SÉminaire de probabilités (Strasbourg)

Patrick J. Fitzsimmons

Hermite martingales

Séminaire de probabilités (Strasbourg), tome 35 (2001), p. 153-157
http://www.numdam.org/item?id=SPS_2001__35__153_0
© Springer-Verlag, Berlin Heidelberg New York, 2001, tous droits réservés.
L'accès aux archives du séminaire de probabilités (Strasbourg) (http://portail. mathdoc.fr/SemProba/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

Article numérisé dans le cadre du programme

HERMITE MARTINGALES

P.J. Fitzsimmons
Department of Mathematics
University of California, San Diego
9500 Gilman Drive
La Jolla, CA 92093-0112 USA

The Hermite polynomials $h_{n}, n \in \mathbf{N}$, defined by the Rodrigues formulae

$$
\begin{equation*}
h_{n}(x):=(-1)^{n} \exp \left(x^{2} / 2\right) \frac{d^{n}}{d x^{n}} \exp \left(-x^{2} / 2\right), \quad x \in \mathbf{R} \tag{1}
\end{equation*}
$$

play an important role in the theory of Brownian motion; see, for example, [3], [4], [6]. In particular, if $\left(\Omega, \mathcal{F}, \mathcal{F}_{t}, \mathbf{P}\right)$ is a filtered probability space on which is defined a standard one-dimensional Brownian motion $\left\{B_{t} ; t \geq 0\right\}$ with $B_{0}=0$, then $\left\{t^{n / 2} h_{n}\left(B_{t} / \sqrt{t}\right) ; t \geq 0\right\}$, is a martingale for every $n \in \mathbf{N}$.

An interesting converse, characterizing the Hermite polynomials, has recently been discovered by A. Plucińska [5]: If $n \geq 0$ is an integer, $h: \mathbf{R} \rightarrow \mathbf{R}$ is real analytic, and $t \mapsto t^{n / 2} h\left(B_{t} / \sqrt{t}\right)$ is a martingale, then h is proportional to h_{n}. Strictly speaking, this assertion is true only if we alter the initial state of the Brownian motion to ensure that $\mathbf{P}\left[B_{0}=0\right]<1$. Indeed, for every real $p>0$ there is a non-polynomial real analytic h such that $\left\{t^{p / 2} h\left(B_{t} / \sqrt{t}\right) ; t \geq 0\right\}$ is a martingale, provided the Brownian motion satisfies $\mathbf{P}\left[B_{0}=0\right]=1$; see part (b) of Theorem 1 below. Our purpose in this note is to give a new proof of (an extension of) Plucińska's Theorem.

As preparation we collect some known results concerning the connection between space-time harmonic functions and martingale functions of space-time Brownian motion. Let

$$
p_{t}(x, y):=[2 \pi t]^{-1 / 2} \exp \left(-(y-x)^{2} / 2 t\right)
$$

denote the Brownian transition kernel, and define the corresponding semigroup of transition operators by

$$
\begin{align*}
P_{t} f(x): & =\int_{\mathbf{R}} p_{t}(x, y) f(y) d y \tag{2}\\
& =\mathbf{P}^{x}\left[f\left(B_{t}\right)\right]=\mathbf{P}\left[f\left(x+B_{t}\right)\right], \quad x \in \mathbf{R}, t \geq 0 .
\end{align*}
$$

Here \mathbf{P}^{x} denotes both the law of Brownian motion started at x and the associated expectation operator.

Lemma 1. If $H: \mathbf{R} \times(0, \infty)-\mathbf{R}$ is Borel measurable, then the following statements are equivalent:
(a) $P_{t-s}[H(\cdot, t)](x)=H(x, s)$ for all $x \in \mathbf{R}$ and all $0<s<t$;
(b) $P_{t-s}[H(\cdot, t)](x)=H(x, s)$ for Lebesgue a.e. $x \in \mathbf{R}$, for all $0<s<t$, and $\mathbf{P}^{x}\left|H\left(B_{t}, t+r\right)\right|<\infty$ for all $x \in \mathbf{R}$ and all $r, t>0$;
(c) $t \mapsto H\left(B_{t}, t+r\right)$ is a \mathbf{P}^{x} martingale, for all $x \in \mathbf{R}$ and all $r>0$.

