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PRINCIPAL VALUES OF THE INTEGRAL FUNCTIONALS

OF BROWNIAN MOTION: EXISTENCE, CONTINUITY

AND AN EXTENSION OF ITÔ’S FORMULA

A.S. Cherny*

Abstract. Let B be a one-dimensional Brownian motion and / : : )» -~ l~
be a Borel function that is locally integrable on 1~ B ~0~ . We present necessary
and sufficient conditions (in terms of the function f ) for the existence of the
limit 

~o

in probability and almost surely. This limit (if it exists) can be called the
principal value of the integral f~ ds.

The obtained results are applied to give an extension of Ito’s formula with
the principal value as the covariation term.

We also show that the principal value defines a continuous additive func-
tional of zero energy.

Key words and phrases. Principal values, extensions of Ito’s formula,
continuous additive functionals of a Brownian motion, processes of zero energy,
Brownian local times, Bessel processes, Bessel Bridges.

1 Introduction

1. Existence of the principal values. Let T E R-(- and (Bt)t>o be a Brownian
motion started at Bo G R. Suppose that f : )l~ -~ R is a locally integrable on Il~

function (notation: f G Llo~(1~) ), i.e.
M

~M > 0, -M|f(x)|dx  ~.

It follows from the properties of the Brownian local times (see Section 2 below) that
in this case we have

T0|f(Bs)|ds  ~ a.s.,

and therefore, there exists almost surely a Lebesgue integral

T0f(Bs)ds. (1.1)
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Suppose now that f is not locally integrable. Then, by the Engelbert-Schmidt
zero-one law (see [3]), we have

P{T0|f(Bs)|ds = ~} > 0.
So, the Lebesgue integral (1.1) does not exist. However, in some special cases there
exists a principal value of integral (1.1). Take, for example, f( x) = sgn x with

~y > -3/2. Then, due to the properties of the Brownian local times (see the book
[9; Problem 1, p. 72] by K. Ito and H.P. McKean for the case I = -1 and the paper
[1] by Ph. Biane and M. Yor for the case I > -3/2 ), there exists almost surely a limit

v.p. 

T 

f(Bs) ds := lim 
T 

f( Bs) I(|Bs| > é) ds. (1.2)

The question arises: for which functions does limit (1.2) exist? We assume from
the outset that f E ~0~) (i.e. condition (3.1) below is satisfied). So, the

integrals in the right-hand side of (1.2) are well defined. We present in Section 3 the
necessary and sufficient conditions for the existence of limit (1.2) in probability and
almost surely (see Theorems 3.1 and 3.2). The conditions are given in nonrandom

terms, i.e. in terms of the function f . . We also present an example of the function f
for which limit (1.2) exists in probability but does not exist almost surely.

The principal values of the form (1.2) are closely connected with various areas of
the stochastic analysis. In particular, they are directly related to the extensions of Ito’s
formula as well as to the continuous zero-energy additive functionals of a Brownian

motion. Connections between the principal values and other topics are described in
the paper [21] by T. Yamada. The distributional properties of the principal values for
the functions f of some special form are discussed in the book [25; Ch. 10] by M. Yor.
Let us also mention the paper [8] by Y. Hu, Z. Shi and the paper [7] by Y. Hu, where
various laws of the iterated logarithm are derived for the principal value (1.2) with
f(x) =1/x.

2. An extension of Ito’s formula. We prove in Section 4 the following extension
of Ito’s formula (see Theorem 4.1): if p is absolutely continuous on is absolutely
continuous on ~0~ and limit (1.2) exists in probability for f = ~", then

p(Bt) = dBs + 1 2 + 1 2 ds, ( 1.3 )

where a is a constant (specified in Theorem 4.1 ) and L is the local time of B . .
There exist several other extensions of Ito’s formula: the Ito-Tanaka-Meyer formula

(see, for example, [18; Ch. VI, (1.5)]), the Bouleau-Yor formula (see [2], [23]) and the
Follmer-Protter-Shiryaev formula (see [5]). All these extensions differ in the class of

the functions p to which they can be applied and also in the form of the covariation
term. In Section 4, we cite the precise formulations of the above-mentioned extensions
and show the relation between these extensions and formula (1.3) (see Figure 2 in
Section 4).

We also present an example which shows that formula (1.3) could be useful in the
theory of the optimal stopping (see Example 4.2).
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The comparison of (1.3) and the Bouleau-Yor formula yields a representation of
a principal value as an integral with respect to the local time (see Corollary 4.5). The
comparison of (1.3) and the Follmer-Protter-Shiryaev formula yields a representation
of a principal value as a quadratic covariation (see Corollary 4.4).

3. Properties of the principal values. Using the above extension of Ito’s
formula, we prove in Section 5 that the process v.p. fo f(Bs) ds (if limit (1.2) exists
in probability) has a continuous "in t" version (see Theorem 5.1).

