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Abstract : In this article we study the classical finite dimensional Ito formula from
an infinite dimensional perspective. A finite dimensional semi-martingale is repre-
sented as a semi-martingale in a (countable) Hilbert space of tempered distributions.
The classical Ito formula is obtained on action by a test function from the dual space.
Finite dimensional stochastic differential equations with smooth coefficients are rep-
resented as an SDE in a Hilbert space. We obtain representations of the local time

process, viewed as a distribution in the space variable, in terms of a Hilbert space
valued process of finite variation. A basic feature of our representation, is the role of
the tensor product.

Introduction

In [25], we had given a new proof of the Ito formula in dimension d > 1 for

arbitrary semi-martingales, starting from Tanaka’s formula. The idea was to use a
multi-dimensional variant of the well known technique of proving Ito’s formula for
dimension d = 1 from the Tanaka’s formula viz.

( Xt-a ) += ( Xo-a ) ++ 10 a )

For fixed t, as a function of a , each term represents a tempered distribution, almost

surely. It is natural to ask then if (Xt-.)+ , as an S’ valued process, is an S’-valued
semi-martingale and if so whether the above expansion for (Xt - .)+ is true as a

semi-martingale equation in S’. Here S’ is the space of tempered distributions. In
this paper, using a countable Hilbert space structure on S’ , we answer the above

question in the affirmative. We prove in fact a stronger result in section 2. We show
that if § E ~S‘’ , and (Xt) is a continuous d dimensional semi-martingale, then

(~) is a Hilbert space valued semi-martingale where the Hilbert space comes from
the countable Hilbertian structure of S’. Here : S’ ~ S’ , x E IRd are the

translation operators. We also give an explicit decomposition of this semi-martingale
(see Theorem 2.3). Taking (~ the dirac distribution concentrated at zero,
we recover the finite dimensional Ito’s formula from the equality , f (Xt ) _ 
f ,  /, , > , f e S. Here .,. > denotes the duality between
S and S’. We give two proofs of the fact that (T Xt (03C6)) is a semi-martingale.
One uses the Ito formula for Hilbert space valued semi-martingales as found in [18].
The other is centered around tensorial integration by parts of Hilbert space valued

semi-martingales [18] and duality, and is a natural continuation of ideas used in [25].
This latter proof gives increased regularity ( see Remark 2.4 ).
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In section 3, we develop some of the implications of the results in section 2, for
the theory of local times. The local time process (Lt) viz. the Hilbert space
valued process of finite variation appearing in the semi-martingale decomposition of
the process (Xt - .)+ , mentioned above, is shown to be identical with the Hilbert
space valued process  X >S. Further for each t, Lt is given as a
distribution by the locally integrable function (x -~ L(t, .r)) , where L(t, x) are the
point local times of (Xt). In particular, this provides a mathematical justification
for the physicist’s interpretation of local times : Lt = fo ds (see [28] for the
case when (Xt ) is conditioned Brownian motion).
How do the transformations on (Xt), , like Xt --~ Xt + Zt , or =

fo hs dXs act at the level of local times? The results of section 3 are in this direction.
Relatively simple formulae (involving tensor products of distributions) govern these
transformations. These are consistent with similar formulae derived for point local
times in [24], [26]. Here the fact that local times, as distributions, have compact
support, plays a crucial role. Proposition [3.8] and the example that follows relate
to intersection local times. These have been studied extensively via renormalisation
and other techniques (see [15], [17], [31]). Our results show how the intersection local
time can be described in terms of appropriate functionals of the local times of the
underlying process. An interesting feature of the version of the generalised occupation
density formula that we present (Lemma 3.1) is its connection with the Schwartz
Kernel theorem. This approach also enables us to give a very natural interpretation
of the local time as a tempered distribution realised as an integral along the path.
Clearly such integrals exist for processes in more than one dimension - which is not
true in general for point local times.

In recent times there has been a rapid growth in the literature on infinite dimensional
stochastic calculus. For a representative (but far from exhaustive) sample see [6], [8],
[10] , [12], [13] , [16], [23], [27], [32], [33], [35], [36], [37], [38], [39], [40], and [41].
As random tempered distributions, local times have been studied by a number of
authors. See [1], [2], [3], [4], [15], [20], [22], [34]. Our paper uses a countable Hilber-
tian framework to analyse classical finite dimensional semi-martingales. It embeds,
so to say, the finite dimensional stochastic calculus in a countable Hilbertian, infinite
dimensional framework. This is the natural framework for many important processes
for example, stochastic partial differential equations. The infinite dimensional semi-
martingales that we construct (see Theorem 2.3) out of say Brownian motion, are
actually solutions of stochastic partial differential equations. Corresponding to the
case of finite dimensional processes, satisfying Ito’s stochastic differential equations,
the infinite dimensional processes that we construct also satisfy a stochastic differ-
ential equation in S’ and are Markov processes. This is analogous to the weak
formulation of partial differential equations.
This paper is also related to another stream of results which extend Ito’s formula