Proof. The implication $(\mathrm{a}) \Rightarrow(\mathrm{b})$ is trivial, and $(\mathrm{b}) \Rightarrow(\mathrm{c})$ follows easily because the \mathbf{P}^{x}-distribution of B_{s} is absolutely continuous with respect to Lebesgue measure for all $x \in \mathbf{R}$ and all $s>0$:

$$
\mathbf{P}^{x}\left[H\left(B_{t}, t+r\right) \mid \mathcal{F}_{s}\right]=P_{t-s}[H(\cdot, t+r)]\left(B_{s}\right)=H\left(B_{s}, s+r\right), \quad \mathbf{P}^{x} \text {-a.s. }
$$

Finally, if (c) holds then for $x \in \mathbf{R}$ and $r, t>0$,

$$
H(x, r)=\mathbf{P}^{x}\left[H\left(B_{0}, 0+r\right)\right]=\mathbf{P}^{x}\left[H\left(B_{t}, t+r\right)\right]=P_{t}[H(\cdot, t+r)](x),
$$

which yields (a) after a change of variables. \square
Lemma 2. Let $H: \mathbf{R} \times(0, \infty) \rightarrow \mathbf{R}$ be a function of class $C^{2,1}$.
(i) The process $t \mapsto H\left(B_{t}, t+r\right)$ is a \mathbf{P}^{x} local martingale for all $(x, r) \in$ $\mathbf{R} \times(0, \infty)$ if and only if $\partial H / \partial t+\frac{1}{2} \partial^{2} H / \partial x^{2} \equiv 0$.
(ii) Suppose that $\partial H / \partial t+\frac{1}{2} \partial^{2} H / \partial x^{2} \equiv 0$ and that for each $T>0$ there is a constant C_{T} such that $|H(x, t)| \leq C_{T} \exp \left(x^{2} / 2 t\right)$ for all $(x, t) \in \mathbf{R} \times(0, T]$. Then $t \mapsto H\left(B_{t}, t+r\right)$ is a \mathbf{P}^{x} martingale for all $\boldsymbol{x} \in \mathbf{R}$ and all $r>0$.

Proof. Assertion (i) follows immediately from Itô's formula. Assertion (ii) is a consequence of classical theorems on the well-posedness of the Cauchy problem. Let us fix $T>0$ and $r>0$, and define

$$
K(x, t):=P_{T-t}[H(\cdot, T+r)](x), \quad(x, t) \in \mathbf{R} \times[0, T] .
$$

Then K is a $C^{2,1}$ solution of $\partial H / \partial t+\frac{1}{2} \partial^{2} H / \partial x^{2} \equiv 0$ on $\mathbf{R} \times[0, T)$ with $K(x, T)=$ $H(x, T+r)$ for all $x \in \mathbf{R}$, and

$$
|K(x, t)| \leq C \exp \left(k \cdot x^{2}\right), \quad(x, t) \in \mathbf{R} \times[0, T]
$$

for some constant $k>0$; see Theorem 12 in Chapter 1 of [2]. By Theorem 16 loc. cit., $K(x, t)=H(x, t+r)$ for all $(x, t) \in \mathbf{R} \times[0, T]$. That is

$$
P_{T-t}[H(\cdot, T+r)](x)=H(x, t+r)
$$

for all $(x, t) \in \mathbf{R} \times[0, T]$. Since $T>0$ and $r>0$ were arbitrary, part (ii) follows from Lemma 1. $\quad \square$

Here is the main result of this note. One could relax the conditions imposed on α and h in part (a) (measurability and local boundedness would suffice); we leave this extension to the reader.

Theorem 1. (a) Let $h: \mathbf{R} \rightarrow \mathbf{R}$ be of class C^{2}, and let α and β be C^{1} mappings of $(0, \infty)$ into itself such that

$$
\begin{equation*}
\alpha(1)=\beta(1)=1 \quad \text { and } \quad \beta(0+)=0 \tag{3}
\end{equation*}
$$

Define

$$
\begin{equation*}
H(x, t):=\alpha(t) \cdot h(x / \beta(t)), \quad t>0, x \in \mathbf{R} \tag{4}
\end{equation*}
$$

and suppose that

$$
\begin{equation*}
t \mapsto H\left(B_{t}, t+r\right) \text { is a } \mathbf{P}^{x} \text { local martingale, for all } x \in \mathbf{R} \text { and all } r>0 . \tag{5}
\end{equation*}
$$

Then one of the following statements is true:
(i) h is constant and $\alpha \equiv 1$.
(ii) $h(x)=$ Const. $\cdot x$ and $\alpha \equiv \beta$.
(iii) $\beta(t)=\sqrt{t}$ for $t>0$, there is a real number p such that $\alpha(t)=t^{p / 2}$ for $t>0$, and h satisfies the Hermite equation

$$
\begin{equation*}
h^{\prime \prime}(x)-x \cdot h^{\prime}(x)+p \cdot h(x)=0, \quad \forall x \in \mathbf{R} \tag{6}
\end{equation*}
$$

