@article{SPS_2002__36__270_0, author = {Leuridan, Christophe}, title = {Th\'eor\`eme de {Ray-Knight} dans un arbre : une approche alg\'ebrique}, journal = {S\'eminaire de probabilit\'es de Strasbourg}, pages = {270--301}, publisher = {Springer - Lecture Notes in Mathematics}, volume = {36}, year = {2002}, mrnumber = {1971591}, zbl = {1041.60062}, language = {fr}, url = {http://www.numdam.org/item/SPS_2002__36__270_0/} }
TY - JOUR AU - Leuridan, Christophe TI - Théorème de Ray-Knight dans un arbre : une approche algébrique JO - Séminaire de probabilités de Strasbourg PY - 2002 SP - 270 EP - 301 VL - 36 PB - Springer - Lecture Notes in Mathematics UR - http://www.numdam.org/item/SPS_2002__36__270_0/ LA - fr ID - SPS_2002__36__270_0 ER -
Leuridan, Christophe. Théorème de Ray-Knight dans un arbre : une approche algébrique. Séminaire de probabilités de Strasbourg, Tome 36 (2002), pp. 270-301. http://www.numdam.org/item/SPS_2002__36__270_0/
[1] Lévy processes. Cambridge tracts in mathematics 121 (1996). | MR | Zbl
[2] Sur la loi des temps locaux browniens pris en temps exponentiel. Séminaire de Probabilité XXII Lecture Notes in Mathematics 1321 (1988), 454-466. | Numdam | MR | Zbl
,[3] Markov Processes and Potential Theory, Academic Press, New York (1968). | MR | Zbl
,[4] Local times and quantum fields. Seminar on Stochastic Processes, Birkhauser 26-4 (1983), 69-89. | MR | Zbl
[5] Dynkin's isomorphism theorem and Ray-Knight theorems. Probability Theory and Related Fields 99 (1994), 321-335. | MR | Zbl
[6] Une version sans conditionnement du théorème d'isomorphisme de Dynkin. Séminaire de Probabilité XXIX Lecture Notes in Mathematics 1613 (1995), 266-289. | Numdam | MR | Zbl
[7] A necessary and sufficient condition for the Markov property of the local time process. Annals of Probability 21-3 (1993), 1591-1598. | MR | Zbl
,[8] A counterexample for the Markov property of local time for diffusions on graphs. Séminaire de Probabilité XXIX Lecture Notes in Mathematics 1613 (1995), 260-265. | Numdam | MR | Zbl
,[9] On the Markov property of local time for Markov processes on graphs. Stochastic Processes and their Applications 64 (1996), 153-172. | MR | Zbl
,[10] Kac's moment formula and the Feynman-Kac formula for additive functionals of a Markov process. Stochastic Processes and their Applications 79 (1999), 117-134. | MR | Zbl
.,[11] Ray-Knight's theorem on Brownian local times and Tanaka's formula. Seminar on Stochastic Processes, Birkhauser (1983) 131-142. | MR | Zbl
[12] Random walks and a sojourn density process of Brownian motion. Transactions of American Mathematical Society 109 (1963) 56-86. | MR | Zbl
[13] Le théorème de Ray-Knight à temps fixe. Séminaire de Probabilité XXXII Lecture Notes in Mathematics 1686 (1998), 376-396. | Numdam | MR | Zbl
[14] Sample path properties of local times of strongly symmetric Markov processes via Gaussian processes. Annals of probability 20-4 (1992), 1603-1684. | MR | Zbl
,[15] Moment generating functions for local times of strongly symmetric Markov processes and random walks. Proceedings of the conference "Probability in Banach Spaces" Birkhauser 8 (1992). | MR | Zbl
,[16] Sur les lois de certaines fonctionnelles additives : application aux temps locaux Publications de l'Institut de Statistiques des Universités de Paris, 15 (1966), 295-310. | MR | Zbl
[17] A decomposition of Bessel bridges. Zeitschrift für Wahrscheinlichkeitstheorie und Verwante Gebiete 59 (1982) 425-457. | MR | Zbl
,[18] Sojourn times of diffusion processes. Illinois Journal of Mathematics 7 (1963) 615-630. | MR | Zbl
[19] Diffusions, Markov processes, and Martingales Volume 1 : Foundations, second edition, John Wiley and Sons (1994). | MR | Zbl
,[20] On the Ray-Knight property of local times. Journal of London Mathematical Society 31 (1985), 377-384. | MR | Zbl
[21] Excursions and local time. Temps Locaux, Astérisque 52-53 (1978),159-192.