(\leqslant N_{0}\right)\right\}$ be a set of pairwise orthogonal strongly regular types over M_{0}, such that for each i there is $\bar{a}_{i} \in M_{0}$ such that p_{i} is definable over \bar{a}_{i}, and $\operatorname{dim}\left(p_{i} \mid \bar{a}_{i}, M_{0}\right)$ is infinite. For each $i<\pi$, let J_{i} be an independent set of realisations of p_{i} over H_{0}, such that $\left|J_{i}\right| \leqslant \omega$. Then $M_{0}\left(U_{i}<\mu J_{i}\right) \approx M_{0}$.

Proof. - It is easy, using IV.2, induction and fact 1.6, to show that $M_{0}\left(J_{0}\right)$ is isomorphic to M_{0} (let $J_{0}=\left\{c_{n} ; n<\lambda\right\}$, let $H_{1}=M_{0}\left(c_{0}\right)$, and in general $M_{n+1}=M_{n}\left(c_{n}\right)$. Then $\operatorname{tp}\left(c_{n} / M_{n}\right)$ is the heir of p_{0} over M_{n}, and $M_{n+1} \cong M_{0}$. So $U_{n<i} M_{n}$ is isomorphic to H_{0}, and is also easily see to be the same as
$M_{0}\left(J_{0}\right)$). Then it is easy to see that $\operatorname{tp}\left(J_{1} / M_{0}\left(J_{0}\right)\right)$ does not fork over M_{0}, and so we can repeat the process to get $M_{0}\left(J_{0}\right)\left(J_{1}\right) \cong M_{0}$. Carry on, and putting $M^{0}=M_{0}$, and $M^{n+1}=M^{n}\left(J_{n}\right)$, we see that $U_{n<i} M^{n}$ is isomorphic to M_{0} and is the same as $M_{0}\left(U_{i<i n} J_{i}\right)$.

LEMIIA IV.4. - Let $\left\{p_{i} ; i<x\right\}$ be pairwise orthogonal types over a model M, and let for each $i<n, J_{i}$ be a set of independent realisations of p_{i} over M.

Let N be prime over ${ }^{N} U_{i<n} J_{i}$. Then for each $i<n, J_{i}$ is a basis for p_{i} in N.

Proof. - Consider J_{0} for example. Let us define $M_{i}<N$ for $1 \leqslant i \leqslant n$, such that M_{1} is prime over $\mathbb{M} \cup J_{1}$, and for $i \geqslant 1, M_{i+1}$ is prime over $\mathbb{R}_{i} \cup J_{i+1}$ and $M_{\delta}=U_{i<0} M_{i}$ for δ limit. Let M^{\prime} be M_{n}. Let p_{0}^{i} be the heir of p_{0} over \mathbb{M}_{i} for $i \leqslant \mu$. Then it is easy to show by induction, using the orthogonality of p_{0} and the $p_{i}^{\prime} s$ and fact 1.6 , that $p_{0} \mid-p_{0}^{i}$ for $1 \leqslant i \leqslant x$. Thus J_{0} is a basis for p_{0}^{μ} in N if, and only i°, J_{0} is a basis for p_{0} in N, and clearly J_{0} is an independent set of realisations of p_{0}^{n} over M^{\prime} in N. By III. 8 for example, N is prime over Mr $^{1} \cup J_{0}$, and so J_{0} is easily seen to be a basis for p_{0}^{χ} in N. So the lemma is proved.

LEMA IV.5. - Let $p \in S(\bar{a})$ be strongly regular, where $\operatorname{tp}(\bar{a})$ is isolated, and for some copy of M_{0} which contains $\bar{a}, \operatorname{dim}\left(p, M_{0}\right)=0$. Let A be any countable set which is atomic over \bar{a}, and let p^{\prime} be the nonforking extension of p over $A \cup \bar{a}$. Then $p \mid-p^{\prime}$.