(b) Conversely, if h is a C^{2} function satisfying (6), then $t \mapsto H\left(B_{t}, t+r\right)$ is a \mathbf{P}^{x} martingale for every $x \in \mathbf{R}$ and every $r>0$, where $H(x, t):=t^{p / 2} h(x / \sqrt{t})$. If, in addition, $p>0$, then $t \mapsto H\left(B_{t}, t\right)$ is a \mathbf{P}^{0} martingale.
(c) If h is a C^{2} function such that $t \mapsto t^{p / 2} h\left(B_{t} / \sqrt{t}\right)$ is a \mathbf{P}^{x} martingale for some $x \neq 0$, then p is a non-negative integer and h is proportional to the Hermite polynomial h_{p}.

Proof. (a) By Lemma 2(i), H satisfies the (dual) heat equation $\partial H / \partial t+$ $\frac{1}{2} \partial^{2} H / \partial x^{2} \equiv 0$; consequently,

$$
\begin{equation*}
\frac{1}{2} h^{\prime \prime}(x)-\beta(t) \beta^{\prime}(t) x h^{\prime}(x)+[\beta(t)]^{2} \frac{\alpha^{\prime}(t)}{\alpha(t)} h(x)=0, \quad \forall t>0, x \in \mathbf{R} \tag{7}
\end{equation*}
$$

If $\beta \beta^{\prime}$ is non-constant then there are times $s, t>0$ such that $c:=\beta(t) \beta^{\prime}(t)-$ $\beta(s) \beta^{\prime}(s)$ is non-zero. Fix such times and define $b:=[\beta(t)]^{2} \frac{\alpha^{\prime}(t)}{\alpha(t)}-[\beta(s)]^{2} \frac{\alpha^{\prime}(s)}{\alpha(s)}$; then (7) implies

$$
\begin{equation*}
c \cdot x h^{\prime}(x)=b \cdot h(x), \quad \forall x \in \mathbf{R} . \tag{8}
\end{equation*}
$$

Any solution of (8) must be of the form $h(x)=$ Const. $\cdot x^{\gamma}$ for $x>0$, where $\gamma:=b / c$. For an h of this form to satisfy (7) (for $x>0$) we must have $\gamma=0$ or $\gamma=1$. If $\gamma=0$ then the C^{2} solutions of (8) are constant; this is case (i) of part (a) of Theorem 1. If $\gamma=1$ then $h(x)=$ Const. $\cdot x$, which is case (ii).

Thus, with the exception of the trivial cases (i) and (ii), $\beta(t) \beta^{\prime}(t)$ is constant, which means that $\beta(t)=\sqrt{t}$ for $t \geq 0$, because of (3). Inserting this expression for β into (7) we arrive at

$$
\begin{equation*}
h^{\prime \prime}(x)-x h^{\prime}(x)+2 t \frac{\alpha^{\prime}(t)}{\alpha(t)} h(x)=0 . \tag{9}
\end{equation*}
$$

Unless h is identically 0 (which case has already been dealt with), (9) implies that $t \mapsto t \alpha^{\prime}(t) / \alpha(t)$ is constant. In this case $\alpha(t)=t^{p / 2}$ for some $p \in \mathbf{R}$, and (9) simplifies to (6).
(b) Fix $p \in \mathbf{R}$, let h solve (6), and define $H(x, t):=t^{p / 2} h(x / \sqrt{t})$. The function h, being a solution of (6), can be expressed as $c_{1} Y_{1}(x)+c_{2} Y_{2}(x)$, where

$$
\begin{equation*}
Y_{1}(x):=M\left(-\frac{1}{2} p, \frac{1}{2}, \frac{1}{2} x^{2}\right), \quad Y_{2}(x):=x M\left(-\frac{1}{2}(p-1), \frac{3}{2}, \frac{1}{2} x^{2}\right) \tag{10}
\end{equation*}
$$

are linearly independent solutions of (6); here $z \mapsto M(a, b, z)$ is the solution of Kummer's equation

$$
z w^{\prime \prime}(z)+(b-z) w^{\prime}(z)-a w(z)=0
$$

given by

$$
\begin{equation*}
M(a, b, z)=\sum_{n=0}^{\infty} \frac{a(a+1) \cdots(a+n-1)}{b(b+1) \cdots(b+n-1)} \frac{z^{n}}{n!} . \tag{11}
\end{equation*}
$$