We also prove that this process is an additive functional of a Brownian motion

and it has zero energy (see Theorems 5.3, 5.5).
The continuous additive functionals of zero energy are well studied (see, for exam-

ple, the book [6; Ch. 5] by M. Fukushima, Y. Oshima and M. Takeda). In particular,
the paper [16] by Y. Oshima and T. Yamada presents a complete characterization of
the continuous zero-energy additive functionals of a Brownian motion.

2 Basic Definitions and Facts

This section contains the known definitions and facts that will be used in the subse-

quent reasoning.

1. Local times. As above, T E I~-(- and is a Brownian motion started at

Bo E R. There exists a continuous process called the local time of B, such
that, for any locally integrable function h, 

T0h(Bs)ds = RLxTh(x) dx a.s. (2.1)

(see [18; Ch. VI, §1]).
As stated in the following proposition, the local time of a Brownian motion is a

semimartingale.

Proposition 2.1. There exist a filtration and a -adapted process
such that

a.s.

and the process

LxT - x-~03B2ydy

is a -local martingale with the quadratic variation 4LT dy . Moreover, ~ is

almost surely continuous at x = 0. .

For the proof, see [11; Theoreme 11.1.1]. .

Proposition 2.2. Set ST = sups« Bs , IT = infsT Bs. . Then

E (IT, ST), LxT > 0} = 1,
(IT, ST), LxT = 0} = 1.
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For the proof, see [18; Ch. VI, §2~. .

Proposition 2.3. Let a E 1~ . The r.v. LT has the same distribution as

(5’T - Bo!) V 0 , where 5’r = 

For a = Bo, this statement follows from P. Levy’s theorem (see [18; Ch. VI, (2.3)]).
For a ~ Bo, one should apply the same reasoning as in the proof of P. Levy’s theorem

(its proof is based on the Skorokhod lemma) to get the desired result.

2. Bessel processes. Let 03B4 ~ 0, a > 0. The solution of the stochastic differential

equation

Yt = a + 03B4t + 2 t0|Ys|dWs (2.2)

is called the square of a b -dimensional Bessel process started at a . (Equation (2.2) is
known to have a unique solution).

Notation. The square of a 6-dimensional Bessel process started at a will be

designated as BESQð (a). The distribution of a on [0, t] will be denoted

as (it is a measure on C(~0, t~) ).
Let [c, d] c 1~. By a on [c, d] we will mean the process obtained from

a BESQ~(a) on [0, d - c] by the shift t M t + c. D

Remark. If 03B4 ~ N, then coincides with the distribution of the process
where is a 6-dimensional Brownian motion started at a point

Wo E IR03B4 with = a (this is a consequence of Itô’s formula applied to ~W~2). 0

Proposition 2.4. Suppose that b, r~ E ~2, oo) and a > 0 . Then, for any t > 0,

Q03B4,ta ~ Q~,ta.

The proof of this statement can be found in the papers [22], [24], where the precise
form of the density is also given. Another proof of the above Proposition follows from
the general theory of change of measure (see [10; Ch. IV, §4b]).

3. Bessel Bridges. Let be the coordinate process on C((0, t~), i.e.

X, : ; C(~O,t~) 3 x ~ x(s). We denote by (b > 0) the regular conditional distri-
bution of with respect to In other words, for any Borel sets A C 
and D C ~0, oo ) ,

Q03B4,ta(A~{Xt ~ D}) = D Q03B4,ta,b(A) (db),

where p = There exists a unique modification of such that the map

(a, b) ~ is continuous in the weak topology on probability measures (see [17],
[18; Ch. XI, §3]). In what follows, we will always choose such a modification of 

Definition 2.5. The measure is called the law of the 03B4-dimensional Squared
Bessel Bridge from a to b over ~0, t] 1
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Proposition 2.6. Let be a process such that

0  s  t) = 

Then

:S s  t) = 

For the proof, see [4]. .

Proposition 2.7. Suppose that b > 2, a > 0, b > 0 . Fix 0 _ s  t . Then the
restrictions of and to C(~0, s~) are equivalent.

For the proof, see [4].

3 Existence of the Principal Values
1. The results. We will investigate here the existence of limit (1.2) in probability and
almost surely. The integrals in the right-hand side of (1.2) are the usual Lebesgue
integrals. Using equality (2.1) and Proposition 2.2, one can easily note that these
integrals exist almost surely if and only if

~0  ~  M  ~, R|f(x)|I(~ ~ |x| ~ M)dx  ~. (3.1)

Theorem 3.1. Suppose that f E 1 {0}), i.e. f satisfies condition (3.1).
Limit (1.2) exists in probability if and only if the following conditions are satisfied:

(i) there exists a limit

lim 1-1f(x)I(|x| > ~)dx; (3.2)

(ii) for the function F+(x) = 1xf(y) dy, one has
/’i

0 F2+(x)dx  ~, ~F2+(~) 0 0; (3.3)

(iii) for the function F (x) = x-1 f(y) dy, one has
0

/ y~ F2(x) dx  oo, --~ 0. (3.4)7-1 ~10

Theorem 3.2. Suppose that f E B ~0}) . . Limit (1.2) exists almost surely
if and only if the following conditions are satisfied:

(i) there exists limit (3.2);
(ii) the function F+(x) = 1x f(y) dy satisfies condition (3.3), and, for any a > 0,

10 1 xexp{-03B1x sup0y~xy2F2+(y)} dx  ~; (3.5)

(iii) the function F (x) _ x-1 f(y) dy satisfies condition (3.4), and, for any a > 0,

0-1
1 |x|exp{

03B1|x| supx~y0y2F2-(y) } dx  oo. (3.6)
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Remarks. (i) The conditions for the existence of limit (1.2) depend neither on T
nor on Bo.

