@article{SPS_2002__36__302_0, author = {Bass, Richard F.}, title = {Stochastic differential equations driven by symmetric stable processes}, journal = {S\'eminaire de probabilit\'es de Strasbourg}, pages = {302--313}, publisher = {Springer - Lecture Notes in Mathematics}, volume = {36}, year = {2002}, mrnumber = {1971592}, zbl = {1039.60056}, language = {en}, url = {http://www.numdam.org/item/SPS_2002__36__302_0/} }
TY - JOUR AU - Bass, Richard F. TI - Stochastic differential equations driven by symmetric stable processes JO - Séminaire de probabilités de Strasbourg PY - 2002 SP - 302 EP - 313 VL - 36 PB - Springer - Lecture Notes in Mathematics UR - http://www.numdam.org/item/SPS_2002__36__302_0/ LA - en ID - SPS_2002__36__302_0 ER -
%0 Journal Article %A Bass, Richard F. %T Stochastic differential equations driven by symmetric stable processes %J Séminaire de probabilités de Strasbourg %D 2002 %P 302-313 %V 36 %I Springer - Lecture Notes in Mathematics %U http://www.numdam.org/item/SPS_2002__36__302_0/ %G en %F SPS_2002__36__302_0
Bass, Richard F. Stochastic differential equations driven by symmetric stable processes. Séminaire de probabilités de Strasbourg, Tome 36 (2002), pp. 302-313. http://www.numdam.org/item/SPS_2002__36__302_0/
[Bar] One-dimensional stochastic differential equations with no strong solution. J. London Math. Soc. 26 (1982), 335-347. | MR | Zbl
.[B1] Uniqueness in law for pure jump Markov processes. Probab. Th. rel. Fields 79 (1988) 271-287. | MR | Zbl
.[B2] Diffusions and Elliptic Operators. Springer, Berlin, 1997. | MR | Zbl
.[BH] Pathwise uniqueness for reflecting Brownian motion in Euclidean domains. Probab. Th. rel. Fields 117 (2000) 183-200. | MR | Zbl
and .[Bi] Convergence of Probability Measures, 2nd ed. Wiley, New York, 1999. | MR | Zbl
.[E] On the theorem of T. Yamada and S. Watanabe. Stochastics and Stoch. Rep. 36 (1991) 205-216. | MR | Zbl
.[ES] Strong Markov continuous local solutions of one-dimensional stochastic differential equations. Math Nachr.. Part I: 143 (1989) 167-184; Part II: 144 (1989) 241-281; Part III: 151 (1991) 149-197. | Zbl
and .[H] The martingale problem for a class of pseudo-differential operators. Math. Ann. 300 (1994), 121-147. | MR | Zbl
.[JM] Weak and strong solutions of stochastic differential equations: existence and stability. In: Stochastic integrals, 169-212. Springer, Berlin-New York, 1981. | MR | Zbl
and .[Ke] Hitting probabilities of single points for processes with stationary independent increments. Mem. Amer. Math. Soc. No. 93, Providence, 1969. | MR | Zbl
.[Ko] On the martingale problem for generators of stable processes with perturbations. Osaka J. Math. 21 (1984), 113-132. | MR | Zbl
.[Me] Cours sur les intégrales stochastiques. In: Séminaire de Probabilités X, 245-400. Springer, Berlin, 1976. | Numdam | MR | Zbl
.[PZ] On one-dimensional stochastic differential equations with respect to stable processes. Liet. Mat. Rink. 40 (2000) 361-385. | MR | Zbl
and .[Sa] Lévy processes and infinitely divisible distributions. Cambridge Univ. Press, Cambridge, 1999. | MR | Zbl
.[Sk] Studies in the theory of random processes. Addison-Wesley, Reading, MA, 1965. | MR | Zbl
.[St] Diffusion processes associated with Lévy generators. Z.f. Wahrscheinlichkeitstheorie 32 (1975) 209-244. | MR | Zbl
.[SV] Multidimensional Diffusion Processes. Springer, Berlin, 1979. | MR | Zbl
and .[YW] On the uniqueness of solutions of stochastic differential equations. J. Math. Kyoto Univ. 11 (1971), 155-167. | MR | Zbl
and .[Z] On solutions of one-dimensional stochastic differential equations drive by stable Lévy motion. Stoch. Proc. and their Applic. 68 (1997) 209-228. | MR | Zbl
.