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Séminaire de Théorie des Nombres 
30 avril 1981 

Grenoble 

MINORATIONS DU RANG p-ADIQUE DU G R O U P E DES UNITES 

par Michel WALDSCHMIDT 

Le texte qui suit est celui de l'exposé que Michel 
WALDSCHMIDT a fait au Colloque de Théorie des 
Nombres de Budapest (20 au 26 juillet 1981) sur le 
même sujet et qu'il a eu la gentillesse de nous 
communiquer. Ce texte paraîtra dans les actes du 
Congrès de Budapest sous le titre : 
A lower bound for the p-adic rank of the units of 
an algebraic number field. 

Let K be a totally real Galois extension of Q with Galois group 

G . When p is a prime, we denote by r^ the p-adic rank of the units of 

K. Leopoldt's conjecture asserts that r = r , where r = ÏK:Q ] -1 . When 

G is abelian, this equality has been proved by J . Ax and A. Brumer. An 

extension of their method enabled M. Emsalem, H.H. Kisilevsky and D.B. Wales 

to prove [l] : 

where x mns over the characters of G irréductible over , and d^ 

is the degree of x • Their main tool is a p-adic transcendence result on the 

non-vanishing of linear forms in logarithms of algebraic numbers (theorem of 

Bake r-Brume r). 
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We give here an other lower bound for r , namely 

r > r/2 . 
P 

We also use a p-adic transcendence result, but now it concerns exponential 

functions in several variables [4]. It is worth to notice that the transcendence 

proof, which rests on an extension of Schneider's method, enables one to give 

a new proof of the theorem of Baker-Brumer. 

The number r is equal to the rank of a matrix 
P 

(log QTG) , 
p atCJ, TGCJ 

where e is a Minkowski unit such that la e - l | < 1 for all a f G . 
1 jP 

According to Dirichlet units theorem, the rank of the matrix 

(log|aTei)a€G> t€G 

is equal to r . Our inequality r^ ^ r/2 will be a consequence of a more ge­

neral result which compares the rank of a matrix (log a..) with the rank of 
P ij 

a real matrix (log|a . | ) . 
AJ 

The arrangement of this paper is as follows. In section 1 we state two 
lower bounds for the rank of (log a.,) , first in terms of the rank of 

P *J 
(log|a,y|) with the natural logarithms of the modules, then in terms of the 

rank of (loga„) with colnplex determinations of the logarithms. In section 2 

we give a corollary of these statements, and we study the situation from a 

conjectural point of view. In section 3 we introduce a coefficient 0^(A) , 

where A = (a^) . In §4 we state the main result of this paper, which gives 

a lower bound for the rank of (log^ a „ ) in terms of 6*(A) , and we deduce 

from it the results of §1. In section 5 we sketch the proof of the main result. 

Finally section 6 is devoted to further results on the subject. 

Throught this paper we denote by Q an algebraic closure of Q , 

(Ep is a completion of an algebraic closure of , rk M is the rank of a 

matrix M , and degP is the (total) degree of a polynomial P . 
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1. - ON THE RANK OF MATRICES WHOSE ENTRIES ARE 
LOGARITHMS OF ALGEBRAIC NUMBERS 

We first give a lower bound for the p-adic rank in terms of the rank 

of a real matrix (cf. [4], 2.2.p). This is precisely the result which is used 

for the problem of the p-adic regulator. 

THEOREM l . l . - Let k be a number field, cp an embedding of 

k into (C , and cp an embedding of k into C . Let a .. , 

(lsted, l£j££) be elements of k such that 

We consider the two matrices 

M° = (loglcpa.. h . , n . . 

where log is the natural logarithm, and 

M = (log cp a..)„ , - , _ P P P ij'l*i£d, . 

Then 
1 o rkM 2> - rk M . P 2 

There is no inequality in the other direction : if we choose algebraic 

numbers with = 1 for i ^ j and (cpoĉ l =1 , not root of 

unity, we get rkM^ = min(d,€) , while rkM = 0 . 