Proof. - Let A be as given. Then $A \cup \bar{a}$ is an atonic countable set, and we can find a copy of the prime model M_{0} such that $A \subset M_{0}$. By isomorphism, p is not realised in M_{0}. So by lemma II.11, for any c realising p, $\operatorname{tp}\left(c / M_{0}\right)$ does not fork over \bar{a}, and thus $\operatorname{tp}(c / A \cup \bar{a})$ does not fork over \bar{a}. So clearly $p \mid-p^{\prime}$

We can now begin on the classification. First let μ be the maximum number of pairwise orthogonal strongly regular types over M_{0}, the prime model of T. (Me call μ the number of dimensions of T). Let p_{i} for $i<\mu$, be pairwise orthogonal and strongly regular types over M_{0}, and a maxinal such collection. Now let N be any model. So $M_{0}<N$, and (by 1.16 , III. 7 and remarks at the end of III) N is prime over (in fact minimal over) $M_{0} \cup U_{i<u} J_{i}$ where J_{i} is a basis for p_{i} in \mathbb{N}, and moreover (by 1.15) $\operatorname{tp}\left(U_{i<\mu_{\mu}} J_{i} / T_{0}\right)$ is deter ined just by $\left\langle\lambda_{i} ; i\langle\mu\rangle\right.$ where $\left.\lambda_{i}=\right| J_{i} \mid$. Conversely, given a sequence $\left\langle\Lambda_{i} ; i<\mu\right\rangle$ of cardinals, there is a model N prime over $M_{0} \cup U_{i<\mu} J_{i}$ where J_{i} is an independent set of realisations of p_{i}, and thus by IV.4, a basis for p_{i} in N. So if we are considering the models of T up to isomorphism over some fixed copy of the prine model H_{0} (which we could do by for example adding names for the elements of M_{0} to the langage, and replacing T by $T h\left(M_{0}\right)$ in this new language), then
the models would correspond exactly to the possible sequences of cardinals $\left\langle\lambda_{i} ; i\langle\mu\rangle\right.$. However in the general case, one model might contain diffurent copies of M_{0} and correspond to different sequences of cardinals. So we have to be more careful in the choices of the p_{i}, and use some material developed in this section and section III. This we proceed to do, sumining up the results later on in a theorem.

First let K_{i}, for $i<\mu$, be the equivalence classes (or non-rothogonality classes) of stroryly regular types over M_{0}. We choose, for each $i<\mu, p_{i} \in K_{i}$ and $\bar{a}_{i} \in \mathbb{M}_{0}$, such that p_{i} is definable over \bar{a}_{i}, and also satisfying the following two conditions, where $q_{i}\left(x, \bar{a}_{i}\right)$ denotes $p_{i} \Gamma \bar{a}_{i}\left(\right.$ so $q_{i}\left(x, \bar{y}_{i}\right)$ is over \varnothing) :
(i) $\operatorname{dim}\left(q_{i}\left(x, \bar{a}_{i}\right), M_{v}\right)$ is 0 or infinite (i. e. io), for all $i<\mu$, and
(ii) i.f $i<j<\mu$, then either $\operatorname{tp}\left(\bar{a}_{i}\right)=\operatorname{tp}\left(\bar{a}_{j}\right)$ and $q_{i}\left(x, \bar{y}_{i}\right)=q_{j}\left(x, \bar{y}_{j}\right)$, or for no $p \in K_{j}$ is there $\bar{a} \in M_{0}$ such that p is definable over \bar{a}, $\operatorname{tp}(\bar{a})=\operatorname{tp}\left(\bar{a}_{i}\right)$ and $p \Gamma \bar{a}=q_{i}(x, \bar{a})$.
(Note that if the second disjunct of (ii) holds, then we also have that for no $p \in K_{i}$ is there $\bar{a} \in M_{0}$ such that p is definable over $\bar{a}, \operatorname{tp}(\bar{a})=\operatorname{tp}\left(\bar{a}_{j}\right)$ and $\left.p \Gamma \bar{a}=q_{j}(x, \bar{a}).\right)$

