@article{SPS_2000__34__289_0, author = {Hobson, David G.}, title = {Marked excursions and random trees}, journal = {S\'eminaire de probabilit\'es de Strasbourg}, pages = {289--301}, publisher = {Springer - Lecture Notes in Mathematics}, volume = {34}, year = {2000}, mrnumber = {1768069}, zbl = {0965.60078}, language = {en}, url = {http://www.numdam.org/item/SPS_2000__34__289_0/} }
Hobson, David G. Marked excursions and random trees. Séminaire de probabilités de Strasbourg, Tome 34 (2000), pp. 289-301. http://www.numdam.org/item/SPS_2000__34__289_0/
[1] The continuum random tree. I., Annals of Probability, 19, 1-28, 1991. | MR | Zbl
;[2] The continuum random tree. II: an overview, In Proceedings of the Durham Symposium on Stochastic Analysis, 1990, Editors, Barlow, M.T. and Bingham, N.H. Cambridge University Press. 23-70, 1991. | MR | Zbl
;[3] The continuum random tree. III., Annals of Probability, 21, 248-289, 1993. | MR | Zbl
;[4] First passage and recurrence distributions, Transactions of the American Mathematical Society, 73, 471-486, 1952. | MR | Zbl
;[5] Marches aléatoires, mouvement brownien et processus de branchement, Séminaire de Probabilités, XXIII, 447-464, 1989. | Numdam | Zbl
;[6] Brownian excursions, trees and measure-valued branching processes, Annals of Probability, 19, 1399-1439, 1991. | MR | Zbl
;[7] The uniform random tree in a Brownian excursion, Probability Theory and Related Fields, 96, 369-383, 1993. | MR | Zbl
;[8] Arbes et processus de Galton-Watson, Annales de l'Institute Henri Poincaré, Série B, 22, 199-207, 1986. | Numdam | MR | Zbl
;[9] Renewal property of the extrema and tree property of a one-dimensional Brownian motion, Séminaire de Probabilités, XXIII, 239-247, 1989. | Numdam | MR | Zbl
AND ;[10] The branching process in a Brownian excursion, Séminaire de Probabilités, XXIII, 248-257, 1989. | Numdam | MR | Zbl
AND ;[11] Partition structures derived from Brownian motion and stable subordinators Bernoulli, 3, 79-96, 1997. | MR | Zbl
;[12] Brownian motion, bridge, excursion, and meander characterized by sampling at independent uniform times, Technical Report No. 545, Department of Statistics, Berkeley, 1999. | MR
;[13] Diffusions, Markov processes and Martingales, Vol. 2, Wiley, Chichester, 1987. | MR | Zbl
AND ;