We give now a lower bound for rkM in terms of the rank of a com-
P 

plex matrix (logcpa^) , where, for each (i,j) , we choose a determination of 

the logarithm of cpct̂  . It is obviously necessary to make some assumption on 

these logarithms (take for instance all equal to 1 ) . For the application 

to the next section, it would be sufficient to assume that 
( £ h K logcpa,.) n 2iTT Z = 0 . 
Vi=lj=l W 

Such a choice is possible if and only if the subgroup of Q generated by the 

dS numbers a., is torsion free. 
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In the next result we use a slightly weaker hypothesis. 

THEOREM 1.2. - With the assumptions of theorem 1.1. we choose, 
for 1 £ i £ d , 1 £ J £ 6 , a determination of the logarithm of cpa . 

d € ^ We assume further that if (a^, . . .^) € Z and (b^,. . . ,^) € Z 
are any elements such that the number 

d € 
X = E £ a.b4logcpa„ 

1=1 j=l 1 3 ij 
belongs to 2inZ , then X = 0 . 

We consider the matrix 
M M l o g c p a ^ ) ^ ^ . 

Then 
rkM * £ rkM . 

P 2 

The same method yields other inequalities like 

rkM ^ i rkM and rkM ^ 77 rkM . Pi 2 p2 2 p 

2. - THE NUMBERS rCD AND r CD 

Let T be a finitely generated subgroup of Q of rank I over 
Z . We first consider an embedding of Q into <t , and we denote by 

d d 
exp : <F -"•<!!* the exponential map : 

*1 *d d emt = (e ,...,e ) for t = (t.,,...,t,) € (C . l a 

We define r(F) as the minimum of the numbers 

dim,- ((£z, +...+<Czft) , 

as (z^,...9Zg) runs over the S-tuples of elements of <Ĉ  such that 

exp zl9...,esp ẑ  generate a subgroup of finite index of T . Equivalently, 
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r(T) is the minimum of the ranks of matrices 

(log Yij)l^i^d, 

where Y ^ - ^ Y g are multiplicatively indépendant elements of T , with 

Yj = (Yy^.-.Y^j) , and log Y- is any determination of the logarithm of y ; 

the minimum is taken over the Yj and the determinations of the logarithms. 

We further write r0(T) for the rank of any matrix 

it does not depend on the choice of Y-^-^Yg multiplicative ly independent ele­

ments of T . 

We will now define, for all prime numbers p outside a finite set, a 

number r (T) in a similar way. We first choose Y1»**-»YP multiplicative ly 
P X V 

independent in r . Let p be a prime ; we consider an embedding of Q 
into (C and we assume that all coordinates vJt of Y . > for l^ i^d and 

P ij J 

l£j££ , are p-adic units. This condition on p may depend on the embedding 

of Q into <E , but does not depend on the choice of Y ^ - M Y ^ • Almost 

all p (i.e. all p but a finite number) satisfy this requirement (for all em-

beddings of $ into (T ) ; moreover, if the Yr are all algebraic units, 

then all p satisfy it. We now define rp(T) as the rank of the matrix 

(1°gpYiJ)l^i^d, l^J^ " 

Once more this number does not depend on the choice of Y^f-fYg multipli­

cative ly independent in T , but it depends on T and on the embedding of Q 

into <E 
P 

From theorems 1.1 and 1.2 we will deduce the following : 

COROLLARY 2.1. - We have rp(T) ̂  | r0(T) and rp(D ^ f r(T) . 

Also r (T) > ±r ( D and r (D > | r ( D . 
z ?2 ù P 
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Proof of corollary 2.1. - We choose Y1»---»YP in r multiplicative -
1 1 « 

ly independent. The inequality r (F) ^ ~r°(r) is a straightforward consequen-
p z 

ce of theorem 1.1 with a„ = y . For the second inequality, we consider the 

subgroup of Q* generated by the d£ numbers y^ , (l^i^d, l<;j£ €) ; let 

a be the order of the torsion subgroup. Next, let B be a basis of the 
1 m a — 

(free) group generated by the d€ numbers y in Q* . Thus there exist in­
tegers a.. 6 ^ , (l^i^d, l£j^€ , l^s^m) , which are uniquely determined, 

ljs 
satisfying 

m a.. 
Y « = I I Pq1JS > <l*Ud,l*I*«) . 