This is achieved quite easily. To get (i) for example, suppose p_{i} has been chosen in K_{i}, and, for some $\bar{a} \in M_{0}, p_{i}$ is definable over \bar{a} and $\operatorname{dim}\left(p_{i} \Gamma \bar{a}, M_{0}\right)=n<\omega$. Let c_{1}, \ldots, c_{n} be a basis for $p_{i} \uparrow \bar{a}$ in M_{0}, and put $\bar{a}_{i}=\bar{a} \wedge\left\langle c_{1}, \ldots, c_{n}\right\rangle$. Then clearly $\operatorname{dim}\left(p_{i} \upharpoonright \bar{a}_{i}, H_{0}\right)=0$. (ii) can easily be obtained by defining the p_{i} and \bar{a}_{i} inductively.

This having been done, pick some particular $i<\mu$, and let us put $p=p_{i}, a=\bar{a}_{i}$, and $q(x, \bar{y})=q_{i}\left(x, \overline{\bar{T}}_{i}\right)$. For how many $j<\mu$, do we have $\operatorname{tp}\left(\bar{a}_{j}\right)=\operatorname{tp}(\bar{a})$ and $q_{j}\left(x, \overline{\mathrm{y}}_{j}\right)=q(\bar{x}, \overline{\mathrm{y}})$ (and thus $\left.p_{j} \upharpoonright \bar{a}_{j}=q\left(\mathrm{x}, \bar{a}_{j}\right)\right)$? I assert that there can be only finitely many such j. For if not, then there is infinite $J-\omega$, such that the types $\left\{q\left(x, \bar{a}_{j}\right) ; j \in J\right\}$ are pairwise orthogonal, and $\operatorname{tp}\left(\bar{a}_{j}\right)=\operatorname{tp}(\bar{a})$ for all $j \in J$. Thus (see background at the beginning of section III), there is $j_{1}<j_{2}$ in J such that $\operatorname{stp}\left(\bar{a}_{j_{1}}\right)=\operatorname{stp}\left(\bar{a}_{j_{2}}\right)$. But by III.2, this contradicts the orthogonality of $q\left(x, \bar{a}_{j_{1}}\right)$ and $q\left(x, \bar{a}_{j}\right)$. (Remember $q(x, \bar{a})$ is strongly regular). Thus there are ${ }^{1} n l y$ finitely many such j.

Thus by renumbering the q_{i} and renaring the p_{i} and \bar{a}_{i}, we have :
LEMIA IV.6. - There is $\mu^{\prime} \leqslant 夕_{0}$, and for each $i<\mu^{\prime}$, some finite n_{i}, and $q\left(x, \bar{y}_{i}\right)$ orer \varnothing, and for each $i<\mu^{\prime}$ and $j<n_{i}$, types p_{i}^{j} over M_{0} and tuples \bar{a}_{i}^{j} in M_{0} such that
(i) $\left\{p_{i}^{j} ; i<\mu^{\prime}, j<n_{i}\right\}$ is a maximal collection of pairwise orthogonal strongly regular types over ${ }^{M_{0}}$.
(ii) p_{i}^{j} is definable over \bar{a}_{i}^{j},

(iv) for each i and $j, \operatorname{dim}\left(a_{i}\left(x, \bar{a}_{i}^{j}\right), M_{0}\right)=0$ or i_{0},
(v) if $i_{1}<i_{2}<\mu^{\prime}$, then there are no \bar{a}_{1}, \bar{a}_{2} in $M_{0} \frac{\text { such that }}{-} \operatorname{tp}\left(\bar{a}_{1}\right)=r_{i_{1}}$ and $\operatorname{tp}\left(\bar{a}_{2}\right)=r_{i_{2}}$, and $q_{i_{1}}\left(x, \bar{a}_{1}\right)$ is equivalent to $q_{i_{2}}\left(x, \bar{a}_{2}\right)$.
(vi) $\mu^{t}=\hat{0}$ if, and only if, $\mu=i_{0}$, and $\mu^{\prime}=1$ if, and only if, $\mu=1$.

LEMIA IV.7. - Let N be any model of T, and let $i_{1}<i_{2}<\mu^{\prime}$. Then there are no \bar{a}_{1} and $\bar{a}_{2} \overline{\text { in }} N \bar{N} \overline{\text { such that }} \operatorname{tp}\left(\bar{a}_{1}\right)=r_{i_{1}}, \operatorname{tp}\left(\bar{a}_{2}\right)=r_{i_{2}}$, and $q_{i_{1}}\left(x, \bar{a}_{1}\right)$ is equivalent of $q_{i_{2}}\left(x, \bar{a}_{2}\right)$.

Proof. - Suppose that there are \bar{a}_{1} and \bar{a}_{2} in N as described, and we get a contradiction. Let h_{0} be some copy of the prime model in N. Now both $r_{i_{1}}$ and r_{i} are isolated types, and so it is easy to find \bar{a}_{1}^{\prime} and \bar{a}_{2} in \bar{M}_{0} such that $\operatorname{stp}\left(\bar{a}_{1}^{\prime}\right)=\operatorname{stp}\left(\bar{a}_{1}\right)$ and $\operatorname{stp}\left(\bar{a}_{2}^{\prime}\right)=\operatorname{stp}\left(\bar{a}_{2}\right)$. Thus by III.2, $q_{i}\left(x, \bar{a}_{1}^{\prime}\right)$ is equiva lent to $q_{i}\left(x, \bar{a}_{1}\right)$, and $q_{i_{2}}\left(x, \bar{a}_{2}^{\prime}\right)$ is equivalent to $q_{i_{2}}^{1}\left(x, \bar{a}_{2}\right)$. But then $q_{i_{1}}\left(x, \bar{a}_{1}^{1}\right)^{1}$ is equivalent to ${ }^{q_{i_{2}}}\left(x, \bar{a}_{2}^{1}\right)$, which contradicts lemma IV .6 (v).

Now we go through the cases depending on the number of dimensions.
Case 1. - μ is finite. So also μ^{\prime} is finite. Let $A=\bigcup\left\{a_{i}^{j} ; i<\mu_{j}^{\prime}, j<n_{i}\right\}$ and let q_{i}^{j} be the nonforling extension of $q_{i}\left(x, \bar{a}_{i}^{j}\right)$ over A. Let λ_{i}^{j} for $i_{j}<\mu^{\prime}$ and $j<n_{i}$ be cardinals chosen arbitrarily subject to the proviso that $\Lambda_{i}^{j} \geqslant \dot{\delta}_{0}$ if $\operatorname{dim}\left(q_{i}^{i}\left(x, \bar{a}_{i}^{j}\right), M_{0}\right)=k_{0}$. Let $\left.A\left(\lambda_{i}^{j} ; i<\mu^{\prime}, j<n_{i}\right\rangle\right)$ denote the model prime over $A \cup U\left(I_{i}^{j} ; i<\mu^{\prime}, j<n_{i}\right)$, where I_{i}^{j} is an independent set of realisations of q_{i}^{j} over A of cardinality λ_{i}^{j}. Note that $A(\bar{\lambda})$ (where $\bar{\lambda}=\left\langle\mu_{i}^{j} ; i<\mu^{\prime}, \quad j\left\langle n_{i}\right\rangle\right)$ is well defined by 1.15 and uniqueness of prime modele.

Observation IV. 8 .
(i) $\operatorname{dim}\left(q_{i}^{j}, A(\bar{\lambda})\right)=\lambda_{i}^{j}$.
(ii) $\operatorname{dim}\left(q_{i}\left(x, \bar{a}_{i}^{j}\right), A(\bar{\lambda})\right)=\Lambda_{i}^{j}$.