- ~.5~, [7], [14], [21], [24]. We present the Ito formula (corollary 2.5) for a continuous
function ( i.e., without the usual ’C 2’ hypothesis ) in an appropriate test function
space. This formula is true for any continuous semi-martingales. But our main aim
and focus in this paper is to bring out the duality inherent in the classical Ito’s formula
- somewhat analogous to reinterpreting partial differential equations in the weak or
distributional form.



373

1. Preliminaries

On a filtered probability space (0, ,~’, 0t, P) satisfying usual conditions, we are
given a continuous Ft-semi-martingale (Xt) with canonical decomposition Xt =

Xo + Mt + V and quadratic variation  X >t. Recall the Tanaka formula :

VaElR,

( ~’t-a ) += ( Xo-a ) ++ 10 a )

where (L(t, is the local time process at a. This is a continuous, non-

decreasing adapted process satisfying : (t, a, w) ~ L(t, a, w) is B(0, oo) x
x ,~’ measurable and for each a, a.s. L(t, a) = fot a) V t > 0.

We also have the occupation density formula : V f > 0 measurable, a.s.,

/ o d  X >S = f (a)L(t, a) da If t > 0

We refer to [26] for these and other facts relating to the local times of semi-martingales.

Countable Hilbert Spaces : Recall the Schwartz space (also denoted by
or simply S when the dimension d is understood) defined by

8(IRd) = f/ E V p > 1, max sup(1 + |x |p) | ~j11 ... ~jdjf(x) | o0~ 
’ 

~ 

x J

Let _ (-1)ex2 k = 0, l, 2, ... be the 1~ th - Hermite polynomial and

hk(x) = 1 03C02kk!  e-x2/2gk(x), k = 0, 1, 2, .... For j = (j1...jd) ji ~ Z+ , let

hj(x) = hj1(x1)...hjd(xd) where x = (x1... xd). The space Sd, p (or simply Sp )
is the completion of S w.r.t. the norm defined by

cn

~~~~~~ - ~ (2 ~ ~ ~ +d)2~(~~ h~)2~ P E ll~

where I j != ji + ... + jd and (., .) denotes the inner product in 
If pi  ?2 , ,  !!-!!p2. . The usual topology on S is given by the family of
semi-norms

~!~ = ~2)~ ( ~~i ... ~

where p E Z+. The following proposition shows that this topology is also the same
a,s those given by the semi-norms ~.~p , p > 1. .

Proposition 1.1. Let § E S.

a) V n > 0 3 m > n and a constant C = C(n) such that ~~~~~~  

b) V n > 0 ~l > n and a constant C’ = C’(n) such that  C’ ~~~~~i .
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Proof. a) If 1/J E S then ~(a-) = f x~ ... f~~ a1... 

~ |03C8(x)|~C (IRd | (1+ |y |2)~1 . .. ~d03C8(y) |2 dy)1/2
Let n > 0 and ~ E S. Let ~(~r) = (1+ ( x ~2)nD~~(x) where

D’=~...~ ~=(~1...~d)~ 

Let r~(x) _ (1+ ~ x ~2)a1 ’ ’ ’ ad~(x). Then we have  C ~~r~~~o , where

~~~0 is the L2(lRd) norm. Using the recurrence relations (see [10], appendix )

h’j(x) = j 2hj-1(x) - j+1 2hj+1 (x)

xhj(x) = j 2hj-1(x) + j+1 2hj+1(x )

and the definition of .~~p , the existence of m and C are easily established.

b) Let A = (x) + ... + x§) - /£ - ... - /£ . . Then it is easy to see that = 

The existence of l and C’ follow easily, using the above recurrence relations. D

Remark 1.2. It can be shown that m = 3n + 2 + d and l = 2n + 1.

The space (Sp, ~.~p) is a Hilbert space. We denote its dual by S’p with the dual

norm . ( ( ~ defined by

’ f E s, l~

It is well known (see [9]) that S = ~p~0Sp and S’ = where S’ denotes
the dual of S viz. the space of tempered distributions.