See 13.1.1, 13.1.2, 19.2.1 and 19.2.3 in [1]. For $b>0$ as in the present situation, $M(a, b, z)$ is an entire function of z. Moreover, Y_{1} (resp. Y_{2}) is a polynomial if and only if p is an even (resp. odd) non-negative integer. The asymptotic behavior of M is known [1;13.1.4], and yields the estimate

$$
\begin{equation*}
|h(x)| \leq \text { Const. } \cdot \exp \left(x^{2} / 2\right) \cdot[1+|x|]^{-p-1} \tag{12}
\end{equation*}
$$

Clearly (12) implies the bound appearing in part (ii) of Lemma 2. Moreover, because h satisfies (6), H satisfies $\partial H / \partial t+\frac{1}{2} \partial^{2} H / \partial x^{2} \equiv 0$. The first assertion therefore follows from Lemma 2(ii). Turning to the second assertion, if $p>0$, then $\mathbf{P}^{0}\left|H\left(B_{t}, t\right)\right|<\infty$ by (12). The family $\left\{H\left(B_{t}, t\right) ; t>0\right\}$ of \mathbf{P}^{0}-integrable random variables is a martingale because of Lemma 2(ii). By the backward martingale convergence theorem, the limit $\lim _{t \downarrow 0} H\left(B_{t}, t\right)$ exists \mathbf{P}^{0}-a.s. and in $L^{1}\left(\mathbf{P}^{0}\right)$; the \mathbf{P}^{0}-a.s. limit is easily seen to be 0 , by (12) and the law of the iterated logarithm. Consequently, if $H\left(B_{0}, 0\right)$ is understood to be 0 , then $\left\{H\left(B_{t}, t\right) ; t \geq\right.$ $0\}$ is a \mathbf{P}^{0} martingale.
(c) Let h be a C^{2} function such that $t \mapsto t^{p / 2} h\left(B_{t} / \sqrt{t}\right)$ is a \mathbf{P}^{x} martingale for some $x \neq 0$. Then h satisfies (6), and unless h is a polynomial the estimate (12) can be strengthened to an asymptotic equivalence:

$$
|h(x)| \sim \text { Const. } \cdot \exp \left(x^{2} / 2\right) \cdot|x|^{-p-1}, \quad|x| \rightarrow \infty
$$

See 13.1.4 in [1]. The \mathbf{P}^{x} integrability of $h\left(B_{t} / \sqrt{t}\right)$, for $t=1$, implies that for N sufficiently large

$$
\begin{aligned}
\infty & >\int_{\mathbf{R}}|h(y)| \exp \left(-(y-x)^{2} / 2\right) d y \\
& \geq \text { Const. } \cdot \exp \left(-x^{2} / 2\right) \int_{|y| \geq N} \exp (x y)|y|^{-p-1} d y,
\end{aligned}
$$

which is clearly absurd because $x \neq 0$. Thus, h must be a polynomial. In view of (10) and (11), the only polynomial solutions of (6) occur when p is a non-negative integer, and any such polynomial solution is proportional to h_{p}.
Remark. Only the local martingale property of $t^{p / 2} h\left(B_{t} / \sqrt{t}\right)$ and the integrability of $h\left(B_{1}\right)$ were used in the proof of (c). An alternative proof, which uses more fully the hypothesis that $t^{p / 2} h\left(B_{t} / \sqrt{t}\right)$ is a martingale, was suggested by the referee: If $t^{p / 2} h\left(B_{t} / \sqrt{t}\right)$ is a \mathbf{P}^{x} martingale for some $x \neq 0$, then $\lim _{t \downarrow 0} t^{p / 2} h\left(B_{t} / \sqrt{t}\right)$ exists \mathbf{P}^{x} almost surely. This implies the existence of $\lim _{t \downarrow 0} t^{p / 2} h(x / \sqrt{t})$, which forces the (entire!) function h to have a pole (of order at most p) at infinity. In other words, h must be a polynomial.

Acknowledgment. I thank the referee for helpful comments, especially those concerning the confluent hypergeometric function M.

References

[1] M. Abramowitz and A. Stegun: Handbook of Mathematical Functions (Reprint of the 1972 edition). Dover, New York, 1992.
[2] A. Friedman: Partial Differential Equations of Parabolic Type. PrenticeHall, Englewood Cliffs, N.J., 1964.
[3] S. Janson: Gaussian Hilbert Spaces. (Cambridge University Press, Cambridge, 1997.
[4] D. Nualart: The Malliavin Calculus and Related Topics. Springer-Verlag, New York, 1995.
[5] A. Plucińska: A stochastic characterization of Hermite polynomials, J. Math. Sci. 89 (1998) 1541-1544.
[6] D.W. Stroock: Probability Theory. Cambridge University Press, Cambridge, 1993.