(ii) Let us consider the function f of the form: f(x) If 03B3 > -3/2,
then f satisfies the conditions of Theorem 3.2, and thus, limit (1.2) exists almost
surely. -3/2 , then f does not satisfy conditions (ii) and (iii) of Theorem 3.1,
and thus, limit (1.2) in probability does not exist.

(iii) Condition (3.5) is equivalent to the following one: 0, where W

is a Brownian motion started at zero (see the paper [13; Proposition 15] by T. Jeulin
and M. Yor). In other words, for any a > 0, the function is an upper function
of a Brownian motion.

(iv) As pointed out by M. Yor (in a personal discussion), condition (ii) of Theo-
rem 3.1 on its own is equivalent to the existence in probability of the limit

1

limg 1~ f(x)(LxT - L0T)dx,

where L is the local time of B . []

Theorem 3.1 leads to

Corollary 3.3. Suppose that f( x) = g(x) x , where g E i. e.

~M > 0, M-M(g(x))2dx  oo.

Then limit (1.2) exists in probability if and only if there exists a limit

lim 1-1 g(x) x I(|x| > ~)dx.

Proof. It follows from Hardy’s L2-inequality (see, for example, [12; Lemme 7])
that, for 

g(x) = 1x g(y) y dy,

we have

10 (Hg(x)) 2dx ~ 2 10 (g(xx)2dx  oo,

~(g(~))2  0.

Thus, f satisfies condition (ii) of Theorem 3.1. In a similar way, we verify that f
satisfies condition (iii) of this theorem. Hence, limit (1.2) exists in probability if and
only if f satisfies condition (i) of Theorem 3.1. L]

2. The proofs. Theorems 3.1 and 3.2 follow from Lemmas 3.4-3.8 given below.
The scheme of the proof is illustrated in Figure 1.
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Figure 1. The scheme of the proof of Theorems 3.1, 3.2

Here, is a Brownian motion on ~0, oo) started at Bo ;
(Yt)tE[-l,l] BESQ2(0) on l

Brownian motion on [-1, l~ with Wo = 0. .
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Lemma 3.4. Let be a BESQ2(0) on ~-1,1J . . Then limit (1.2) exists

in probability (resp: almost surely) if and only if the limit

1

lim f (t) Y I ( t > ~) dt (3.7)

exists in probability ( resp: almost surely).
Proof. Fix bE (0,1). Set

Ut = LtT, -b ~ t ~ b,

Mt = LtT - t-b03B2sds, -b ~ t ~ b,

where L is the local time of Band 03B2 is given by Proposition 2.1. Set

T = inf{ t > -b Ut ~ or ~it ~ 
Ut = b V Ut^, t > -b.

We take here inf Ø = b. It follows from the choice of T that the r.v.

is bounded. Let us consider the measure Q defined by

dQ dP = exp{- T b ( 2 - dMs _ 1_ 2 1 -a T (2 - .

Applying Girsanov’s theorem (and keeping Proposition 2.1 in mind), we can write

Vt = V0 + t^0 2 ds + 2 t0 Vs dWs,
where (Wt)t>-b is a Q)-local martingale with (W)t = b+tnT (the filtration (Gt)
is given by Proposition 2.1). There exist an enlargement (S~’, (~t), Q’) of (0, (~t), Q)
and a (~t, Q’)-local martingale (Wt)t>-b such that (W)t - b + t and Wt - Wt t
for t  T. Without the loss of generality, we may assume that S~’ = H, ~t = ~t,
Q’ = Q. The general theory of stochastic differential equations (see [18; Ch. IX,
(3.5)]) guarantees that there exists a unique solution of the equation

Vt = V0 + t0 2 ds + 2 t0 |Vs|dWs. (3.8)

Moreover, V is positive. Set a = T A inf{t > -b : Vt ~ [b, 1/b]}. For any t > -b, we
have

E(Vt^03C3 - Vt^03C3)2 = 4 t^03C30 E(Vs - Vs) 2 ds ~ 1 b t0 E(Vs^03C3 - Vs^03C3)2ds.