Stochastic Integration : We shall use the theory of stochastic integration on Hilbert
spaces developed in [18], [19]. If Hand Ii are Hilbert spaces, we will denote
by L(H, Ii ) the set of bounded linear operators T : : H --~ A". . Then if (Xt) is a
continuous H valued semi-martingale and (~) is a L(H, A") ) valued locally bounded
predictable process the stochastic integral fot YS dXs is a continuous ~s valued

semi-martingale. Note that when (Y) is a (locally bounded predictable) K valued
process, then (Y) can be considered as an L(H, H 0hs Ii) valued process, where
H is Hilbert Schmidt tensor product of Hand I~ . In this case fo dXS is
a valued process. We also denote this process by fo YS 0 dXs. In proving
our results, we shall need the following facts.

Proposition 1.3. Let H == IR and (Xs) a continuous real semi-martingale.

a) Let Ii and Ii ’ be Hilbert spaces and T : Ii -~ Ii ’ be a continuous linear
functional. Let be an L(H, 7~) ) valued locally bounded predictable process.
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Then, d t , a.s. T YS = fot In particular if Ii = S~ for some

p > 0 and (YS) is Ii valued and f E S , then d t , a.s.

 f, Ys dXs > = t0  f, Ys > dXs

b) Suppose (YS) is an S~ valued locally bounded previsible process such that, ’d t ,

supp (YS) C G a.s., where G C IRd is a compact set and supp (YS) is the

suppor t of the distribution YS E S’. Then a.s., supp ( f o t Ys dXs) C G and if

~ E ,S’’ then
t t

~ * % YS dXs - % ~ * YS dXs

c) Given p > 0 and q > 2p , ~ a linear homeomorphism Tp, q : ~d1, hsS’p(IR) ~

S’q(IRd) such that where ®hs is the Hilbert Schmidt tensor

product and ~d denotes the tensor product of distributions.

Proof. a) The proof of a) is immediate if we approximate (YS) by simple processes
a,nd use the continuity of ~’.

b) Suppose f E S, supp f ~ G = ~. Let t > 0. Then a.s.,

t t

 f, t0 Ys dXs > = t0  f, Ys > dXs = 0

The set N = ~ f E S, supp f ~ G = ~~ has a countable dense subset. Hence a.s.,

 f, t0 Ys dXs > = 0 ~f ~ N

t

~ supp ( t0 Ys dXs) ~ G
0

Now let 03C6 E S’. If f E S then from the definition of convolution (see [30]),

 f, 03C6*t0 Ys dXs > =  f *03C6, t0 Ys dXs >

where ~(~) _ ~(-x). Let ~n be C°° functions, 1 ~~~  n , supp ~n C

(r : ]]x]]  n + l~. Then, ( f * E S and we have, a.s.,

 f, 03C6 * t0 Ys dXs > =  f *03C6, t0 Ys dXs >

- lim  ( f * / YS dXs >
- lim /  ( f * ~)~n~ Ys > dXs

0

t t

= t0  f * , Ys > dXs = t0  f, 03C6 * Ys > dXs
0 0

t

-  f, / dXs >
0

c) we give the proof for d = 2. Since Sp and S_~ are isomorphic as Hilbert spaces
( see [11]), it is sufficient to construct the map T from ~hs S_p(IR) to
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Let q > 2p and ® hj p) and be respectively the ONB in
~ and Recall the notation h(i, ~~ and note that

h-pi = (2i + 1)phi

h-pi ~ h-pj = (2i + 1)p(2j + 1)phi ~ hj

j~ 
- (2(2 ’f’ j) + ~)4h(i, ~~

Now define T : S_ p ( IR) ~hS -~ ) as follows :

® h’ - ~ ) _ ((2~ + i 1)(2~ + 2 1))p q j~

If x E ®hs then

x = 03A3ci, jh-pi ~hs h-pj
i, j

Extend T by linearity :

T~ _ ~. ((22 + ~)(2~ + .

(2(z ’ +.?) + 2) R 
It is easy to see that T is a linear homeomorphism. If f, g E , and

hg~>_~g, 
then z’ ’

T(f ~hs g) = 03A3  f, h-pi >-p g, h-pj >-p ((2i + 1)(2j + 1))p (2(i + j) + 2)q h-q(i, j)

= 03A3  f, hi > g, hj > (2(i  + j) + 2)-qh-q(i, j)

= 03A3  f ~ g, h-q(i, j) >-q h-q(i, j)
i, j

- f ~d 9

where  f , g > denotes the inner product in L2 ( If~) between f and g . Note that the
last equality holds in S_Q . p

For a E IRd, f : IRd ~ IR define Ta f : IRd ~ IR by Ta f(x) = f ( x - a ) . Then
Ta : ,~’’ -~ S’ is defined in the usual way :  f > _  , ~ >, f E S, ~ E S’.
Then we have the following proposition.