13 s=l S 
We take any determinations of the logarithms of fL,...,|3 . Since £L,...,|3 

1 m 1 m 
are multiplicatively independent, the numbers log p^.- .tog^ , 2in are Q-

a 
linearly independent. If we set a„ = Yy » we can define logoc^ by 

m 
loga = £ a logP , (lsted, lsj*€) , 

s=l " 
and we get 

/ d « > 
S S 1 loga4. n 21ttZ = 0 . 

\ l=l j=l W 
From theorem 1.2, we conclude 

rp(.r) = rk(logpay) * |rk(logay) * | r ( D . 

We now describe the situation from a conjectural point of view. 

CONJECTURE 2.2. - For all those p for which r (T) is defined, 

we have 

r ( D = r(T) ;> r°(D . 

Furthermore, let Yj.-'-.Yg be multiplicatively independent elements 

in r , and let logy., satisfy 

(d * \ 13 
[ T S Z logy.. n2iTTK = 0 . 
Vi=l j=l 

Then the rank of the matrix 

M = ( l o g Y y ) ^ ^ 

is equal to r(T) . 
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According to this conjecture, the number r(T) (resp. r (T)) does 
P 

not depend on the chosen embedding of $ into (C (resp. into (C^ ) . Of 

course, in general, r°(F) may well depend on the choice of this embedding 

(i.e. of the choice of the absolute values | Y - | ) • Also, for a given p , the 

fact that r (T) is defined depends on the embedding of $ into <E . But if 
P P 

conjecture 2.2 holds, there is a natural definition for r (T) for all p and 
all embeddings ( J e t . 

From the definition of r (T) , it is obvious that rkM ^ r(T) . Let us 

show that the inequality r (T) ^ rkM is a consequence of the following stan-
P 

dard conjecture (which is a special case of the p-adic SchanuePs conjecture ; 

see [4] p. 127). 

CONJECTURE 2.3. - Let a,,...,a be p-adic units in (C , which 
1 m — p 

are algebraic over Q , and multiplicatively independent. Then the  

numbers log^a^,...,l°gpam are algebraically independent. 

We need the following lemma : 

LEMMA 2.4. - Let K be a field, A^,.. . ,A be elements of — j m 
K[X,,...,X ] , and let K f X ^ . ^ X , ] . If the polynomial 1 n 1 n+m — 

P(X^ ,...,X , A. , . . . ,A ) x 1 n 1 m 

is the zero polynomial in KlX^^.^X^] , then P belongs to the ideal 

3 of KfX^,..., xn+ml generated by the m polynomials X ^ ^ - A ^ » 

(l*j£m) . 

Proof of lemma 2.4. - We consider the field L = K(X1,...,Xn) . The 

image of P in L[T ,...,T ] under the obvious map X ,.>-•* T. belongs to & 1 m n+j j 
the ideal generated by T„ -A^,. . . ,T - A . This means that there exist 

l 1 m m 
QQ 6 Krxr...,Xn] , QQ t 0 , and Q R - " > Q M in KCX1,. . .FXN+M] , such 
that ^ 

m 
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It is now sufficient to notice that the ideal 3 is prime, since the quotient 
KtX.. . , ,X ] / 3 is isomorphic to K[X1,...,X ] . 

1 n+m 1 n 

Proof of the inequality rp(T) ^ rkM in 2.2 as a consequence of 2.3. 

Assume that the rank r of M satisfies r > r (T) . We write all 
P 

the determinants rxr out of the matrix (log y,.) • We get finitely many 
polynomials P ,...,P in dC indeterminates X.. , (l£i£d , l£j££) , with l K ij 
rational coefficients, which all vanish at the point ( log^Y-) • 

We select among the d£ numbers log^ y y a basis of the <B -vector 
space they generate, and we write this basis log v. . . ., v , l^s^m . Next 6 BpYi(s)j(s) 
let a.. , a , be rational integers, with a > 0 , such that 

1JS m 

By assumption the numbers y a r e p-adic units, and for a p-adic unit 
u € (C the condition log u = 0 means that u is a root of unity. Therefore 

P P 
there exists a positive integer b such that 

u m a., b 
Tij s=1 Ti(s),j(s) 

Thanks to our assumption on the complex logarithms log y„ in 2.2, we 
conclude 

m 
a logY« = £ VogYi№,J№ • (lilsd'1SJ£{) • 

We now use 2.3 :the numbers log y., v . are algebraically independent. 
&pTi(s),](s) 

From lemma 2.4 (with n=d£-m) we see that the polynomials P ,...,P 
belong to the ideal of Cfi I [X } - . 1 generated by the d£ polynomials 

m 
aX„ - £ a.. X., . . , (l^ted, lzjzt) . ij s=i ljs i(s),j(s) 

Therefore ¥^9...9V^ vanish at the complex point (log Y - ) > which contradicts 
the assumption r = rkM . 