Applying Gronwall’s lemma, we deduce that ~ = Vt for t  ~ . This leads to the

equality a = T. As a result, V = Vt for t  T . Thus, on the set ~T = b~ we have:
Vt E [-b, b], V = vt = Ut .
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The existence of limit (1.2) in probability is equivalent to the following condition:
/or am/ sequence (an,bn) such that 0  bn and bn ~ 0, one has

1-1fn(t)UtdtP n~~0, (3.9)

where fn(t) = f(t)I(an ~ |t| ~ bn), Ut = Zy. (We keep formula (2.1) in mind).
Fix a sequence with 0  an  bn and bn ~ 0. Let Q", V and n denote

the corresponding objects Q, V and r constructed for ~ instead of 6. Set

= > 6.), = > 6.).
It follows from Proposition 2.2 that, for almost every ~ in the set = 0}, one has:
B6 = ~(03C9) > 0 : = 0 on (-~,~). Thus,

1-1fn(t)Utdt  0 ~ 1-1fn(t)Utdtpn n~~U. (3.10)y-l 1 
fn(t) Ut dt ~-~-oo 0 {=:::::> 

y_~ 
fn(t) Ut dt ~~.oo O. ~ /

(The notation ~ -~ ~ means that > ~} -~ Q for any ~ > 0). Proposi-
tion 2.3, together with the continuity of /~ at zero, guarantees that

n{n = bn} ~ 1,
and therefore,

n{~t ~ [-bn,bn], Vnt = Ut} ~ 1.

Moreover, P" - Q" and 1. Thus,

1-1fn(t)Ut dt  0 ~ 1-1fn(t)Vnt dt  0 ~ 1-1fn(t)Vnt dt  0.
(3.11)

Now, let R" = -~  ~  Q"). The general theory of stochastic
differential equations (see [14; (18.10)]), together with (3.8), guarantees that

.

where R~ is the distribution of a on and

n = Law(Vn-bn |n) = Law(Vn-bn|n) = Law(bn V 
(3.12)

= Law(bn V + B0|)|ST > bn + !6. + Po!).
(We use here Proposition 2.3).

Let Y be a BESQ’(O) on [-1,1] and Rn = Law(Yt; -bn  t ~ 6.). Then

/ ~00 
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where R~ is the same as above and ~’~ = We have = 

where (Wt)tO is a two-dimensional Brownian motion started at zero (see the Remark
before Proposition 2.4). This, combined with the explicit form of given by (3.12),
shows that

0 ~ -~ 0

for any sequence (An) of Borel sets. Consequently, 
-

Rn(Dn) ~ 0 ~ -~ 0

for any sequence (Dn) of Borel sets. Combining this with (3.10), (3.11), we deduce
that (3.9) is equivalent to the condition

1-1fn(t)Ytdt  0.
Thus, limit (1.2) exists in probability if and only if limit (3.7) exists in probability.

The second part of the Lemma (that deals with the existence of (1.2) and (3.7)
almost surely) is proved in a similar way. 0

Lemma 3.5. Let be a BESQ2(0) on [-1,1] and be a Brow-

nian motion on [-1, 1] with Wo = 0 (i.e. and are independent
Brownian motions started at zero) . Then limit (3.7) exists in probability ( resp: almost
surely) if and only if the limits

i

lim 1-1f(t)I(|t| > ~) dt, (3.13)

lim1-1f(t)WtI(|t| > ~) dt, (3.14)

lim 1-1f(t) W2tI(|t | > ~) dt (3.15)

exist in probability ( resp: almost surely) .

Proof. Suppose that limit (3.7) exists in probability. Take a sequence (an,bn)
such that 0  an  bn and bn -~ 0. Set fn(t) = f(t) I(an  ~t~ I  bn), P =
Law(x; -1  t  1) and let denote the coordinate process on C(~-1, 1]),
i.e. Xt : C(~-l, 1]) ~ x ~ x(t). We have

1

1-1fn(t) Xt dt P n~~ 0. (3.16)

Let Pa (a > 0) be a version of the regular conditional distribution of P with
respect to the a-field a(Xo), i.e. for any Borel sets A C C([-l, 1]) and D C (0, oo),

P(A ~ {X0 ~ D}) = DPa(A) (da),

where , = Law(Xo)P). The following properties hold for p-almost every a :

(A) Law(Xt; -1  t  0 Pa) is the distribution of the two-dimensional Squared
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Bessel Bridge from 0 to x over [20141,0];
(B) 0 ~ t  1 is the distribution of a BESQ2(a) on [0,1];
(C) the processes and are Pa-independent. (Properties (B), (C)
follow from the Markov property of ~).

In view of (3.16), there exist a > 0 and a subsequence such that conditions
(A)-(C) are satisfied and

/ (3.17)y-l 1 A:-).oo ’ 

_ 

Let (~)~[o,i], be two independent on [0,1]; let 
(2t)t~[0,1] be two independent BESQ3(a) on [0,1]. Set

Zat = {Y1-t if t ~ [-1,0], at = {1-t if t ~ [-1,0],
Y2t if t ~ [0,1], 2t if t ~ [0,1],

Q~ = -1  ~  1), Q~ = -1  ~  1).