Proposition 1.4. Let 03C6 E S’ let g(x) = , x E Then there exists an

integer n such that g : IRd ~ S’n, is twice continuously differentiable. Further,
d

g’(x)h - ~ hi~ iG E lLLd
i=1

g"(x)(h ~ h) = 
1 2

(~xjx03C6) hihj h ~ IRd



377

and g" : IRd ~ L( IRd ® IRd, is uniformly continuous on bounded sets.

Proof. ~ E 5~ =~ r~ E Sm for some m. We will show that 3n > m such that the

following inequalities hold V f E S : V x, h E IRd

d

II Tx+hf - Txf - C(m, x, ...(1)

~x+hf-xf-(~ixf)hi-1 2  (~i~jxf)hihj~m~ C(m, x, d)~f~n~h~2 ...(2)
z=1 a, ~=1

Now the proof is completed using duality :

d

IIg(x + ~2) - g(x) + 
i=l

d

- sup I ~ f, ~ Tx~ + hi ~ (
fES, i=1

d

~ sup { ~03C6~’m~-x-hf - -xf - 03A3(~i-xf ) hi~m}L i=1 J
~ sup x, 

fES, 
’

- C(n, x, 

This proves the first equality. The second is proved similarly. The uniform continuity
of g" follows from that of Tx.

To prove inequalities (1) and (2) it is sufficient to show that given m ~ n > m such
that (1) and (2) hold with norms in place of respectively.
Using Proposition 1.1 the required inequalities for follow for an

appropriate choice of n. Inequality (1) for the and are obtained

by applying Taylor’s formula to functions of the form

/ d B

B(t) = ~j11 ... ~jdd( f(z + x + th) - f(z + x) - ~if(z + x)hit)

where 0  t  1 and z, x, h E IRd, , f E S , , and using the elementary inequalities

(1+ x ~2)  4(1+ z ~2)(1+ ~ x + z ~a)

The constant C(?7Z, x, d) = C(m, 2)’~. Inequality (2) is proved similarly

2. From Tanaka Formula to Ito Formula

In this section, we prove the Ito formula viz. the semi-martingale expansion of 8Xt in

the space S,~ , for a suitable n. As mentioned in the Introduction, we give two

proofs : one which starts from the Tanaka formula and uses the tensorial integration
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by parts formula as in ~18~, and the other using the generalised Ito formula for Hilbert
space valued processes X ([18]).
Observe that the locally integrable function .c -~ is in S’. From

the properties of the translation operator Tx (see Proposition 1.4 ) it follows that

I(o, ~) (XS - . ) is a locally bounded previsible Sm valued process, for a previsible
process (Xt) for some m. Here the notation ~(XS - .) means the

random distribution where ~(.r) = ~(-~). By the remarks made earlier in Sec-
tion 1, it follows that when (Xt) is a continuous real semi-martingale, the stochastic
integral fot ~~(XS - .) dXs is a S~ valued continuous semi-martingale.

Lemma 2.1. Let (Xt) be a continuous semi-martingale and (L(t, ~e~R~ , its

local time process. There exists an integer n > 0 and an Sn- valued, continuous,
a,dapted process of finite variation, denoted by L(t) such that V t , a.s., L(t) =
(~r -3 L(t, .r)) in S’. Moreover this process is identical with the Sn- valued process
of finite variation d  X >S)t>o. Finally ((Xt - .)+)t~o is an Sn-valued
continuous semi-martingale and we have the Tanaka formula : 

^

a.s. (Xt - .)+ = (X0 - .)+ + t0I(0, ~)(Xs - .) dXs + 1 2L(t) t ~ 0 ...(3)

Proof. Fix n > 0 such that the distributions x ~ I(o, ~)(x), x ~ (x)+ and

(the dirac distribution all belong to Sn. Note that (Xt - .)+ and

~~ (XS - . ) dXs are valued continuous adapted processes and the lat-
ter, following remarks above, is an Sn valued semi-martingale.

Define

L(t) ~ 2{(Xt - .)+ - (Xo - .)+ - t0 I(0, ~)(Xs - .)dXs}
Then L(t) is an S’n-valued continuous adapted process. Hence from proposition 1.3
a) and Fubini’s theorem for stochastic integrals. We have for f E S ,

 .f~ ~t > = 2  f, (Xt - .)+ - (X. - .)+ > -~’  f, ~)(~’S - .) > 

= 2 IR f (x) {(X, - .r)+ - (Xo - .r)+ - / ’ 7(o, ~>(~ls - ~) 
= ~ ~) dx V t, a.s.