The same proof shows that the inequality r (T) ^ r°(T) is a conse-
P 

quence of 2.3. Similarly, it is easy to deduce the inequality r(T) ̂  rp(^) 
from the following classical conjecture : 
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CONJECTURE 2.5. - If log c^,...,logcc^ are Q-linearly independent  

logarithms of complex algebraic numbers, then they are algebraically  

independent. 

Another consequence of 2.5 is r(T) ̂  r°(T) . As pointed out to me 

by E. Reyssat, this inequality depends on the fact that the coordinates of the 

elements of T are algebraic numbers. For instance let r be the subgroup 

of <C*2 generated by ^ j and ^ e n j • We can define r(T) and t°{T) 

as before (in spite of the fact that F is not included in Q4*2 ) . Then 

r0(T) = 2 ; but r(T) =1 , because ^ j and ^ generate a subgroup 

of finite index of T , and 6 

2n -2irr 
det 0. 0 = 0 . 2in 2n 

3 - THE COEFFICIENT E* 

If the rank of the matrix M = (log a..) is "small", then there are 
P P i] 

"many" linear relations with coefficients in (C^ between, say, the rows of 
M . Our aim is to show that, in this case, and assuming the a., are alge-

P 13 
braic, there are "many" linear relations with rational coefficients between the 

d€ entries log a., of M . This means that there are "many" multiplica-
P « P 

tive relations between the d€ algebraic numbers . In order to count 

these relations, we introduce a coefficient 8* , which is the multiplicative 

analog of the coefficient 0 of Ï4Ï. It will satisfy 0 £ E* £ €/d , and "many" 

multiplicative relations between the means that 0* is small. 

Notation. Let G be a commutative group ; we write the law of G multipli-

catively. Let , (l£ted, be elements of G . We write 
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and we define 

6*(A) = min ^-j- , 

where \ and 6 run over the integers, 0 <: X £ £ , 0 £ 6 <d , such that 
d € there exist p„,...,PJ c in z > linearly independent, and q„,...,q, in Z , 1 a-o I X 

linearly independent, with 

Ps = (Psl'-'Psd) € * . (l<ssd-6) 

and 

0,. = (qlt.-.q€t) € , (l<t*\) , 

satisfying 
d — p i% 

1=1 j=i « 

If the law of G is written addttively, we write 0 instead of 8* . 

In this section we give some lower bounds for 8* . 

LEMMA 3.1. - Assume G = <C* . If the matrix (logla^l) is of  

rank d , then S*(A) s i . 

Proof. - Using the definition of &* , we write 0*(A) = (€-\)/(d-6) . 

From the relations 

1 1 1 1 « « - 1 , 
i=l j=l 3 

we deduce 
d « 

Therefore there exist a regular dxd matrix P with integer entries, and a 

regular I x 2 matrix Q with integer entries, such that 

where M is a matrix with 6 rows and X columns (and M has d-6 

rows and £-X columns). Hence 
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rk(log|a„ |) £ + 6 . 

This completes the proof of lemma 3.1. 

The same proof works for complex logarithms, provided that the rela­
tions • D 

f r n . J * - i 
i=l j=l 1 

imply d £ 

n n P s i V ° g a i j = o • 
Therefore we get the following result : 

LEMMA 3.2. - Assume G =<t* . For 1 £ i <s d , 1 g j <; g , let 

loga„ be a determination of the logarithm of . Assume that the 
condition 
d « 
£ E a b log a = 2inc 
i=l j=l 3 J 

for rational integers , b^,...,bj and c implies c = 0 . 

If the matrix (logcx )̂ is of rank d , then 0 (A) s> 1 . 

Similarly, for G = <C* and |a^ |p = 1 , if the matrix (logp(Xy) is 

of rank d , then 6*(A) £ 1 . 

