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HERMITE MARTINGALES

P.J. Fitzsimmons

Department of Mathematics
University of California, San Diego

9500 Gilman Drive
La Jolla, CA 92093-0112 USA

The Hermite polynomials defined by the Rodrigues formulae

~n(x) := (-1)n exp(x2/2)dn dxn exp(-x2/2), x ~ R, (1)

play an important role in the theory of Brownian motion; see, for example, [3],
[4], [6]. In particular, if is a filtered probability space on which is
defined a standard one-dimensional Brownian motion ~Bt; t > 0} with Bo = 0,
then 0}, is a martingale for every n E N.

An interesting converse, characterizing the Hermite polynomials, has re-
cently been discovered by A. Plucinska [5]: If n ~ 0 is an integer, h : R -~ R
is real analytic, and t t2014~ is a martingale, then h is proportional
to hn . . Strictly speaking, this assertion is true only if we alter the initial state
of the Brownian motion to ensure that P[Bo =0]  1. Indeed, for every real

p > 0 there is a non-polynomial real analytic h such that 0}
is a martingale, provided the Brownian motion satisfies P ~Bo = 0] = 1 ; see part

(b) of Theorem 1 below. Our purpose in this note is to give a new proof of (an
extension of) Plucinska’s Theorem.

As preparation we collect some known results concerning the connection
between space-time harmonic functions and martingale functions of space-time
Brownian motion. Let

y) ~_ ~2~rt~-1~2 exp(-(y - x)2/2t)
denote the Brownian transition kernel, and define the corresponding semigroup
of transition operators by

Ptf(x) : = Rpt(x,y)f(y)dy 
(2)

= Px(f(Bt)] = P[f(x + Bt)], x ~ R, t ~ 0.

Here px denotes both the law of Brownian motion started at x and the associated

expectation operator.
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Lemma 1. If H : R x (o, oo) - R is Borel measurable, then the following .
statements are equivalent: .

(a) Pt-s [H(., t)~(x) = H(x, s) for all x E R and all 0  s  t; ;
(b) Pt_s~H(~, t)~(~) = H(x, s) for Lebesgue a.e. x E R, for all 0  s  t,

and t + r) ~  oo for all x E R and all r, t > 0; ;
(c) t ~ H ( Bt , t + r ) is a P ~ martingale, for all x E R and all r > 0 .

Proof. The implication (a)~(b) is trivial, and (b)~(c) follows easily because the
Px-distribution of Bs is absolutely continuous with respect to Lebesgue measure
for all x ~ R and all s > 0:

t + = Pt-s~H(’~ t + r)](Bs) = -H(Bs ~ s + r)~ Px-a.s.

Finally, if (c) holds then for x E Rand r, t > 0,

r) = o + ~)J = + = t + r ~x ) ~
which yields (a) after a change of variables. 0

Lemma 2. Let H : R x (o, oo) = R be a function of class C~~1.
(i) The process t H H(Bt, t + r) is a P~ local martingale for all (x, r) E

R x (o, oo) if and only if ~H/~t + - 0.

(ii) Suppose that + = 0 and that for each T > 0 there
is a constant CT such that (H(x, t))  for all (x, t) E R x (o, T~. .
Then t ~ H(Bt, t + r) is a Px martingale for all x E R and all r > 0. .

Proof. . Assertion (i) follows immediately from Itô’s formula. Assertion (ii) is a
consequence of classical theorems on the well-posedness of the Cauchy problem.
Let us fix T > 0 and r > 0, and define

f~ (x, t) := P~_t~H(~, T + r)~(x), (~, t) E R x T~. °

Then Ii is a solution of H/~x2 = 0 on R x [0, T) with T) =
T + r) for all x E R, and

(h(x, t) ~  C exp(k ~ x’), (~, t) E R x [0, T~,
for some constant k > 0; see Theorem 12 in Chapter 1 of ~2~. By Theorem 16
loc. cit., k’(x, t) = H(x, t + r) for all (x, t) E R x [0, T]. That is

PT-t[H(., ~’+ r)~(x) = t + r)
for all (~, t) E R x [0, T~. Since T > 0 and r > 0 were arbitrary, part (ii) follows
from Lemma l. 0

Here is the main result of this note. One could relax the conditions imposed
on a and h in part (a) (measurability and local boundedness would suffice); we
leave this extension to the reader.
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Theorem 1. (a) Let h : R --~ R be of class C’‘, and let a and p be C1 mappings
of (0,oo) into itself such that

a(1) _ ,0(1) =1 and ;Q(o+) = 0. (3)

Define

H(x, t) := a(t) ’ h{xI,Q(t)), t > 0, x E R, (4)

and suppose that

t t-~ H(Bt, t + r) is a Px local martingale, for all x E R and all r > 0. . (5)

Then one of the following statements is true:

(i) h is constant and a ~ 1. .
(ii) = Const. ~ x and a = /3.