In view of Propositions 2.4, 2.6 and 2.7, the restrictions of Q~ and Q~ to the
03C3-field 03C3(Xt; -1/2 ~ t  1) are equivalent (we recall that conditions (A)-(C) are
satisfied for the chosen a). Therefore, (3.17) implies that

1-1 fnk(t)Xtdt  0, 1-1fnk(t)Xt dt  0. (3.18)

The measure Q~ coincides with the distribution of the process

~ = (~ + W + (~)’ + M’, (3.19)
where (z = 1,2,3) are three independent Brownian motions on [-1,1]
with Wi0 = 0 (see the Remark before Proposition 2.4). Similarly, Qa coincides with
the distribution of the process

H=(~+M~+(M~,
where (; = 1,2) are the same as in (3.19). Thus, (3.18) is equivalent to:

1-1 fnk(t)[(a + W1t)2 + (W2t)2 + (W3t)2] dt  0,

1-1 fnk(t) [(a + W1t)2 + (W2t)2] dt  0.

These conditions are, in turn, equivalent to the following ones:

1-1fnk(t)(a+2aWt)dt P k~~ 0, (3.20)

1-1fnk(t)(Wt)2 dt P k~~ 0. (3.21)
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The integrals in (3.20) are Gaussian r.v. (see [15; Ch. ’l, ~~~). For the Gaussian r.v.,
the convergence in probability implies the L2-convergence. Thus, (3.20) is equivalent
to:

1

1-1fnk (t) dt k~~ 0, (3.22)

1-1fnk (t) Wt dt P k~~ 0. (3.23)

So, we have proved that, from any sequence (an, bn) such that 0  an  bn and

bn -~ 0, one can extract a subsequence (nk) for which conditions (3.22), (3.23) and

(3.21) are satisfied. This means that limits (3.13)-(3.15) exist in probability.
The reverse implication as well as the statement concerning the existence of the

limits almost surely are proved in a similar way. D

Lemma 3.6. Limit (3.14) exists in probability (resp: almost surely) if and only if
the limits

i

lim f(t) Wt ~t, (3.24)/ ~ 
-

lim f(t) Wt dt (3.2~)
$0 - i

exist in probability (resp: almost surely) .
Proof . ~Ve should prove the "only if’ assertion. Suppose that limit (3.14) exists

in probability. Set
- -- Wt if t E [a,1],
Wt = - Wt if t E [-1, 0].

The distributions of and coincide, and therefore, there exists

a limit in probability
1

lim f(t) Wt 1 (~t > ~) dt.
$0 - 1

Furthermore,
1 1 

.~. 

1

1-1f(t)WtI(|t| > ~)dt + 1-1f(t)tI(|t| > ~)dt = 2 1~ f(t) Wt dt.

This completes the proof. D

Lemma 3.7. Limit (3.24) exists in probability (resp: almost surely) if and only if
condition (it) of Theorem 3.1 (resp: condition (it) of Theorem 3.2) is satisfied.

Proof. Suppose that limit (3.24) exists in probability. As the integrals in (3.24)
are Gaussian r.v. (see [15; Ch. ’l, §5] ), this limit also exists in L2 . Therefore, the

expression

E(1~ f(t)Wtdt)2 = 1~1~ s ^ t f(s)f(t) dsdt = 21~ tf(t)F+(t) dt
_ - / t -(F+(t)) dt = + / F+(t) dtg E
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converges to a limit as é ~ 0. Consequently,

10 F2+(t) dt  ~ (3.26)

and there exists Condition (3.26) implies that this limit is equal to
zero.

Now, suppose that condition (ii) of Theorem 3.1 is satisfied. For any sequence

(an bn) such that 0  an  bn and bn ~ 0, we have

E(bnanf(t) Wt dt)2 = (F+(an) - F+(bn))2an + bnan(F+(x) - F+(bn))2dx. (3.27)

Condition (3.3) guarantees that the right-hand side of (3.27) tends to zero as n - oo .
Since the sequence (an, bn) was chosen arbitrarily, this means that limit (3.24) exists
in probability.

Suppose that limit (3.24) exists almost surely. Then this limit also exists in prob-
ability, and, by the above reasoning, condition (3.3) is satisfied. By Ito’s formula,

1~ f(t) Wt dt = -1~ Wt dF+(t) = W~F+(~) + 1~ F+(t) dWt. (3.28)

Set t = Wi-t - Wl, F+(t) = F+(1 - t). . The process is a Brownian

motion, and we have

1~ F+(t) dWt = - 1-~0 +(t) dt.
As fo F+(t) dt  ~, we get

F+(t) dWt.
o 0

This, combined with (3.28), shows that there exists almost surely lim~~0 WEF+(e) . By
Blumenthal’s zero-one law, this limit is equal to a constant. The symmetry property
of a Brownian motion guarantees that this limit equals zero. According to a result
of T. Jeulin and M. Yor (see [13; Proposition 15]), the condition -~ 0 is

E~o

equivalent to (3.5).
The last implication (stating that condition (ii) of Theorem 3.2 guarantees the

existence of limit (1.2) almost surely) is proved in a similar way. Q

Lemma 3.8. If conditions (ii) and (iii) of Theorem 3.1 (resp: conditions (ii) and
(iii) of Theorem 3.2) are satisfied, then limit (3.15) exists in probability (resp: almost
surely) .

