Matrices aléatoires : statistique asymptotique des valeurs propres
Séminaire de probabilités de Strasbourg, Tome 36 (2002), pp. 135-164.
@article{SPS_2002__36__135_0,
     author = {Pastur, Leonid and Lejay, Antoine},
     title = {Matrices al\'eatoires : statistique asymptotique des valeurs propres},
     journal = {S\'eminaire de probabilit\'es de Strasbourg},
     pages = {135--164},
     publisher = {Springer - Lecture Notes in Mathematics},
     volume = {36},
     year = {2002},
     mrnumber = {1971583},
     zbl = {02046375},
     language = {fr},
     url = {http://www.numdam.org/item/SPS_2002__36__135_0/}
}
TY  - JOUR
AU  - Pastur, Leonid
AU  - Lejay, Antoine
TI  - Matrices aléatoires : statistique asymptotique des valeurs propres
JO  - Séminaire de probabilités de Strasbourg
PY  - 2002
SP  - 135
EP  - 164
VL  - 36
PB  - Springer - Lecture Notes in Mathematics
UR  - http://www.numdam.org/item/SPS_2002__36__135_0/
LA  - fr
ID  - SPS_2002__36__135_0
ER  - 
%0 Journal Article
%A Pastur, Leonid
%A Lejay, Antoine
%T Matrices aléatoires : statistique asymptotique des valeurs propres
%J Séminaire de probabilités de Strasbourg
%D 2002
%P 135-164
%V 36
%I Springer - Lecture Notes in Mathematics
%U http://www.numdam.org/item/SPS_2002__36__135_0/
%G fr
%F SPS_2002__36__135_0
Pastur, Leonid; Lejay, Antoine. Matrices aléatoires : statistique asymptotique des valeurs propres. Séminaire de probabilités de Strasbourg, Tome 36 (2002), pp. 135-164. http://www.numdam.org/item/SPS_2002__36__135_0/

[AG] N.I. Akhiezer et I.M. Glazman. Theory of Linear Operators in Hilbrt Space, vol. 1. Dover, 1993. | MR | Zbl

[AS] M. Abramowitz et I. Stegun. Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables. National Bureau of Standards,1964. | MR

[CH] R. Courant et D. Hilbert. Methods of Mathematical Physics, vol. 1. Interscience, 1953. | MR | Zbl

[DK+] P. Deift, T. Kriecherbauer, K.T.-R. Mclaughlin, S. Venakides et X. Zhou. Uniform asymptotics for polynomials orthogonal with respect to varying exponential weights and applications to universality questions in random matrix theory. Comm. Pure Appl. Math., vol. 52, pp. 1335-1425,1999. | MR | Zbl

[Fo] P.J. Forrester. The spectrum edges of random matrices. Nuclear Phys., vol. B402, pp. 709-723, 1993. | MR | Zbl

[Gi] V. Girko. Random Determinants. Kluwer, 1991.

[GMW] T. Guhr, A. Müller-Groeling et H.A. Weidenmüller. Random matrix theories in quantum physics: common concepts. Physics Report, vol. 299, pp. 189-425, 1998. | MR

[He] P. Henrici. Applied and Computational Complex Analysis, vol. 2. Wiley, 1977. | MR | Zbl

[Jo] K. Johansson. On fluctuations of eigenvalues of random Hermitian matrices. Duke Math. J., vol. 91, pp. 151-204, 1998. | MR | Zbl

[KS] N. Katz et P. Sarnak. Random Matrices, Frobenius Eigenvalues, and Monodromy. AMS, 1999 ; Zeros of zeta fonctions and symmetry. Bull. Amer. Math. Soc., vol. 36, pp. 1-26, 1999. | MR | Zbl

[KKP] A. Khorunzhy, B. Khoruzhenko et L. Pastur. Random matrices with independant entries: asymptotic property of the Green function. J. Stat. Phys., vol. 37, pp. 5033-5066, 1996. | MR | Zbl

[MP] V.A. Marchenko et L.A. Pastur. The eigenvalue distribution in some ensembles of random matrices. Math. USSR Sbornik vol. 1, pp. 457-483, 1996. | Zbl

[Me] M.L. Mehta. Random Matrices. Academic Press, 1991. | MR | Zbl

[Mi] N. Minami. Local fluctuation of the spectrum of a multidimensional Anderson tight binding model. Comm. Math. Phys., vol. 177, pp. 709-725, 1996. | MR | Zbl

[Mu] R. Muirhead. Aspects of Multivariate Analysis. Wiley, 1982. | MR

[P1] L.A. Pastur. On the spectrum of random matrices. Teor. Math. Phys., vol. 10, pp. 67-74, 1972. | MR

[P2] L. Pastur. Spectral and probabilistic aspects of matrix models. Dans Algebraic and Geometric Methods in Mathematical Physics, pp. 207-242. Kluwer, 1996. | MR | Zbl

[P3] L. Pastur. On a simple approach to global regime of random matrix theory. Dans Mathematical Results in Statistical Mechanics, pp. 429-454. World Scientific, Singapore, 1999. | MR | Zbl

[P4] L. Pastur. Random matrices as paradigm. Dans Mathematical Physics 2000, pp. 216-265. Imperial College Press, Londres, 2000. | MR | Zbl

[PS] L. Pastur et M. Shcherbina. Universality of the local eigenvalue statistics for a class of unitary, invariant ensembles. J. Stat. Phys., vol. 86, pp. 109-125, 1997. | MR | Zbl

[PV] L. Pastur et V. Vasil'Chuk. On the law of addition of random matrices. Comm. Math. Phys., vol. 214, pp. 249-286, 2000. | MR | Zbl

[Sp] R. Speicher. Free convolution and the random sum of matrices. Publ. Res. Inst. Math. Sci., vol. 5, pp. 731-744, 1993. | MR | Zbl

[Sz] G. Szegö. Orthogonal Polynomials, volume XXIII de Colloquium Publications. American Mathematical Society, 1975. | MR | Zbl

[TW] C.A. Tracy et H. Widom. Introduction to Random Matrices. Dans Geometric and Quantum Aspects of Integrable Systems (Scheveningen, 1992), pp. 103-130. Springer, 1993. | MR | Zbl

[VDN] D.-V. Voiculescu, K.J. Dykema et A. Nica. Free Random Variables. American Mathematical Society, 1992. | MR | Zbl

[Vo] D.-V. Voiculescu (editor). Free Probability Theory. American Mathematical Society, 1997. | MR | Zbl