Proof.

(i) Let N be prime over $M_{0} \cup \bigcup\left\{X_{i}^{j} ; i<\mu^{\prime}, j<n_{i}\right\}$ where X_{i}^{j} is an indpendent set of realisations of p_{i}^{j} over H_{0} of cardinality λ_{i}^{j}. Then $\operatorname{dim}\left(p_{i}^{j}, H\right)=\lambda_{i}^{j}$, by lemma IV.4. It is easily seen that H is isomorphic (over A) to $A(\bar{\Lambda})$, and that (by II. 11 and choice of p_{i}^{j} and \bar{a}_{i}^{j}) that $\operatorname{dim}\left(q_{i}^{j}, M\right)=\lambda_{i}^{j}$.
(ii) We use (i). First suppose that $\operatorname{dim}\left(q_{i}\left(x,{\underset{j}{j}}_{-j}^{j}\right), M_{0}\right)=0$. Then as $\operatorname{tp}\left(A / a_{i}^{j}\right)$ is isolated, we have by IV. 5 that $q_{i}\left(x, \bar{a}_{i}^{j}\right) \mid-q_{i}^{j^{i}}$, and thus

$$
\operatorname{dim}\left(q_{i}\left(x, \bar{a}_{i}^{j}\right), A(\vec{\Lambda})\right)=\operatorname{dim}\left(q_{i}^{j}, A(\vec{\Lambda})\right)=\lambda_{i}^{j} .
$$

Secondly, suppose that $\operatorname{dim}\left(q_{i}\left(x, \bar{a}_{i}^{j}\right), M_{0}\right)$ is infinite. Then so must be $\operatorname{dim}\left(q_{i}\left(x, \bar{a}_{i}^{j}\right), A(\bar{\lambda})\right)$. But only finitely many members of a basis for $q_{i}\left(x, \bar{a}_{i}^{j}\right)$ in $A(\bar{\lambda})$ can be made to fork by $A-\bar{a}_{\dot{j}}^{j}$ (remember that A is finite at the moment). Thus clearly $\operatorname{dim}\left(q_{i}\left(x, \bar{a}_{i}^{j}\right), A(\bar{\lambda})\right)=\operatorname{dim}\left(q_{i}^{j}, A(\bar{\lambda})\right)=\lambda_{i}^{j}$.

Consersely we know that any model N of T can be written as (i. e. is isomorphic to $A\left(\left\langle\lambda_{i}^{j} ; i<\mu^{\prime}, j<n_{i}\right\rangle\right)$, where λ_{i}^{j} must be infinite if $\operatorname{dim}\left(q_{i}\left(x, a_{i}^{j}\right), M_{0}\right)$ is infinite (by I. 16, III.7, and remarks at the end of section III). It is also clear that $\left.|A(\bar{\lambda})|=\max \left(\left\{\lambda_{i}^{j} ; i<\mu^{\prime}, j<n_{i}\right\} \cup\{<i\}\right\}\right)$. When is $A(\lambda)=A\left(\bar{\lambda}^{*}\right)$.

Case 1 (i). - $\mu=1$. So $\mu^{\prime}=1$, and $n_{0}=1$. Also $A=\bar{a}_{0}$. Let us write \bar{a}_{0}^{0} as \bar{a} and $q_{0}\left(x, \overline{\mathrm{y}}_{0}\right)$ as $q(x, \bar{y})$. Now suppose that $H=\bar{a}(\lambda) \equiv \bar{a}\left(\lambda^{*}\right)$. Then there is $\bar{a} \in M, \operatorname{tp}\left(\bar{a}^{*}\right)=\operatorname{tp}(\bar{a})$, and $M=a^{*}\left(\lambda^{*}\right)$. So $\operatorname{dim}(q(x, \bar{a}), M)=\lambda$, and $\operatorname{dim}\left(q\left(x, \bar{a}^{-i}\right), M\right)=\lambda^{*}$ (by IV. 8 (ii)). But as $\mu=1$, we must have that $q(x, \bar{a})$ and $q\left(x, \bar{a}^{-*}\right)$ are equivalent, but then $b y$ lema $I V .1$, we have that $\lambda=\lambda^{*}$. So we have $\bar{a}(\lambda) \pm \vec{a}\left(\lambda^{*}\right)$ if, and only if, $\lambda=\lambda^{*}$. Thus in this case