= t0 f(Xs) d  X >s

=  f, t003B4Xs d  X >s>

Note that  X >S=  X >S is an S’n-valued continuous
adapted process of finite variation. ~

Remark 2.2. Let p > 0 be such that  V f (Proposition l.l).
Let 

~ f, > - ~ f(~)(L(tj~ x) - ? ~) d~ ~
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~ ~f~*o (L(tj, x) - x)) dx

~ X >ta -  X 

~ Ltj - Ltj-1 ~’p = 

sup | f, Ltj - Ltj-1 >|
~ Cp( X >tj -  X >tj-1)
n

# a. s. , ~ ~~Lt~ -  Cp  X >t
j=1 

~ ~ "

~ (Lt ) is an Sp valued process of finite variation, with the total variation bounded
by  X >t d t , a.s.

Theorem 2.3. Let ~ E S’ - d > 1 and let (Xt) be a continuous

IRd-valued semi-martingale. Then 3 n > 0 such that the process 03C6)t~0 is an

continuous semi-martingale and we have

Xt03C6 = Xo03C6- t0~xi(Xs03C6) dXis + 1 2 t0~xi~xj(Xs03C6) d  Xi, Xj >s ...(4)
a, ~=1

1st proof. We consider the case d = 2. Let (Xt) _ (Xt , Xt ). By Lemma 2.1, ~ an
no > 0 such that (Xt - .)+ and (Xt - .)+ are S’no valued semi-martingales.
Since the operators a~~ : ~ , i = l, 2 , are linear and

continuous for some nl > 0 , we can apply the operator axi to (Xt - .)+ and using
the (Tanaka) formula for the latter and Proposition 1.3 a), we see that the following
equation holds in almost surely, for i =1, 2 :

03B4Xit = 03B4Xi0 - t0~xi(03B4Xis) dXis + 1 2 0 t~2xi( 03B4Xis) d  Xi >s.

Here we used Lemma 2.1 to identify Lt with fot bXQ d  X 1 >S etc. Applying the
tensorial integration by parts formula (see Métivier and Pellaumail(1969)), we get

03B4X1t ~hs 03B4X2t = 03B4X10 ~hs 03B4X20 - t0 (~x103B4X1s) ~hs 03B4X2s dX1s - t0 03B4X1s ~hs (~x203B4X2s) dX2s

+ 1 2 p 
t 

l~  X1 >s + 1 2 p 
t 

SX1 S ‘ a2 x2  X2 >s

+ t0(~x103B4X1s) ~hs (~x203B4X2s) d  X1, X2 >s.

Applying the operator Tp, q ®hs -~ of Proposition 1.3 c) with
p = no + n1 and q = 2(no + nl) + E , where E > 0 , to the above equation we get
that the following equation holds in where q is as above, a.s, dt > 0 :

03B4(X1t, X2t) 
= 03B4(X10, 

X20) - t0~x1(03B4x1(03B4(X1s, X2s) ) dX1s - t0~x2(03B4(X1s, X2s) ) dX2s
+ 1 2 t0 ~2x1(03B4(X1s, X2s)) d  X1 >s + 1 2 t0 ~2x2(03B4(X1s, X2s)) d  X2 >s

t

+ / o X2~) d  X1, x2 >S .
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We now observe that by Proposition 1.3(b), the distributions ~~‘ dXs ,

Jo dX2s , almost surely have compact support and hence in the above equation
we can convolve each term with 03C6 e s’(IR2). Using the fact that x03C6 = 03C6 * 03B4x and
the fact that ~ * ~x E , for some r > 0 , if ~x E , we get the
required result with n = 2(no + nl) + 1 + r.

2nd Proof : Given § E S’ and x e lRd, let T(x) = E S’. By proposition
1.3 jn > 0 such that x03C6 e sn V x E lRd and the map T : : is
twice continuously Frechet differentiable with T’(x) ... 

~ and
T "(x) _ jd where the derivatives are in the sense of distributions.
(Xt) being an IRd 6 valued process we can apply the Ito formula of Métevier and
Pellaumail [18], and the result follows immediately. D

Remark 2.4 We remark that in the special case of the process (bXt ) , , the first proof
gives a value of n such that bXt E S , which does not depend on the dimension
d. In the case of the second proof however, the value of n depends on the estimate
obtained in Proposition 1.1 , which depends on the dimension.

Corollary 2.5 Let n be such that the process (03B4Xt) is an S’n valued semi-martingale
and equation (4) holds. If f E S’n is a continuous function then a.s., Vt > 0 we

have,

f(Xt) = f(Xo) - t0  f, ~xi(03B4Xs) > dXis

+ 1 2 t0  f, ~xi~xj(03B4Xs) > d  Xi, Xj >s.

Remark 2.6 For p > d , f E Sp is a continuous function : From the estimates for
hj given in [29], Lemma 1.5.1, one can easily show that for p > d , the partial
sums

N

~ (2 I j h3)h3()
!j’!=i

converge uniformly on compact sets to f.