Remark. - The assumption ff*(A) ^ 1 is not sufficient to ensure that 
the rank of (log|a^|) , or of (log a^) , is equal to d . An obvious example 
([4] example 7, p. 113) is cĉ  = exp ( v ^ p ^ ) , where P ^ — t P ^ are dis­
tinct primes. In the following more subtle example, due to M. Langevin, the 
numbers are rational : 

/1 2 3\ 
A = 2 1 1/5 

V3 5 1 / 

and 8 = d = 3 , 9*(A)=1 , rk(log|ay|) = 2 . 
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The conjecture 2.2 suggests that it should be possible to describe the 

number r(P) solely in terms of T c Q , by algebraic means, without in­

volving a transcendental parametrization by the exponential function. 

We will see below (§4) that it is possible to give a lower bound for 

r (T) (and also r(T) ) in terms of 0* , but the result does not seem best 

possible, and, in view of Langevinfs example, the complete conjectural descrip­

tion of the situation is not clear. If we take Schanuelfs conjecture for granted, 

the problem is reduced to the study of the rank of a matrix 

M = M X +...+ M X , where M^,...,M have coefficients in a field K 1 1 s s i s 
(say K = Q ) , and X„,... ,X are indeterminates over K . 

1 s 

4. - THE MAIN RESULT 

In this section we deduce theorems 1.1 and 1.2 from the following 

result (see [4], 2.1.p). 

THEOREM 4.1. - Let , ( l^i^d, be elements of C p , 

which are algebraic over Q , and satisfy l a i j l p

 = 1 * Deftoe 

M

P

 = ( l o g

P

a i j W d , i ^ • 
and 

A = ( 0 V l < i £ d , ' 

Then 
6*(A) 

rkM :> d . 
P 1+6*(A) 

Proof of theorem 1.1. - Define r = rkM0 . Let i(l) l(r) be 

integers , with 1 £ i(l) < ... < i(r) £ d such that the matrix 

H , - * w l « , « , w . , I W . u , « « 
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has rank r . By lemma 3.1, we get, for A = (a ) 
i(s),j'l£s£r, l<;j££ 

e*(A) £ i . 

By theorem 4.1 the matrix M = (logucpa., , . ) , , . „ satisfies 

rkM ;> r/2 . 
P 

Since rkM > rkM , theorem 1.1 follows. 
P P 

Proof of theorem 1.2'. - The proof is the same, using now lemma 3.2, 

together with the fact that the only number of the form 
r « 

X = 2 2 a b logcpct 
s=l j=l s J M 8 ' ^ 

with a 6 Z , b. € Z , which belongs to 2iTTZ , is X = 0 . 
s J 

5. - SCHNEIDER'S METHOD IN SEVERAL VARIABLES 

The proof of theorem 4.1 can be divided in two parts. In the first one, 

we assume rkM^ < d , and we construct a sequence of non-zero polynomials 

P 0 (X, , . . . ,X . ) , S^S , such that o l d o 

p s ( m • « « 

for all (h ,...,h ) 6 X satisfying O^h. , (l^j^g) . Moreover we give 
1 <j 3 

an upper bound for the degree of Pg : 

d e g P s S C l s " / ( d - n > , 

where n = rkM^ , and does not depend on S . 

The second part is a "zero estimate", due to D.W. Masser [2]. It 

gives a lower bound for the degree of a polynomial satisfying such conditions : 

degPg* C 2 S 9 *< A ) . 
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Theorem 4.1 follows at once. 

Because of the finiteness of the radius of convergence of the exponen­
tial function, it is convenient to assume |a„ - l | < 1 for l£i£d , l£j^£ . 

J P 
Let us show first that this involves no loss of generality. 

Let a be a positive integer such that 

llogpa | < p a , (lsisd, lsjsS) . 

Define 

otjj = exp(palogpcCy) . 

Then 

i & i j " 1 | P < 1 • l o g

P S = p a i o g P a i j * 

and if we set 

Mp = (logpSy) , and A = (cty) , 

we have 
rkM = rkM , 0*(A) = 9*<A) . 