$$
I(n, T)=1 \quad \text { if } \quad n>i_{0} .
$$

If $\operatorname{dim}\left(q(x, \bar{a}), M_{0}\right)=0$, then

$$
I\left(i_{0}, T\right) \quad \text { (as all finite dimensions can occur) }
$$

and if $\left.\operatorname{dim}\left(q^{\prime}, x, \bar{a}\right), M_{0}\right)$ is infinite, then

$$
I\left(i i_{0}, T\right)=1
$$

Case 1 (ii) $-\mu>1$ (but still finite).
Let $\bar{\mu}$ denote $\left\langle\mu_{i}^{j} ; \quad i<\mu^{\prime}, j<n_{i}\right\rangle$ (no connection with μ, the number of dimension). Suppose that $N=A(\bar{\lambda}) \cong A(\bar{\mu})$. Thus there is $A^{* i}$ in \mathbb{N} with $\operatorname{tp}\left(A^{*}\right)=\operatorname{tp}(A)$, and $N=A^{*}(\bar{\mu})$. Denote by $\bar{a}_{i}^{j *}$ the copy of \bar{a}_{i}^{j} in A^{*}. Then $\left\{q_{i}\left(x, \bar{a}_{i}^{j *}\right) ; i<\mu^{\prime}, j<n_{i}\right\}$ is a set of pairwise orthogonal strongly regular types, and by IV.8 (ii), $\operatorname{dim}\left(q_{i}\left(x, \bar{a}_{i}^{j *}\right), H_{0}\right)=\mu_{i}^{j}$. So as the $q_{i}\left(x, \bar{a}_{i}^{j}\right)$ are a maximal collection of pairwise orthogonal strongly regular types, and by lemma IV.7, there is σ such that for each $i<\mu^{\prime}, \sigma(i,-)$ is a permutation of n_{i} and $q_{j}\left(x, a_{j}^{j j_{i}^{i n}}\right)$ is equivalent to $q_{i}^{\prime} x, a_{i}(i, j)$. Thus by lemma IV.1, $\mu_{i}^{j}=\lambda_{i}^{j}(i, j)$. Thus $A(\bar{\lambda})=A(\bar{\mu})$ implies that $\bar{\mu}=\sigma(\bar{\Lambda})$, where σ is a permutation of the sequence \bar{i} (As the number of dinensions is finite, there can only be finitely many such permutations).

Case 1 (ii) (a). - Tor some $i<\mu^{\prime}, j<n_{i}, \operatorname{dim}\left(q_{i}\left(x, \bar{a}_{i}^{j}\right), M_{0}\right)=0$. Then all cardinals (including finite ones) are possible for λ_{i}^{j}. Thus the number of sequences of cardinals $\left.\leqslant i_{\alpha}, \quad \lambda_{i}^{j} ; i<\mu^{\prime}, j<n_{i}\right\rangle$ at least one member of which is $\dot{\alpha}_{\alpha}$, is $|\alpha|+\alpha_{\alpha}$. (Note that in this case $|A(\bar{\lambda})|=i_{\alpha}$.) But by the
above there can be only finitely many other sequences $\bar{\mu}$ giving rise to the same model, and thus we have

$$
I\left(i_{\alpha}, T\right)=|\alpha|+i o \text {, for all } \because \geqslant 0 \text {. }
$$