Stochastic Differential Equations We now consider the case when the finite di-
mensional process (Xt ) is a diffusion driven by a stochastic differential equation of
the type

a(Xt) dBt + b(Xd dt

...(5)
where a: : IRd ~ lRd2 and b : : lRd -t lRd are measurable functions and (Bt) _

, ...., Bt) is a d-dimensional standard Brownian motion. To state the next

proposition, we fix some notation. We define operators L( lRd -3 S’) and
L : : S’ -~ S’ given by :

- - Lr G..r ~ ~ij~ ~ > 
j i
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where h E JRd and 03C8 E S’ ; ;

L03C8 = 1 203A3  (03C303C3t)ij, 03C8 > ~2ij03C8 - 03A3  bi, 03C8 > ~i03C8
3 

i

Of course these operators are well defined only if ~i~ and bi are in S. In the

following proposition we assume this is the case. Below we denote by the Borel

sigma field on S’ generated by the weak topology.

Proposition 2.7 Let aij, bi, i, j = 1, ...d belong to S. Let (Xt) be the unique
solution of eqn.(5). Then satisfies the 5~ valued stochastic differential

equation
dY = A(~) dBt + dt

Yo = bx ....(6)

Further, is a valued Markov process.

Proof It follows easily from eqn (4) that (Jo) satisfies the SDE (6). To prove
the Markov property of (Jo) ? , we consider the subset E of S’ defined by
E = x E We consider the Borel sigma field on E generated by the weak
topology. Let I : : E --~ JRd be the natural Borel isomorphism = x. For an

element .4 of the Borel sigma field of S’ generated by the weak topology , let

A’ be the Borel subset of IRd given by A’ = i(A n E). Then the Markov property
of T~t (bo) follows from the Markov property of (Xt) and the following equalities :

~ 

= ~Xt E A’~ o

3. Local times and the occupation density
formula

Let (Xt) ) be a continuous semi-martingale, (L(t, x) )tO its local time process at x E

JR. (Lt )tO will denote the S’-valued induced local time process obtained in Lemma

2.1. In this section, we show how various transformations on the process (Xt) can

be expressed at the level of local times, by simple formulae using the occupation
density formula, rephrased in the language of tensor products of distributions.

Lemma 3.1. Let n be as in lemma 2.1, so that (Lt)t>o is an S’n(IR)-valued process.
Suppose is an valued locally bounded (measurable) process. Then
fo L(ds) hs is an ~hs ) valued continuous adapted process of finite
variation. Further if E > 0 and S(IR) , then

the distribution L(ds) ®hs hs) is given ’d t, a.s. by

 f, Tn,2n+~(t0 L(ds) ~hs hs) > = da t0  fa, hs > L(ds, a) ...(7)
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v ,f E and where fa (x) = f(a, x) a E IR , x E IRd. In particular, if

(I s) is an IRd valued measurable process then, d ta.s ,

®hs sYa - o YS) d  X >s b’t > 0 ...(8)

Proof : The process fot L(ds) ®hs hs is well defined (see remarks on stochastic
integration in Section 1) and is an 0hs valued continuous process of
finite variation. In the case when (hs) is left continuous and bounded, we have,

Tn,2n+~( t0 L(ds) ~hs hs) = lim(Ltnk+1^t - Ltnk^t) ~d htnk

where for each n, 0  ... oo, and tnk-1 |~ 0 as n ~ oo.

We recall that = where ~ denotes the completion of the
algebraic tensor product in the 7r - topology (see [30]). Let f == /i 0 /~ , /i ~ 
and f2 E S(IRd). Using the occupation density formula eqn. (7) is verified first for
f as above and (hs) simple; and then for (hs) left continuous and finally for
general (hs) by an application of the monotone class theorem. Since finite linear
combinations of functions of the form fl 0 f2 are dense, the result follows for
f E Eqn. (8) follows from (7) ) and the generalised occupation density
formula by taking hs = . Q

Remark 3.2. Lemma 3.1 can be viewed as a stochastic analogue of the Schwartz
Kernel theorem, which states that the space S’ (IRd+1) is isomorphic to the space

~ S’(IR)), , of continuous linear maps from to S’(IR) see [30].
In effect, the element of S’( IRd+1) viz. ®hs hS) is identified with
the element of ) ~ S’ ( IR) ) given by

f ~ S(IRd) ~ t0  f, hs > L(ds, .) ~ S’(IR).

Consider now the relationship between the local times Lt (X ) of a continuous semi-

martingale Xt = Xo + Mt + ~ and the local times Lt (M) of its martingale part
From the results in ~24~, [26] (p.218), taking Xo - 0 , ,

~t (" ) ~00 ~ - 
ti~0394n

where is a sequence of partitions of [0, t] and the limit is taken in probability.
Let (Lt(X))t~o and (Lt( M) )t>o denote the S~ - valued processes of finite variation

given by Lemma 2.1 applied to (Xt) and (Mt) respectively. Let E > 0 and
let ®hs -~ Proposition 3.3 below gives us the
relationship between these processes. To state it, we need some facts from the

theory of distributions. Let E( IRd) denote the linear space of functions with
the topology of uniform convergence of functions and their derivatives on compact
sets. Let denote its dual. It is well known (see (30~) that consists

of the tempered distributions with compact support. Let a : lR be the map
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y) = x + y. This induces a map, again denoted by Q --~ ~(I1~2) given
by 03C3 f (x, y) = f o y) = f (x + y). Clearly the map 03C3 is continuous. Let

~, --~ denote its transpose. Recall that Q’(S ® T) = S * T where
,S’, T E and * denotes convolution.

Proposition 3.3. Let (Xt), (Mt), (Lt(X)) and (Lt(M)) be as above. Then

t

d t, Lt(X ) = Q’ 0 ( / a. S.

0 
"

where the equality holds in S’(IR).

Proof. It is easy to see using Lemma 3. l, eqn. (7) that Tn,2n+E ( f o 
t 

®hs
has compact support for each t , almost surely. Hence if f E then

 f, 03C3’ o Tn,2n+~(t0 Lds(M) ~hs 03B4Xo+Vs) > =  

03C3f
, 

t0
03B4(Ms, Xo+Vs) d  M >s>

- / o  ~ f, s~M~, Xo+~~~ > d  ~~ >S

= t0 03C3f(Ms, Xo + Vs ) d  M >s
t

= / 0
= t0 f(Xs) d  X >s

t

-  f, / 0
-  f~ > o

Remark 3.4. Let be a sequence of partitions of ~0, t~ with ~~On~~
= supi | f,i - 1 |~ 0 as n ~ ~. The following computations show that the above
result is consistent with those obtained in ~24~ and ~26~ for point local times :

Lt(X) = 03C3’o Tn,2n+~( lim (Lti+1^t(M) - Lti^t(M)) ~hs 03B4Xo+Vti)

= (Lti+1^t(M) - Lti^t(M)) * 03B4Xo+Vti
= lim Xo+Vti(Lti+1^t(M) - Lti^t(M))

Note that for x E IR , the distribution T_xLt(M) is given by the locally integrable
function y ~ where are the point local times of (lVlt)t>o (See
comments preceding proposition 3.3).

Proposition 3.5. Suppose Xt = Nft + Nt where (Mt) and (Nt) are continuous

orthogonal martingales. Then d t, Lt(X) - ~’ 0 ~ bNa +

fot ~ ~n~~) a.s.

Proof. The proof of this proposition is the same as that of Proposition 3.3, using
the fact that  X >t =  M >t +  N >t. °
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Remark 3.6. . If Mt = Nlt +llild is the decomposition of a local martingale ( Mt ) into
the continuous and purely discontinuous parts, then we can show, as above, that

~/ I, ~t(i4) " U ~ ° ’ln,2n+e ( t 
t 

~ds (*4~) ©hs ’Md).b’t, Lt(M) _ ~~ 0 Tn,2n+E( 
o 

®hs 

We now consider the relationship between (Lt(X)) and (Lt(Y)) where (Xt) is
a continuous semi-martingale and (Yt) is given by It = dXs , where (hs) is
locally bounded previsible process. Let n be such that Lt(X) E s,~ and let

®hs ~ S’n(IR2). Let : IR2 ~ lR be the map y) = y.
This induces a map, again denoted by ~ ~(IR2) by 03C0f(x, y) -
f ° y) = f (y) , f E E(IR). Let ~’ : ~ ~ denote the transpose of
~r .

Proposition 3.’l. Let (Xt) , (hs) and (Y) be as above. Then b’ t , Lt(Y) _
?~’ 0 ) ®hs hssYs) a.S.

where h2s03B4Ys is the product of the distribution with the scalar 

Proof. Let t > 0 and f E ~(IR). Then a.s.,
t

 f, Lt(Y) > = / f (YS) d  Y >S
0

t

- % hsf (Ys) ~  X >S
0

- % YS) d  X >s
0

- / o hs ~f, > d  X >s
0

= t0  03C0f, 03B4Xs ~d h2s03B4Ys > d  X >s

-  ~f ~ Tn,2n+e( / ~hs hsSYs) >
0

t

-  f~ ~, ° Tn,2n+e( / ®hs > °
0

We next take up intersection local times. As mentioned in the introduction, this
has been studied by a number of authors. Using proposition 3.8, we show in the

example that follows that at the level of distributions, the double intersection local
time of two dimensional Brownian motion is an explicit functional (involving tensor
proclucts) of the local times of the marginal processes.
In the following we will write an element of IR4 as (x, x’, y, y’). Let a : IR4 -3 IR2

be the map a(x, ~’, y, y’) _ (x - y, ~’ - y’). Then a induces a map denoted

again by a, a -~ where for f E ,

x ~~ y~ y ’) = f ° x’a y~ ~J ~) = f (~ - ya x ~ - y ~)~
Let c~’ : ~ denote its transpose. Let (Xt) and (Y) be two
continuous semi-martingales and (Lt(X)) and (Lt(Y)) their local time processes
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given by Lemma 2.1, belonging to for some r~. . We shall denote by Tn,2n+E the
operator Tn,2n+E : ®~S S,~(~) -~ as well as the operator :

~ i, hs’~r’i ( ~) --~ ’~2n+e ( ~4 ) given by lemma 1.3 ( c ) . . 

Proposition 3.8.

a) d t, fot fot ~(Xg, yu) d  X >S d  Y >u = Lt(Y)) a.s.
where equality holds in 

b) If (XS’), (YS’) are arbitrary locally bounded processes then, in ~’(IR4) , b’t > 0,

t0 t0 03B4( Xs, X’s, Yu, Y’u) d  X >s d  Y >s
t t

= Tn,2n+~((t0 Lds(X)~hs03B4X’s)~hs(t0 Lds(Y)~hs03B4Y’s)) a.s.

c) If (XS’), (YS’) are as in b) then d t ,

t0 t0 03B4(Xs-Yu, X’s-Y’u) d  X >s d  Y >u

= ’1’ n,2n+E{( O 
t 

( ~ 
t 

a.s.

wher e the equality holds in ~’ ( IR2 ) .

Proof. a) This follows from the occupation density formula. If f E then

/ 
t 

t Yu) d  X >s d  Y >u = /  f (., Lt(X ) > d . Y >~
0 0 0

- dyLt (Y)  f (~, y)~ Lt(X) >

- / dy dxLt (Y)Lt (X ) f (x, y)
-  f ~ Lt(X) ®d Lt(Y) >
-  f ~ ) ®hs >

l~) Let f = f 1 ~ f 2 where f i E i =1, 2

t0 t0 f(Xs, X’s, Yu, Y’u) d  X >s d  Y >u

=  f1, Tn,2n+~( t0 Lds(X)~hs03B4X’s ) >   f2, Tn,2n+~( t0 Lds(Y)~hs03B4Y’s) >

t t

=  f1 ~ f2, Tn,2n+~(( t0 Lds(X ) ~hs 03B4X’s) ~hs ( t0 Lds(Y) ~hs 03B4Y’s)) >

Since finite linear combinations of functions of the form f 1 ~ f 2 are dense in

the result follows for all f E 

c) Let f E Using b) we have, ,
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 f, 03B1’ o Tn,2n+~ {(0t Lds(X) ~hs 03B4X’s) ~hs (0t Lds(Y) ~hs 03B4Y’s)} >
- Yu , d  X >s d  Y >u

= 0t0t f(Xs - Yu, X’s - Y’u) d  X >s d  Y >u
-  f ~ Jo 

t 
f0 

t 
d  X >s d  Y >u > . 

m

Example 3.9. We take X(s) _ (X;, a 2-dimensional Brownian motion,X(0) _
0. In [31], [15], it is shown that there exists an valued random vari-
able L(x) (the intersection local time) which is almost surely, continuous in x if
x ~ 0, such that for f ~ ~(IR2) ,

01 01 f(Xs - Xu) ds du = IR2 f(x)(x) dx a.s.

Hence in the sense of distributions a.s.

01 01 03B4Xs- Xu ds du = (.)

From Proposition 3.8c, with (Xs, - (Y,, X(s) , it follows that, L(.) is
determined by the local times of the independent Brownian motions (Xs ) and

( ~’s ) by the formula,

L(.) = 0 Lds(X1) ~hs 03B4X2s ~hs / o Ldu(X1) ~hs 03B4X2u} 0

Acknowledgment. The author would like to thank Professor K.R. Parthasarathy
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Note from the Redaction

A referee has pointed out the following reference, containing some independent
work, that was suggested by M. Motoo to T. Nakajima, on the same subject:

Nakajima, T.: A certain classs of distribution-valued additive functionals I - for
the case of Brownian motion. J. Math. Kyoto Univ., to appear.


