Generalized variational principles
Séminaire de probabilités de Strasbourg, Tome 36 (2002), pp. 183-193.

In [7] Weinan E, Y. G. Rykov, and Y. G. Sinai have introduced a generalized variational principles in order to give a weak solution of the pressureless gas equations with initial velocity u 0 and distribution of masses given by a probability measure P . The aim of this work is to connect these generalized variational principles at each time t > 0 with the convex hull of any primitive of the . Here F is the distribution function of the probability measure P and F - 1 is its inverse. The latter convex hull is also used to obtain the solutions of the scalar conservation law and the Hamilton-Jacobi equation associated with the pressureless gas equations.

Dermoune, Azzouz 1 ; Moutsinga, Octave 1

1 Université des Sciences et Technologies de Lille, Laboratoire de Statistique et Probabilités, F.R.E. CNRS 2222, 59655 Villeneuve d’Ascq cédex, France
@article{SPS_2002__36__183_0,
     author = {Dermoune, Azzouz and Moutsinga, Octave},
     title = {Generalized variational principles},
     journal = {S\'eminaire de probabilit\'es de Strasbourg},
     pages = {183--193},
     publisher = {Springer - Lecture Notes in Mathematics},
     volume = {36},
     year = {2002},
     mrnumber = {1971585},
     zbl = {1038.60045},
     language = {en},
     url = {http://www.numdam.org/item/SPS_2002__36__183_0/}
}
TY  - JOUR
AU  - Dermoune, Azzouz
AU  - Moutsinga, Octave
TI  - Generalized variational principles
JO  - Séminaire de probabilités de Strasbourg
PY  - 2002
SP  - 183
EP  - 193
VL  - 36
PB  - Springer - Lecture Notes in Mathematics
UR  - http://www.numdam.org/item/SPS_2002__36__183_0/
LA  - en
ID  - SPS_2002__36__183_0
ER  - 
%0 Journal Article
%A Dermoune, Azzouz
%A Moutsinga, Octave
%T Generalized variational principles
%J Séminaire de probabilités de Strasbourg
%D 2002
%P 183-193
%V 36
%I Springer - Lecture Notes in Mathematics
%U http://www.numdam.org/item/SPS_2002__36__183_0/
%G en
%F SPS_2002__36__183_0
Dermoune, Azzouz; Moutsinga, Octave. Generalized variational principles. Séminaire de probabilités de Strasbourg, Tome 36 (2002), pp. 183-193. http://www.numdam.org/item/SPS_2002__36__183_0/

[1] M. Bardi, L.C. Evans, On Hopf's formula for solutions of Hamilton-Jacobi equations, Nonlinear Anal., 8 (1984), pp. 1373-1381. | MR | Zbl

[2] Y. Brenier, E. Grenier, Sticky particles and scalar conservation laws. Siam. J. Numer. Anal. Vol. 35, No. 6, pp. 2317-2328, December 1998. | MR | Zbl

[3] A. Dermoune, Probabilistic interpretation for system of conservation law arising in adhesion particle dynamics. C. R. Acad. Sci.Paris, 1998, tome 5. | MR | Zbl

[4] A. Dermoune, Probabilistic interpretation of sticky particles model. The Annals of Probability, 1999, Vol. 27, No. 3, 1357-1367. | MR | Zbl

[5] A. Dermoune, Sticky particles and propagation of chaos. Nonlinear Analysis 45 (2001), 529-541. | MR | Zbl

[6] E. Hopf, The partial differential equation u t + u u x = μ u x x . Comm. Pure Appl. Math. 3, 201-230, (1950). | Zbl

[7] Weinan E., Yu.G. Rykov, Ya.G. Sinai, Generalized variational principles, global weak solutions and behavior with random initial data for systems of conservation laws arising in adhesion particle dynamics. Commun. Math. Phys. 177, 349-380, (1996). | MR | Zbl