Case 1 (ii) (b). - For all $i<\mu^{\prime}, j<n_{i}, \operatorname{dim}\left(q_{i}\left(x, \bar{a}_{i}^{j}\right), M_{0}\right)=i_{0}$. But then the countable models of T are just models isomorphic to $A(\bar{B})$, and thus T is is-categorical, i.e. $I\left(\psi_{0}, T\right)=1$. Now suppose that $A(\bar{\pi})=A(\bar{\mu})$ as above and thus that there is $A^{*} \subset \mathbb{N}=A(\Lambda)$, with $\mathbb{N}=A^{*}(\bar{\mu})$, and σ with $q_{i}\left(x, \bar{a}_{i}^{j *}\right)$ equivalent to $q_{i}\left(x, \bar{a}_{i}^{u}(i, j)\right.$. Then as T is δ_{0}-categorical, all types are isolated, and thus $\operatorname{tp}\left(A^{-} A^{n}\right)$ is realised in every model of T. Clearly the fact that $q_{i}\left(x, \bar{a}_{i}^{j}\right)$ is equivalent ot $q_{i}\left(x, \bar{a}_{i}^{j}\right)$, say, depends only on $\operatorname{tp}\left(\bar{a}_{i}^{j} \wedge \bar{a}_{i}^{j}\right)$. So we let G denote the group of permutations o of μ, induced as above, and clearly $A(\bar{\lambda}) \cong A(\bar{\mu})$ if, and only if, there is $\sigma \in G$ with $\sigma(\bar{\lambda})=(\bar{\mu})$. By our case hypothesis, only infinite values are possible for the Λ_{i}^{j}. Let us denote by $\left(|\alpha+1|^{\mu}\right)^{*}$ the number of sequences of length μ of ordinals $\leqslant \omega$, at least one of which is α. Thus it is clear that

$$
I\left(k_{\alpha}, T\right)=\left(|x+1|^{\mu}\right)^{*} / G, \text { for all } \alpha \geqslant 0 ;
$$

Casia 2. - $\mu={ }_{y}^{\prime}$, and so μ^{\prime} is also is.
Let me denote by $M_{0}\left(\lambda_{i}^{j}\right)_{i, j}$ the model prime over $M_{Q} \cup \cup\left\{I_{i}^{j} ; i<\mu^{\prime}, j<n_{i}\right\}$ where I_{i}^{j} is an independent set of realisations of p_{i}^{j} over \underline{O}_{j}. ${ }_{j}$ know that any λ_{i}^{j} can occur. I first want to observe that if $\operatorname{dim}\left(q_{i}\left(x, \frac{a_{j}^{j}}{a_{i}}\right), H_{0}\right)=k_{0}$, then we can assume that λ_{i}^{j} is always 0 or uncountable.
 if $(i, j) \notin X$, and $\lambda_{i}^{j^{*}}=0$ if $(i, j) \in X$.

Proof. - Easy using IV. 3 and IV. 5.
Thus the models of T are all of the form $H_{0}(\bar{\lambda})$ where λ_{i}^{j} can be anything, if $\operatorname{dim}\left(q_{i}\left(x, a_{i}^{j}\right), M_{0}\right)=0$, and is 0 or uncountable otherwise. Horeover, it is easy to see, using II. 11 and IV.5, that $\operatorname{dim}\left(q_{i}\left(x, \bar{a}_{i}^{j}\right), M_{0}(\bar{i})\right)=\lambda_{i}^{j}$, if $\operatorname{dim}\left(q_{i}\left(x, \bar{a}_{j}^{j}\right), M_{0}\right)=0$, and $=i \gamma_{0}+\lambda_{i}^{j}$ otherwise. It is also clear by IV.4, that $\operatorname{dim}\left(p_{i}^{j^{j}}, M_{0}(\bar{\lambda})\right)=\lambda_{i}^{j}$. Thus, as in case 1 , it follows that if $M_{0}(\bar{\lambda})=M_{0}(\bar{\mu})$, then there is σ such that for $i<\mu^{\prime}$, and $j<n_{i}$, $\sigma(i, j)<n_{i}$, and for all $i_{j}, j, \mu_{j}^{j}=\Lambda_{i}^{v}(i, j)$. But μ^{\prime} is infinite, and if $i_{1}<i_{2}<i_{0}^{i}$, we can vary λ_{i} and $\lambda_{i}^{j}{ }_{i}\left(j_{1}, j_{2}\right.$ arbitrary), to get different models. Thus it is clear that ${ }^{i} I\left(\alpha_{\alpha}, T\right)^{2}=\prod_{i<\delta_{0}} x_{i}$, where $x_{i}=|\alpha|+i_{0}$; if $\operatorname{dim}\left(q_{i}\left(x, a_{i}^{0}\right), M_{0}\right)=0$, and $n_{i}=|\alpha|+1$ otherwise.

