@article{SPS_2000__34__393_0, author = {Khoshnevisan, Davar and Shi, Zhan}, title = {Fast sets and points for fractional brownian motion}, journal = {S\'eminaire de probabilit\'es de Strasbourg}, pages = {393--416}, publisher = {Springer - Lecture Notes in Mathematics}, volume = {34}, year = {2000}, mrnumber = {1768077}, zbl = {0960.60038}, language = {en}, url = {http://www.numdam.org/item/SPS_2000__34__393_0/} }
TY - JOUR AU - Khoshnevisan, Davar AU - Shi, Zhan TI - Fast sets and points for fractional brownian motion JO - Séminaire de probabilités de Strasbourg PY - 2000 SP - 393 EP - 416 VL - 34 PB - Springer - Lecture Notes in Mathematics UR - http://www.numdam.org/item/SPS_2000__34__393_0/ LA - en ID - SPS_2000__34__393_0 ER -
%0 Journal Article %A Khoshnevisan, Davar %A Shi, Zhan %T Fast sets and points for fractional brownian motion %J Séminaire de probabilités de Strasbourg %D 2000 %P 393-416 %V 34 %I Springer - Lecture Notes in Mathematics %U http://www.numdam.org/item/SPS_2000__34__393_0/ %G en %F SPS_2000__34__393_0
Khoshnevisan, Davar; Shi, Zhan. Fast sets and points for fractional brownian motion. Séminaire de probabilités de Strasbourg, Tome 34 (2000), pp. 393-416. http://www.numdam.org/item/SPS_2000__34__393_0/
[1] Levels at which every Brownian excursion is exceptional. Sém. Prob. XVIII, Lecture Notes in Math. 1059, 1-28, Springer-Verlag, New York. | Numdam | MR | Zbl
AND (1984).[2] Strong Approximations in Probability and Statistics, Academic Press, New York. | MR | Zbl
AND (1981).[3] On the Hausdorff dimension of the set generated by exceptional oscillations of a Wiener process. Studia Sci. Math. Hung., 33, 75-110. | MR | Zbl
AND (1997).[4] Random fractal functional laws of the iterated logarithm. (preprint) | MR
AND (1997).[5] A Course on Empirical Processes. École d'Été de St. Flour 1982. Lecture Notes in Mathematics 1097. Springer, Berlin. | MR | Zbl
(1984).[6] On the Hausdorff dimension of the range of a stable process with a Borel set. Z. Wahr. verw. Geb., 19, 90-102. | MR | Zbl
(1971).[7] Trees generated by a simple branching process. J. London Math. Soc., 24, 373-384. | MR | Zbl
(1981).[8] Some Random Series of Functions, second edition. Cambridge University Press, Cambridge. | MR | Zbl
(1985).[9] Large increments of Brownian Motion. Nagoya Math. J., 56, 139-145. | MR | Zbl
(1974).[10] Limsup random fractals. In preparation.
, AND (1998).[11] The exact Hausdorff measure of irregularity points for a Brownian path. Z. Wahr. verw. Geb., 40, 257-282. | MR | Zbl
(1977).[12] Probability in Banach Space, Isoperimetry and Processes, Springer-Verlag, Heidelberg-New York. | MR | Zbl
AND (1991).[13] Théorie de l'Addition des Variables Aléatoires. Gauthier-Villars, Paris. | JFM | MR | Zbl
(1937).[14] Random walks and percolation on trees. Ann. Prob., 18, 931-958. | Zbl
(1980).[15] Hölder conditions for Gaussian processes with stationary increments. Trans. Amer. Math. Soc., 134, 29-52. | MR | Zbl
(1968).[16] Moduli of continuity of local times of strongly symmetric Markov processes via Gaussian processes. J. Theoretical Prob., 5, 791-825. | MR | Zbl
AND (1992).[17] Geometry of Sets and Measures in Euclidean Spaces, Fractals and Rectifiability, Cambridge University Press, Cambridge. | Zbl
(1995).[18] How often on a Brownian path does the law of the iterated logarithm fail? Proc. London Math. Soc., 28, 174-192. | MR | Zbl
AND (1974).[19] Remarks on intersection-equivalence and capacity-equivalence. Ann. Inst. Henri Poincaré: Physique Théorique, 64, 339-347. | Numdam | MR | Zbl
(1996).[20] Measuring close approaches on a Brownian path, Ann. Prob., 16, 1458-1480. | MR | Zbl
AND (1988),[21] Continuous Martingales and Brownian Motion, second edition. Springer, Berlin. | MR | Zbl
AND (1994).[22] Empirical Processes with Applications to Statistics. Wiley, New York. | MR | Zbl
AND (1986).[23] Multiple points for the sample paths of the symmetric stable process, Z. Wahr. ver. Geb., 5, 247-64. | MR | Zbl
(1966).[24] The measure theory of random fractals. Math. Proc. Camb. Phil. Soc., 100, 383-406. | MR | Zbl
(1986).