Proof. Suppose that conditions (ii) and (iii) of Theorem 3.1 are satisfied. By Ito’s
formula, we have

1~ f(t) W2t dt = -1~ W2t dF+(t) = W2~F+(~) + 21~ F+(t) Wt dWt + 1~ F+(t) dt.
(3.29)
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In view of the inequality dt  oo, we deduce that the last term in (3.29)
converges to a limit as é --~ 0. _

Set Wt = W1-t, F+(t) = F+(l - t). The process is a semimartingale
with the decomposition

t = 0 - t0Ws 1 - s ds + Ut,
where U is a Brownian motion (see [18; Ch. IV, (3.18)]). We have

1~ F+(t) Wt dWt = -1-~0 +(t)tdt = 1-~0+(t)2t 1 - t dt - 1-~0 +(t)t dUt.

(3.30)

In view of the properties

E10|+(t)2t 1-t|dt = 10|+(t)|dt  ~,
E 10 (+(t) t)2 dt ~ 10 2+(t) dt  ~,

we deduce that the expression in (3.30) converges almost surely as é ~ 0.
Furthermore,

E|W2~F+(~)| = ~|F+(~)|  0,

and hence, the expression in (3.29) converges in probability as e ~ 0. Applying the
same reasoning to the integral -~-1 f (t) W2 dt, we deduce that limit (3.15) exists in
probability.

Suppose now that conditions (ii) and (iii) of Theorem 3.2 are satisfied. Condi-

tion (3.5) means that ~ 0 that leads to We F+(~) ~ 0. Thus, limit (3.29)

exists almost surely. Applying the same reasoning to f (t) W 2 dt, we get the exis-
tence of (3.15) almost surely. ~

3. Comparison of Theorems 3.1 and 3.2. If limit (1.2) exists almost surely,
then it exists in probability. The following example shows that the reverse is not true.

Example 3.9. We take a sequence 1 = b1 > al > b2 > a2 ... with bn > 0,

bn -~ 0 that satisfies some additional properties to be specified below. Set F(t) =
(t ln2 l~t)-1~2 if t does not belong to any of the intervals (an, bn), and set F(t) _
(t In ln l~t)-1~2 if t is the middle of an interval (an, bn). . We extend F to the remain-

ing points in (0,1) by linearity. Obviously, 0. We can take points bn

sufficiently close to each other so that condition (3.5) is violated. We can take each

an sufficiently close to bn so that fo F2(t) dt  ~.

Set
0 if t ~ (-1,1),

f(t) = {F’(t) if t ~ (0,1),
-F’(-t) if t ~ (-1,0).

Then f satisfies the conditions of Theorem 3.1 while it does not satisfy condi-

tions (3.5), (3.6) of Theorem 3.2. In other words, for this function f, limit (1.2)
exists in probability but does not exist almost surely. 0
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The function f constructed in the above example is highly oscillating. The theo-
rem below shows that, for rather regular functions f, the existence of limit (1.2) in
probability implies its existence almost surely.

Theorem 3.10. Suppose that limit (1.2) exists in probability. Moreover, let us
assume that the function increases on (0, ~) and the function de-
creases on (-b, 0) for some ~ > 0 (the functions F+ and F are defined in Theo-
rem 3.1). Then limit (1.2) exists almost surely.

Proof. By Theorem 3.1, condition (3.3) is satisfied. Fix a > 0. As -~ 0,
e~.0

we have

1 xexp {-03B1x sup0y~xy2F2+(y) } = F2+(x) xF2+(x)exp { -03B1 xF2+(x) } ~ F2+(x)

for sufficiently small x . Keeping (3.3) in mind, we deduce that (3.5) is satisfied.

Applying the same reasoning to F , we get the result. D

4 An Extension of Ito’s Formula

1. Ito’s formula and its known extensions. Recall that (Bt)t>_o denotes a
Brownian motion started at Bo E R.

Ito’s formula states that if c~ E then

= + / o + 2 1 0 (4.1)

The Ito-Tanaka-Meyer formula (see, for example, [18; Ch. VI, (1.5)]) states that
if c~’ is a function of bounded variation, then

03C6(Bt) = 03C6(B0) + t003C6’(Bs) dBs + 1 2RLxt03C6"(dx) , (4.2)

where L is the local time of Band is defined as a signed measure on R (it is

finite on compact intervals).
N. Bouleau and M. Yor proved in [2] that if p’ is locally bounded, then

+ o (4.3) )

where R03C6’(x) dxLxt is the integral with respect to the local time (its precise definition
is given in [2]).

H. Follmer, Ph. Protter and A.N. Shiryaev gave in [5] the following extension of
Ito’s formula. Suppose that p’ E i.e.

~M > 0, M-M(03C6’(x))2dx  ~.

Then, for any t > 0 and any sequence = 1,2... of finite partitions of [0, t]
with tk) 0, there exists a limit in probability

[03C6’(B), B]t = lim (03C6’(Btnk+1) - 03C6’(Btnk))(Btnk+1 - Btnk)
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called the quadratic covariation of 03C6’(B) and B. Furthermore,

Bt - Bo + t 
t 

’ BS dBs + 1 ’ B , B t. 4.4~( ) ~( ) 
° 
~ ( ) 2 f~ ( ) J ( )

2. An extension based on the principal values. We present in this paper
the following extension of Itô’s formula.

Theorem 4.1. Let 03C6 be an absolutely continuous on R function that 03C6’ is

absolutely continuous on R 1 {0}. Suppose that

(i) there exists a limit a = cp’(-~));
(ii) 4~’ E ~

(iii) x(03C6’(x))2 0.

Then

03C6(Bt) = 03C6(B0) + t003C6’(Bs) dBs + 1 2 03B1L0t + 1 2 v.p. t0 03C6"(Bs) ds, (4.5)
0 0

where L is the local time of B. .

Remark. Obviously, the assumptions of Theorem 4.1 can be reformulated as fol-
lows: 03C6 is absolutely continuous on R, 03C6’ is absolutely continuous on R B {0} and
limit (1.2) exists in probability for f = c~". . 0

Proof of Theorem 4.1. Take n E ~1 and set

_ ~l,(x) > 1I n)~

c~’(x) if ~x~ > 
= c~’(l~n) if 0  x  

c~’(-l~n) if -1~n  ~  0,

03C6n(x) = 03C6(0) + x0 Fn(y) dy,

CYn = Fn(1l?2) - Fn(-1ln).

Applying formula (4.2) (and keeping Proposition 2.1 in mind) , we get

03C6n(Bt) = 03C6n(B0) + t0Fn(Bs) dBs + 1 2 03B1n L0t + 1 2 t0fn(Bs) ds. (4.6)
0 0

Condition (ii) guarantees that, for any M > 0,
M

- c~’(x))2 d~ -~ 0. 4.’l/ ~ 
Consequently, for any M > 0,

E t0(Fn(Bs) - 03C6’(Bs))2 I(|Bs| ~ M) ds (= M-M (Fn(x) - 03C6’(x))2 ELxt dx) 0.
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(We use Proposition 2.3 to estimate ELt ). This leads to

/ dBs ~ / dBs.
Jo 7o

Property (4.7) implies that the sequence (pn) converges uniformly to rp. Condi-
tion (i) means that an --~ a. Finally, Theorem 3.1 shows that

/ ds --~ v.p. / ds.
0 n-+oo Jo

Passing to the limit in (4.6), we get (4.5). D

Remark. Suppose that ~o satisfies the conditions of Theorem 4.1. Set ~(.r) =
(~(~)-t-~.r~, where Then ~ satisfies the conditions of Theorem 4.1,
and

~’(x) _ +,~I(x > 0)~ ~"(x) - 

Combining formula (4.5) with the equality

03B2B+t = 03B2B+0 + t003B2I(Bs > 0) dBs + 1 203B2L0t

(this equality is a particular case of (4.2)), we get

03C8(Bt) = 03C8(B0) + t003C8’(Bs) dBs + 1 2(03B1 + 03B2)L0t + 1 2v.p.t0 03C8"(Bs) ds.

This shows that the term involving L° in (4.5) is essential. On the other hand, one can
get rid of this term by adding a function of the form ~x+ to the original function rp. D

3. Comparison of different extensions. The Ito-Tanaka-Meyer formula (4.2)
is more general than Ito’s formula (4.1) in the sense that the class of functions to
which it can be applied is greater than the class of functions to which Ito’s formula
can be applied. The Bouleau-Yor formula (4.3) is, in turn, more general than the
Ito-Tanaka-Meyer formula (4.2) while the Follmer-Protter-Shiryaev formula (4.4) is
the most general one.

The place of (4.5) in this hierarchy is between Ito’s formula and the formula of
Follmer-Protter-Shiryaev. The generality of (4.5) cannot be compared with the gen-
erality of formulas (4.2) and (4.3). Figure 2 illustrates the relation between different
extensions of Ito’s formula.

Formula (4.5) is useful in the case where a function c~ "behaves well everywhere
except for one point". It is illustrated by the following examples.

Example 4.2. Suppose that c~ E C1(IR) n ~0~). Such functions often
arise in connection with the smooth fit condition in the theory of the optimal stop-
ping (see [19], [20; Ch. VIII, 2, §2a]). Obviously, formula (4.5) is applicable to such
functions (/? (note that a = 0 in this case).