P P 

PROPOSITION 5.1. - let (lsisd, l^j-se) be algebraic numbers 
in <T with la.. - l | < 1 . Assume that the rank n of the matrix — p i ij i p  

M p = (logpCC )̂ satisfies n<d . Then there exist positive integers 

S, and , and a sequence of non-zero polynomials (PgJg^ ]£ 
ZtX ,XJ , with 

1 d 

d e g P s S c / / ( d - n » , 

such that 

for all (h1,...,hg) € SB* satisfying O^h^S , (l*j*€) . 

Sketch of the proof of proposition 5.1, following [4]. - We select n 
columns of Mp which are (F -̂linearly independent ; let their index be 
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j(l),...,j(n) , with 1 £j(l) <j(2) <...<j(n) s;d . We define, for , 

n 
log a.. = S y. loga. . , (l^i^d, ) . P ij v =i jv 1,J(V) 

Now we write the unknown polynomial P , for large S , in the following 

form : 

V i x d» = S P<x)x^. . .x* d , 
(a.) 

where X = ( X ^ , . . . ^ ) runs over the elements of 2Z satisfying \^ ^ 0 , 

Xj+.-.+X^ ^ D ; thus D = Dg will be an upper bound for the degree of P g . 

Let us consider the function 

F s(z) = E P ( X ) f r n a i 1 ^ 
& (X) i=l v =l ' J ( V ) 

which is analytic for z = (z , z ) in the disk I z l < ^ of C*1 

y 1 n 1 'p^ r p 
(here | z | = max |z | ) . For each (h ,...,h ) € Z , we have 

p l^v^n v p 0 
_d_ J_ X.h. 

F(h y +...+h y ) = E p(X) | | | | a 1 

1 1 * * (X) i=l j=l 1 J 

= P s [ M a 1 j , . . . , M a d j ) . 

Now the strategy is as follows. 

First step. 

We construct P a (i.e. the p(X) € Z ) such that many derivatives of 

Fg at the origin are small, namely 

| - L - D T F ( 0 ) | p s e ~ U for T = (Tj T Q ) , | | T | | < C 3 U , 

where U = U is a new parameter. Moreover we solve this system of inequa-

lities with integers p(X) , not all zero, in the range 
c 4 u C 4 U 

- e £ p(X) £ e 
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The number of inequalities we have to solve is about U*1 , and the number of 
d 

unknowns is about D . It turns out that such a construction is possible, using 
d/n a suitable version of SiegePs lemma, provided that U £ C_D 5 

Second step. 

A rather simple p-adic analytic estimate shows that 
-CJJ 

| F s ( z ) | p * e for | z | p s l . 

Third step. 

p 
We consider the number Fg№]_yj+"*# + kg y £) ' f o r s o m e 6 2E , 

O^h^S . Using classical algebraic arguments ("size inequality" : a non zero 
algebraic number cannot be too small), we show that this number is zero, which 
is the desired conclusion. 

Now for this last step we need an upper bound of the shape DS £ C^U , 
and since U <; C D d / / n we must take D ^ C S*1^""11^ . 

5 1 

The second part of the proof is the zero estimate of D.W. Masser. 

PROPOSITION 5.2. - l̂ t_ K be a field of characteristic zero, 
a., (l^ted, l£j<££) be elements of K* , A = (a ) , and D , S 

J 3 
positive integers. Assume that there exist p(X) 6 K , (for 

(X) = ( X j , . . - , ^ ) , 2> 0 , X ^ . - . + X ^ D ) , not all zero, such that 

S P ( X ) | | | i a 1 J = 0 
( \ ) i=i j=i J 

p 
for all (h ,...,h ) € Z , Osh. £ S . Then 1 s j 
D * (S/d) 6 * ( A ) . 
We deduce proposition 5.2 from theorem 2 of [2] in the following way. 

We first notice that the statement of proposition 5.2 involves only finitely many 

elements of K , and therefore we may assume, without loss of generality, that 
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K is finitely generated over <ft' . If we wish, we can embed K in <C . 
d d Next, for z = (z l t . . . ,z d) 6 K* and h = (^.....hj) € Z , we write 

h ni nH . #d z = ( Z l

A , . . . , z d

d ) € K* . 
*d 

Finally let T be the subgroup of K generated by the i elements 

(ay a^) € , (l^j^€) . 
For l£r£d , define € as the maximum rank of any subgroup Ff of T ^ d such that there exists a subgroup H of Z , of rank r , satisfying 

Y h - 1 for all yer* , h€H . 

