@article{SPS_2002__36__331_0, author = {Eisenbaum, Nathalie}, title = {A gaussian sheet connected to symmetric {Markov} chains}, journal = {S\'eminaire de probabilit\'es de Strasbourg}, pages = {331--334}, publisher = {Springer - Lecture Notes in Mathematics}, volume = {36}, year = {2002}, mrnumber = {1971594}, zbl = {1035.60077}, language = {en}, url = {http://www.numdam.org/item/SPS_2002__36__331_0/} }
TY - JOUR AU - Eisenbaum, Nathalie TI - A gaussian sheet connected to symmetric Markov chains JO - Séminaire de probabilités de Strasbourg PY - 2002 SP - 331 EP - 334 VL - 36 PB - Springer - Lecture Notes in Mathematics UR - http://www.numdam.org/item/SPS_2002__36__331_0/ LA - en ID - SPS_2002__36__331_0 ER -
Eisenbaum, Nathalie. A gaussian sheet connected to symmetric Markov chains. Séminaire de probabilités de Strasbourg, Tome 36 (2002), pp. 331-334. http://www.numdam.org/item/SPS_2002__36__331_0/
[CSY] Fractional Brownian motions as "higher-order" fractional derivatives of Brownian local times.Preprint. | MR
, and :[CCF] Strong approximation of additive functionals. Jour. Theor. Probab. Vol 5,4,707-726,1992. | MR | Zbl
, , and :[E] Théorèmes limites pour les temps locaux d'un processus stable symétrique. Séminaire de Probabilités XXXI. Lect.Notes in Maths. 1655,216-224 (1997). Errata dans Séminaire de Probas XXXIII, Lect. Notes in Maths1709,p.417 (1999). | Numdam | MR | Zbl
[EK] Markov Processes. Characterization and Convergence. John Wiley & Sons, Inc., New York. 1986 | Zbl
and[Ka] A limit theorem for sums of random number of i.i.d. rnadom variables and its application to occupation times of markov chains. J. Math. Soc. Japan 37, 197-205 (1985). | MR | Zbl
:[Ke] Occupation times for Markov and semi-Markov chains. Trans. Amer. Math. Soc. 103, 82-112 (1962). | MR | Zbl
:[PSV] Martingale approach to some limit theorems.Duke Univ. Maths. Series III, Statistical Mechanics and Dynamical Systems (1977). | MR | Zbl
, and :[R] Second order limit laws for the local times of stable processes.Sém. de Probab. XXV,Lect. Notes Math.1485,407-425, BerlinSpringer,1991. | Numdam | MR | Zbl
:[Y] Le drap brownien comme limite en loi des temps locaux d'un mouvement brownien linéaire. Sém. de Probabilités XVII - Lect.Notes Math.986,89-105- BerlinSpringer (1983). | Numdam | MR | Zbl
: