The principle of variation for relativistic quantum particles
Séminaire de probabilités de Strasbourg, Tome 35 (2001), pp. 1-27.
@article{SPS_2001__35__1_0,
     author = {Nagasawa, Masao and Tanaka, Hiroshi},
     title = {The principle of variation for relativistic quantum particles},
     journal = {S\'eminaire de probabilit\'es de Strasbourg},
     pages = {1--27},
     publisher = {Springer - Lecture Notes in Mathematics},
     volume = {35},
     year = {2001},
     mrnumber = {1837274},
     zbl = {0981.60100},
     language = {en},
     url = {http://www.numdam.org/item/SPS_2001__35__1_0/}
}
TY  - JOUR
AU  - Nagasawa, Masao
AU  - Tanaka, Hiroshi
TI  - The principle of variation for relativistic quantum particles
JO  - Séminaire de probabilités de Strasbourg
PY  - 2001
SP  - 1
EP  - 27
VL  - 35
PB  - Springer - Lecture Notes in Mathematics
UR  - http://www.numdam.org/item/SPS_2001__35__1_0/
LA  - en
ID  - SPS_2001__35__1_0
ER  - 
%0 Journal Article
%A Nagasawa, Masao
%A Tanaka, Hiroshi
%T The principle of variation for relativistic quantum particles
%J Séminaire de probabilités de Strasbourg
%D 2001
%P 1-27
%V 35
%I Springer - Lecture Notes in Mathematics
%U http://www.numdam.org/item/SPS_2001__35__1_0/
%G en
%F SPS_2001__35__1_0
Nagasawa, Masao; Tanaka, Hiroshi. The principle of variation for relativistic quantum particles. Séminaire de probabilités de Strasbourg, Tome 35 (2001), pp. 1-27. http://www.numdam.org/item/SPS_2001__35__1_0/

Dellacherie, C., Meyer P.A. (1987): Probabilités et potentiel, Chapitres, XII á XVI. Hermann, Paris. | MR | Zbl

Ikeda, N. & Watanabe, S. (1989): Stochastic Differential Equations and Diffusion Processes. North-Holland/Kodansha. | Zbl

Ikeda, N. & Watanabe, S. (1962): On some relations between the harmonic measure and Lévy measure for a certain class of Markov processes. J. Math. Kyoto Univ. 2, 79-95. | Zbl

Kunita, H. and Watanabe, S. (1967): On square integrable martingales. Nagoya Math. J. 30, 209-245. | MR | Zbl

Kunita, H. (1969): Absolute continuity of Markov processes and generators. Nagoya Math. J. 36, 1-26. | MR | Zbl

Nagasawa, M. (1993): Schrödinger equations and Diffusion Theory. Birkhäuser Verlag, Basel Boston Berlin. | MR | Zbl

Nagasawa, M. (1996): Quantum theory, theory of Brownian motions, and relativity theory. Chaos, Solitons and Fractals, 7, 631-643. | MR | Zbl

Nagasawa, M. (1997): Time reversal of Markov processes and relativistic quantum theory. Chaos, Solitons and Fractals, 8, 1711-1772. | MR | Zbl

Nagasawa, M., and Tanaka, H. (1998): Stochastic differential equations of pure-jumps in relativistic quantum theory. Chaos, Solitons and Fractals, 10, No 8,1265-1280. | MR | Zbl

Nagasawa, M., and Tanaka, H. (1999): Time dependent subordination and Markov processes with jumps. Sém. de Probabilités, Springer (to appear). | Numdam | MR | Zbl

Sato, K., (1990): Subordination depending on a parameter. Probability Theory and Mathematical Statistics, Proc. Fifth Vilnius Conf. Vol. 2, 372-382. | MR | Zbl

Skorokhod, A.V. (1965): Studies in the theory of random processes. Addison-Wesley Pub. Co. INC, Reading, Mass. | MR | Zbl

Vershik, A., Yor, M., (1995): Multiplicativité du processus gamma et étude asymptotique des lois stables d'indice α, lorsque α tend vers 0. Prepublications du Lab. de probab. de l'université Paris VI, 284 (1995).

Watanabe, S. (1964): On discontinuous additive functionals and Lévy measures of a Markov process. Japanese J. Math. 36, 429-469. | MR | Zbl