On the other hand, Ito’s formula and the Ito-Tanaka-Meyer formula may not be
applicable Indeed, suppose that 03C6’ has unbounded variation in any neighbor-
hood of zero. Then c~" ~ and the integrals

t003C6"(Bs) ds, R03C6"(x)Lxt dx

are not defined (this is easily seen from equality (2.1) and Proposition 2.2). 0
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Figure 2. The relation between different extensions of Ito’s formula

Each extension of Ito’s formula is represented by a box. The arrows indicate
the scope of generality of different extensions. The centre line in each box
shows the class of functions to which the corresponding extension can be
applied. The lower line in each box shows the form of the covariation term
for the corresponding extension.
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Example 4.3. Take c~(~) _ with 1~2  ~y  1. Then formula (4.5)
is applicable to 03C6 while neither the Ito-Tanaka-Meyer formula nor the Bouleau-Yor
formula can be applied to c~ . 0

The comparison of different extensions of Ito’s formula allows us to give several
representations of the principal value.

Corollary 4.4. Suppose that f satisfies the conditions of Theorem 3.1. Then
there exists a primitive F of the function f (defined separately on (a, oo) and on
(-oo, a) ) such that

lim(F(~) - F(-~)) = 0. (4.8)

For this F, we have

v.p.t0 f(Bs) ds = [F(B), B]t. (4.9)

Proof. The existence of a primitive F satisfying (4.8) follows from condition (i)
of Theorem 3.1. Let 03C6 be a primitive of F. Combining formulas (4.4) and (4.5), we
get the desired result. Q

Corollary 4.5. Suppose that f satisfies the conditions of Theorem ~.1. Let F be
a primitive of the function f that satisfies condition (4.8). . Suppose that F is locally
bounded. Then 

v.p.t0 f(Bs)ds = - RF(x)dxLxt.

Proof. This statement follows from equalities (4.3) and (4.5) taken together. D

5 Properties of the Principal Values

Throughout this section, we assume that f satisfies the conditions of Theorem 3.1,
i.e. for each t 2 0, there exists

v.p.t0 f(Bs) ds. (5.1)

We will study here the properties of this process "in t".

1. Continuity. There exists an absolutely continuous on R function (/? such that

p’ is absolutely continuous {0~ and p" = f. Applying Theorem 4.1, we get
the following statement.

Theorem 5.1. Process (5.1) has a continuous version.

2. Energy. If the function f is not locally integrable, then process (5.1) does
not have finite variation. However, in any case it is a process of zero energy.
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Definition 5.2. A process has zero energy if for any t > 0 and any

sequence = 1, 2 ... of finite partitions of [0, t] with tk) 0,

one has

Z~~~+i ~7 
k

Theorem 5.3. Process (5.1) has zero energy.
Proof. It is shown in [5; (3.45)] that, for F E the quadratic covariation

~F(B), B] is a process of zero energy. Taking (4.9) into account, we get the result. 0

3. Additivity. Let Px denote the distribution of a Brownian motion started at
x E R. Let (Xt)t>o be the coordinate process on and be the canonical

filtration on C(R+), i.e. ,~t = s  t) . . Finally, denotes a family of shifts
defined by

6t : C(I~+) 3 ~ + E C(R+).

Definition 5.4. A continuous additive functional of a Brownian motion is a con-
tinuous (0t)-adapted process on such that

Zt+s = Zs P x-a.s.

.

Theorem 5.5. There exists a continuous additive functional Z of a Brownian
motion such that

Zt = v.p.t0 f(Xs) ds Px-a.s.

for any t > 0, , x E IR . . Moreover, Z has zero energy with respect to each .

Proof. Let F be a primitive of the function f that satisfies condition (4.8). Let
(/? be a primitive of F. According to Theorem 4.1, we have

v.p.t0 f(Xs)ds = 203C6(Xt) - 203C6(X0) - 2t0 F(Xs) dXs Px-a.s. (5.2)

for any t > 0 and x E R. It follows directly from the definition that the right-hand
side of (5.2) is an additive functional of a Brownian motion. The second part of the
statement follows from Theorem 5.3. D

Remark. Y. Oshima and T. Yamada proved in [16] that any continuous zero-energy
additive functional of a Brownian motion can be represented as

~(Xt) - ~(X°) - / o dXs~
JO

where c~ is an absolutely continuous function with p’ E D

4. Convergence to the principal value. If f satisfies the conditions of Theo-
rem 3.1, then, for any T > 0,

T T

/ > ~) ds ~ v.p. ds.
7o ~~o ~0

We will now prove that the convergence also holds in a stronger sense.
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Definition 5.6. A sequence of random processes converges to a process
probability uniformly on compact intervals if for each t > 0,

sup |Zns - Zs|  0.
St t 

This will be denoted as Zr ~ Zt .

Theorem 5.7. Suppose that f satisfies the conditions of Theorem 3.1. Then
t t

> ~) ds o V.p. ds.
/0 o

Proof. Let cp be a function such that c~" = f. It follows from the proof of
Theorem 4.1 that each term in (4.6) (except for f~ fn(BS) ds) converges in probability
uniformly on compact intervals to the corresponding term in (4.5). . So, the convergence
also holds for the term fo ds. This yields the desired result. D
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