It is plain tiat 

0*,A) = mi.n - . 
l<;r*d r 

Therefore, with the notations of [2], 

9*(A) = X(I\ 2Ed) . 

Indeed, if X = Z x 1 +...+ Zx d and Y = Z y 1 +...+ Zy^ are two finitely 

generated subgroups of (Cn of rank d and £ respectively, and if 

0Cy = expKx^)) , and A = (a^) , 

then 

X(Y,X) = 6* (A) . 

Thus proposition 5.2 is equivalent to theorem 2 of [2]. 

In the proof of theorem 4.1, we use proposition 5.2 with K = <$ 
(there is no need of a p-adic zero estimate). 

Also it is important to notice that the hypothesis rkM^ < d has been 

used only in the first part of the proof (proposition 5.1), not in the zero esti­

mate. As a consequence, the zero estimate 5.2 is sufficient for quantitative 

results (there is no need of a "small value lemma"). 
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As shown in [2], the exponent 0*(A) in proposition 5.2 is best possi­

ble. Therefore it is very likely that proposition 5.1 is not best possible. 

The proof sketched here works as well in the complex case, and gives 
the same lower bound : d8 /(1+0 ) for the rank of (loga^) , for any deter­
minations of the logarithms. The difference between the two cases arises only 
if we intend to bound the rank of (log a ) not in terms of the multiplicative 
coefficient 0 of (a^) , but in terms of the additive coefficient 0 of the 
matrix of the logarithms. In the p-adic case both coefficients obviously coincide, 
but in the complex case, because of 2in , we have only the inequality 

©((loga^)) :> 0*((a t j)) . 

However the inequality 

r * d0/(l+0) , with r = rk(loga1;.) , 0 = 0((a^)) 

can be deduced from the complex analog of theorem 4.1 (see [4], 7.2 ; this is 
the place where the technical lemmas 5.3 and 5.4 of [4] are needed). 

6. - FURTHER RESULTS 

The construction of the auxiliary function can be performed in a very 

general context [4]. Also the zero estimate has been extended by Masser and 

Wustholz [3] to arbitrary commutative group varieties, and they are developing 

their method to a very large extent. Therefore the method presented here is 

capable of a large generalization which I hope to develop somewhere dlse . As 

an illustration, here is the elliptic analog to theorem 1.2, when we replace 
* d d —-dt by E(Q) , where E is an elliptic curve which is defined over Q . 

(Cf. [3] §8). 

Let y > (l£i£d, l£j*€) be d€ points in E(Q) . We choose any 
representation of the complex exponential of E((C) (say by a Weierstrass 
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elliptic function), and, for l<;i<£d , 1 ^ j <: € , we choose u.. € <C whose 

image by this exponential is y . We denote by r the rank of the matrix 

Let k be the field of endomorphlsms of E , and <£ be the kernel of our 
exponential, which gives an isomorphism between <E/£ and E((C) . Assume 

d P that for any ( a ^ . . . ^ ) € k and any ( b ^ . . . , ^ ) , if the number 

d « 
X = T, 2 a.b.u.. 

1=1 j=l 1 3 1 J 

belongs to £ , then \ = 0 . 

Now let p be a prime ; consider a p-adic representation of the ex­

ponential map of E((Cp) , and assume that there exists u ^ in (E^ (in the 

neighbourhood of zero where the exponential is defined) whose image by this 

exponential is y . Denote by r^ the rank of the matrix 

\ ij J l ^ i ^ d , ' 

Then 

r ;> r/3 . 
P 

Finally we mention the following recent works which are connected with 
this subject. 

• P. Philippon gave an elliptic analog to lemmas 5.3 and 5.4 of [4] 
(see the end of section 5 above). 

• N. Sebti-Chaouni worked out the proof of Baker's theorem by 
Schneider's method in several variables (see [2] p. 94). She had to improve 
theorem B of [3]. 

• Yu Kun Rui did the same in the elliptic case with complex multipli­
cation, i.e. gave a new proof of Masserfs theorem on linear forms of elliptic 
integrals, and also gave an effective lower bound. 

• J.C. Moreau derived a simplified proof of the theorem of Masser and 
Wustholz [3l by replacing commutative algebra by algebraic geometry. 
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