Thus we have proved :

THEOREI IV. 10. Let T be non-multidimensional w-stable. Let $I\left(\alpha_{\alpha}, T\right)$ denote the number of models of T of power is up to isomorphism. Then there is $\mu \leqslant i$, where μ is called the number of dimensions of T, such that :

10 if $\mu=1$, then $I\left(\alpha_{\alpha}, T\right)=1$ for all $\alpha>0$, and $I\left(K_{0}, T\right)=1$ or ψ_{0} 。
2° If $\mu>1$ but finite, then either $I\left(s_{\alpha}, T\right)=|\omega+\omega|$, for all $\alpha \geqslant 0$, or $I\left(H_{0}, T\right)=1$ and there is G a group of permutations of μ such that for $\alpha>0 I\left(\alpha_{\alpha}, T\right)=\overline{\left(|\alpha+1|^{\mu}\right)^{*} / G}$, where $\left(|\alpha+1|^{\mu}\right)^{*}$ is the number of sequences of length μ of ordinals $\leqslant \alpha$ at least one of which is α, and
$\left.\left.\gamma_{i} ; i<\mu\right\rangle \sim \gamma_{i} ; i<\mu\right\rangle$ if, and only if, $\gamma_{\sigma}(i)=\gamma_{i}$ for each $i<\mu$, for some $\sigma \in G$.
3^{30} If $\mu_{0}^{\mu}=i_{0}$, then $I\left(\alpha_{\alpha} ; T\right)=|\alpha+1|^{*}$, for all $\alpha>0$ and $I\left(\psi_{0}, T\right)=1$,

A few final comments ; It can be shown fairly easily that if T is (ω (stable) and multidimensional, then for $\alpha>0, I\left(\gamma_{\alpha}, T\right) \geqslant 2|\alpha|$. Thus there is some content to the multidmensional/non-multidimensional dichotomy.

SHELAH has classified in a similar maner as above, the $\mathrm{F}_{i 8}^{\mathrm{a}}$-saturated models of a superstable non-multidimensional theory.

The main result in this paper, and the main notions employed are due to S. SIIELAH, "appearing" in [5]. The bulk of our section I parallels the development of the material in LASCAR [3] (sections 2 and 3). The important proposition III. 5 is due to BOUSCAREN and LASCAR [1]. Some results on the spectrum were also obtained by LACHLAN [2].

REFERENCES

[1] BOUSCARM (E.) and LANCAR (D.). - Countable models of non-multidimensional w-stable theories (to appear).
[2] LACHLAN (A. H.). - Spectra of w-stable theories, Z. für math. Logik, t. 24, 1978, p. 129-139.
[3] LANCAR (D.). - Ordre de Rudin-Keisler et poids dans les théories stables (to appear).
[4] LASCAR (Do).and POIZAT (B_{\wedge}) . - An introduction to forking, J. of symb.上očis, t. 44, 1979, p. 330-350.
[5] SHELAH (S.). - Classification theory and the number of non-isomorphic models. - Amsterdam, New York, Oxford, North-Holland publishing Company, 1978 (Studies in Logic, 92).