(iii) ,Q(t) = 0 for t > 0, there is a real number p such that a(t) = for

t > 0, and h satisfies the Hermite equation

h"(X) - x . h’(x) + p = 0 , ~x E R. (6)

(b) Conversely, if h is a C2 function satisfying (6), then t ~ H(Bt, t + r) is
a px martingale for every x E R and every r > 0, where H(x, t) := 
If, in addition, p > 0, then t ’-~ H(Bt, t) is a P° martingale.

(c) If h is a C2 function such that t t~ is a Px martingale
for some 0, then p is a non-negative integer and h is proportional to the
Hermite polynomial hp.

Proof. (a) By Lemma 2(i), H satisfies the (dual) heat equation +

= 0; consequently,

1 2h"(x) - 03B2(t)03B2’(t)xh’(x) + [03B2(t)]203B1’(t) 03B1(t)h(x) = 0, > ~t > 0, x E R. (7)

If ,Q,Q‘ is non-constant then there are times s, t > 0 such that c := 03B2(t)03B2’(t) -

03B2(s)03B2’ (s) is non-zero. Fix such times and define b := [03B2(t)]2 03B1’(t) 03B1(t) - [03B2(s)]203B1’(s) 03B1(s);
then (7) implies

c = b ~ h(x), dx E R. (8)

Any solution of (8) must be of the form h(.r) = Const.. x~ for x > 0, where
y := b/c. For an h of this form to satisfy (7) (for x > 0) we must have 03B3 = 0 or

y = 1. If y = 0 then the C2 solutions of (8) are constant; this is case (i) of part
(a) of Theorem 1. If y = 1 then = Const.. x, which is case (ii).
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Thus, with the exception of the trivial cases (i) and (ii), /?(~)/~) is constant,
which means that /?(~) = ~ for ~ 0, because of (3). Inserting this expression
for /? into (7) we arrive at

(9)

Unless ~ is identically 0 (which case has already been dealt with), (9) implies
that t ~ is constant. In this case = for some p ~ R, and
(9) simplifies to (6).

(b) Fix p C R, let h solve (6), and define := The
function h, being a solution of (6), can be expressed as where

:= M(-~, ~, ~), y~) := zM(- )(p - 1), ~ ~) (10)

are linearly independent solutions of (6); here z ~ M(a,b,z) is the solution of
Kummer’s equation

zw"(z) + (b - ~)~(~) - aw(z) = 0

given by

M(a,b,z)=03A3 a(a+1)...(a+n-1)zn b(b+1)...(b+n-1)n!. (11)

See 13.1.1, 13.1.2, 19.2.1 and 19.2.3 in [1]. For b > 0 as in the present situation,
is an entire function of z. Moreover, Yi (resp. Y2) is a polynomial

if and only if p is an even (resp. odd) non-negative integer. The asymptotic
behavior of M is known [1 ; 13.1.4], and yields the estimate

!~)! Const.. exp(~/2). . (12)

Clearly (12) implies the bound appearing in part (ii) of Lemma 2. Moreover,
because h satisfies (6), H satisfies 9~/~ + ~9~/9:~ z 0. The first assertion
therefore follows from Lemma 2(ii). Turning to the second assertion, ifp>0,
then ] by (12). The family > 0} ofpo-integrable
random variables is a martingale because of Lemma 2(ii). By the backward
martingale convergence theorem, the limit exists and in

the is easily seen to be 0, by (12) and the law of the iterated
logarithm. Consequently, if H(Bo, 0) is understood to be 0, then {~(F~);~ ~
0} is a P~ martingale.
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(c) Let h be a C~ function such that t ~ is a P~ martingale
for some :c ~ 0. Then h satisfies (6), and unless h is a polynomial the estimate

(12) can be strengthened to an asymptotic equivalence:

(h(x)~ ~ Const.. exp(x2/2) H -i oo.

See 13.1.4 in [1]. The px integrability of ~(~/B/), for t = 1, implies that for
N sufficiently large

~ > R|g(y)| exp(-(y - x)2/2)dy

~ Const.. exp(-x2/2)|y|~N exp(xy)|y|-p-1 dy,

which is clearly absurd because x ~ 0. Thus, h must be a polynomial. In

view of (10) and (11), the only polynomial solutions of (6) occur when p is a

non-negative integer, and any such polynomial solution is proportional to hp . 0

Remark. Only the local martingale property of and the inte-

grability of h(B1 ) were used in the proof of (c). An alternative proof, which
uses more fully the hypothesis that is a martingale, was sug-
gested by the referee: If is a px martingale for some .c 7~ 0,
then limt~0tp/2h(Bt/t) exists Px almost surely. This implies the existence of

limt~0tp/2h(x/t), which forces the (entire!) function h to have a pole (of order
at most p) at infinity. In other words, h must be a polynomial.

Acknowledgment. I thank the referee for helpful comments, especially those

concerning the confluent hypergeometric function M.
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