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An alternative proof of a theorem of Aldous

concerning convergence in distribution for martingales.

Maurizio Pratelli

We consider regular right continuous stochastic processes X = (X;)o<i<1 de-
fined on the finite time interval [0,1]: let PX be the distribution of X on the
canonical Skorokhod space D = D([0, 1];R) of “cadlag” paths.

We consider on D, besides the usual Skorokhod topology referred as S-topology
(Jacod-Shiryaev is perhaps the best reference for our purposes, see [4]), the “pseudo-
path” or MZ-topology: we refer to the paper of Meyer-Zheng ([6]) for a complete
account of this rather neglected topology (see also Kurtz [5)).

We will use the notation X" =5 X (respectively X" =>MZ X) to indicate
that the probabilities PX" converge strictly to PX when the space D is endowed
respectively with the S— or the MZ-topology. We will write also X" ==f-4-4- X to
indicate that all finite dimensional distributions of (Xf)o<e<1 converge to those of
(Xt)o<t<t -

The following theorem holds true:

Theorem. Let (M™) be a sequence of martingales, and M a continuous mar-
tingale, and suppose that the following integrability condition is satisfied:

(1) all random variables (sup<,<; |[M7*|) ,n = 1,2,... are uniformly inte-
grable.
Then the following statements are equivalent:

(a) M =5 M,

(b) Mr =fdd pr ,

(c) M™ =MZ pp,

The implication (a)==>(b) is quite obvious, since Skorokhod convergence implies
convergence of finite dimensional distributions for all continuity points of M (see [4]).
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The implications (b)==>(c) is an easy consequence of the results of Meyer~
Zheng: in fact the sequence (M™) is “tight” for the MZ-topology ([6] p. 368) and,
if X is a limit process, there exists ([6] p. 365) a subsequence (M™*) and a set
I C [0,1] of full Lebesgue measure such that all finite dimensional distributions
(M7**),¢; converge to those of (X;),c,: necessarily PX = PM .

Aldous (in [2]) gives a proof of the implication (b) => (a) , but (although he does
not mention the MZ-topology) the implication (¢) ==>(a) is more or less implicit in
his paper (see (2] p. 591).

The purpose of this paper is to give a proof of the implication (¢) = (a),
completely different form the Aldous’ original one and strictly in the spirit of the
paper of Meyer-Zheng; I hope that this contributes also to a better knowledge of
the result of “Stopping times and tightness II” ([2]), which is in my opinion very
important and seems to be almost unknown.

The proof will be postponed after some remarks.

Remark 1. I want to point out that Aldous’ proof of the implication (b) = (a)
requires the following weaker integrability condition:

(2) all random variables M} ,n = 1,2,... are uniformly integrable.
Condition (2) implies that all r.v. of the form M% ,n =1,2,..., with T a natural
stopping .time for M™, are uniformly integrable; instead our proof needs a more
stringent condition, i.e. that all r.v. of the form M% , n =1,2,..., with S a random
variable in [0, 1], are uniformly integrable.

Remark 2. The extension of the Theorem to processes whose time interval is
[0, +00) is straightforward: in that case the correct hypothesis is that, for every
fixed t, the r.v. supgc,<, |M7'| , n =1,2,... are uniformly integrable.

In fact, if the limit function f is continuous, f, — f for the S-topology (respec-
tively the MZ~topology) on D(R*;R) if and only if the restrictions of f, to every
finite time interval converge to those of f (for the S- or the MZ-topology).

Remark 3. The Theorem fails to be true if the limit martingale M is not continuous
([2] p. 588), and fails for more general processes, e.g. for supermartingales.
Let indeed T be a Poisson r.v. and put, for every n :

XZ‘ = (I{tZT} - t/\T) - n((t—T)I{QT} A 1) .

The processes X™ are supermartingales whose paths converge in measure (but not
uniformly) to the paths of the continuous supermartingale X; = —(t A T).

Remark 4. Suppose that the processes X™ are supermartingales, and consider
their Doob-Meyer decompositions X® = M™ — A™. If separately M™ =MZ M
and the martingale M is continuous, and if A" ==>MZ 4 and the increasing process
A is continuous, then X" =X =M - A (remark that, for monotone processes,
convergence in the MZ-sense to a continuous limit implies convergence for the S—
topology).

An application of the latter result can be found in (7], theorem 5.5 .
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The proof of the implication (c) = (a) of the Theorem is rather technical, and
will be divided in several steps.

Step 1. Given € > 0, there exists 6 > 0 such that, if S is a r.v. with values in [0.1]
and0<d<6é:

(3) E[|Mstq - Mgl < e.

This is an easy consequence of the path-continuity of the limit process M . and of the
integrability of M* = supy<,<; |M:|. Remark that the function f — supge,<; |f(2)]
is lower semi-continuous on D endowed with the topology of convergenc—e in mea-
sure (i.e. the MZ-topology); therefore the integrability of M* is a consequence of
condition (1) of the theorem.

Step 2. Suppose that (a) is false; then the sequence does not verify Aldous’ tightness
condition ([1] p. 335, see also [4]); therefore there exists ¢ > 0 such that for every
6 > 0 it is possible to determine a subsequence ny and, for every k, a natural
stopping time T} (i.e. a stopping time for the filtration generated by M™* ) and
0 < dg < 6 such that

@ E™ [[Mgta, — MRH] 2 ¢

(In the sequel, for the sake of simplicity of notations, we will assume that indices
have been renamed so that the whole sequence verifies (4)). We choose 6 such that,
for any r.v. S whatsoever, we also have (step 1) E[|Ms425 — Ms|] < §.

Step 3. There exists a random variable T with values in [0,1] such that (M™,T,)
converge in distribution to (M, T) on the space D([0,1],R*) x [0, 1] equipped with
the product topology (D being equipped with the MZ-topology).

In fact the laws of (M™,T;,) are evidently tight since the laws of M™ are tight
on D ([6] p. 368); we point out that the limit r.v. T is not a natural stopping time
for the stochastic process M (but it can be proved that M is a martingale for the
canonical filtration on D x [0, 1], i.e. the smallest filtration that makes M adapted
and T a stopping time).

Step 4. For c and d in [0, 1], we have the inequality
n n 6
(5) E™ [|ME, 154 — M, _d|] 2 3

(It is technically convenient to regard each process M as extended to [—1,2] by
putting M; = My for t < 0 and M; = M; for t > 1: this enables us to write M7,
instead of M(r4s)a1-)
Concerning the inequality (5), firstly we note that
(]"[’}1,.+d.. - lw”?,.) =E" [A’Iﬁ+6+c - Mr, |~7:Tn+dn]
and therefore

E" [|M’;‘1,.+6+c - MZF‘..H 2 E" [|M¥n+dn - Mg, H 2 €.
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Then we remark that (T, — c) is not a stopping time, but the r.v. M# __ is
Fr,-measurable: in fact M7 _..Iir,<ty = M apy_oL(Tagey and (Tu At —c) is
Fi-measurable.

Let X = (M} ,spe— M), Y = (MR =M _) and G = Fr,: Y is G-
adapted and E[X|G] =0.

We remark that E[X*|G] = E[X~|G] = E[X||G]. and that |X + Y| >
X+.I{y20} +X—.I{y<0} .

One gets E[|X +Y||G] > FE[|X]|G] ; and. taking expectations, inequal-
ity (5).

Step 5. There exists a subsequence and a set I C [—1.1] of full Lebesgue measure
such that the finite dimensional distributions of (MZ _,),., converge to those of
(A/IT-H)zel .

The proof of this step is a slight modification of the argument given in (6]
(p. 364): Dudley’s extension of the Skorokhod representation theorem implies that
one can find on some probability space ({2, F,P) some random variables (X", Sy)
and (X, S) with values in D x [0, 1] such that the laws of (X™, S,,) (resp. (X, S)) are
equal to those of (M™,T,,) (resp. (M, T)) and that, for almost all w, (X™(w), Sp(w))
converge to (X(w),S(w)): to be accurate, the “paths” ¢t — (X[*(w)) converge in
measure to the path ¢t — (X;(w)) and S, (w) converge to S(w).

We remark that the Skorokhod theorem cannot be applied directly since D is
not a Polish space ([6] p. 372), but Dudley’s extension works well (see [3]).

By substituting X™ with arctg(X™), we can suppose that X™ and X are uni-
formly bounded: therefore we have

O gm0t [ ) - Xnwu@]@@) =o.

n—oo

tel

By taking a subsequence, we find that for every ¢ in a set I C [—1,1] of full Lebesgue
measure,

@ lim /Q X2, 0140@) — Xr(oysele) | dP) = 0.

n—00

Hence one gets easily the convergence of finite dimensional distributions of

( %+t):51 :

Step 6. We choose 0 < d,c < 1 such that d + ¢ < 6 and that (M} .., M} _;)
converge in distribution to (Mr4s+c, MT—4); since the r.v. involved are uniformly
integrable, the inequality (5) gives in the limit

E[|Mrysse — Mr_g|] > :

[V

and finally we have a contradiction.
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