SÉMINAIRE DE PROBABILITÉS (STRASBOURG)

MAURIZIO PRATELLI

An alternative proof of a theorem of Aldous concerning convergence in distribution for martingales

Séminaire de probabilités (Strasbourg), tome 33 (1999), p. 334-338 http://www.numdam.org/item?id=SPS 1999 33 334 0>

© Springer-Verlag, Berlin Heidelberg New York, 1999, tous droits réservés.

L'accès aux archives du séminaire de probabilités (Strasbourg) (http://portail. mathdoc.fr/SemProba/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

An alternative proof of a theorem of Aldous concerning convergence in distribution for martingales.

Maurizio Pratelli

We consider regular right continuous stochastic processes $X=(X_t)_{0\leq t\leq 1}$ defined on the finite time interval [0,1]: let \mathbf{P}^X be the distribution of X on the canonical Skorokhod space $\mathbf{D}=\mathbf{D}([0,1];\mathbf{R})$ of "càdlàg" paths.

We consider on \mathbf{D} , besides the usual Skorokhod topology referred as S-topology (Jacod-Shiryaev is perhaps the best reference for our purposes, see [4]), the "pseudopath" or MZ-topology: we refer to the paper of Meyer-Zheng ([6]) for a complete account of this rather neglected topology (see also Kurtz [5]).

We will use the notation $X^n \Longrightarrow^S X$ (respectively $X^n \Longrightarrow^{MZ} X$) to indicate that the probabilities \mathbf{P}^{X^n} converge strictly to \mathbf{P}^X when the space \mathbf{D} is endowed respectively with the S- or the MZ-topology. We will write also $X^n \Longrightarrow^{f.d.d.} X$ to indicate that all finite dimensional distributions of $(X^n_t)_{0 \le t \le 1}$ converge to those of $(X_t)_{0 \le t \le 1}$.

The following theorem holds true:

Theorem. Let (M^n) be a sequence of martingales, and M a continuous martingale, and suppose that the following integrability condition is satisfied:

(1) all random variables $\left(\sup_{0 \le t \le 1} |M_t^n|\right)$, $n = 1, 2, \ldots$ are uniformly integrable.

Then the following statements are equivalent:

- (a) $M^n \Longrightarrow^S M$,
- (b) $M^n \Longrightarrow^{f.d.d.} M$,
- (c) $M^n \Longrightarrow^{MZ} M$.

The implication $(a) \Longrightarrow (b)$ is quite obvious, since Skorokhod convergence implies convergence of finite dimensional distributions for all continuity points of M (see [4]).

The implications $(b)\Longrightarrow(c)$ is an easy consequence of the results of Meyer–Zheng: in fact the sequence (M^n) is "tight" for the MZ-topology ([6] p. 368) and, if X is a limit process, there exists ([6] p. 365) a subsequence (M^{n_k}) and a set $I\subset [0,1]$ of full Lebesgue measure such that all finite dimensional distributions $(M^{n_k}_t)_{t\in I}$ converge to those of $(X_t)_{t\in I}$: necessarily $\mathbf{P}^X=\mathbf{P}^M$.

Aldous (in [2]) gives a proof of the implication $(b) \Longrightarrow (a)$, but (although he does not mention the MZ-topology) the implication $(c) \Longrightarrow (a)$ is more or less implicit in his paper (see [2] p. 591).

The purpose of this paper is to give a proof of the implication $(c) \Longrightarrow (a)$, completely different form the Aldous' original one and strictly in the spirit of the paper of Meyer–Zheng; I hope that this contributes also to a better knowledge of the result of "Stopping times and tightness II" ([2]), which is in my opinion very important and seems to be almost unknown.

The proof will be postponed after some remarks.

Remark 1. I want to point out that Aldous' proof of the implication $(b) \Longrightarrow (a)$ requires the following weaker integrability condition:

(2) all random variables M_1^n , $n=1,2,\ldots$ are uniformly integrable. Condition (2) implies that all r.v. of the form M_T^n , $n=1,2,\ldots$, with T a natural stopping time for M^n , are uniformly integrable; instead our proof needs a more stringent condition, i.e. that all r.v. of the form M_S^n , $n=1,2,\ldots$, with S a random variable in [0,1], are uniformly integrable.

Remark 2. The extension of the Theorem to processes whose time interval is $[0,+\infty)$ is straightforward: in that case the correct hypothesis is that, for every fixed t, the r.v. $\sup_{0 \le s \le t} |M_s^n|$, $n=1,2,\ldots$ are uniformly integrable.

In fact, if the limit function f is continuous, $f_n \to f$ for the S-topology (respectively the MZ-topology) on $\mathbf{D}(\mathbf{R}^+;\mathbf{R})$ if and only if the restrictions of f_n to every finite time interval converge to those of f (for the S- or the MZ-topology).

Remark 3. The Theorem fails to be true if the limit martingale M is not continuous ([2] p. 588), and fails for more general processes, e.g. for supermartingales.

Let indeed T be a Poisson r.v. and put, for every n:

$$X^n_t \,=\, \left(I_{\{t\geq T\}} \,-\, t\wedge T\right) \,-\, n\left(\left(t-T\right)I_{\{t\geq T\}} \,\wedge\, 1\right) \ .$$

The processes X^n are supermartingales whose paths converge in measure (but not uniformly) to the paths of the continuous supermartingale $X_t = -(t \wedge T)$.

Remark 4. Suppose that the processes X^n are supermartingales, and consider their Doob-Meyer decompositions $X^n = M^n - A^n$. If separately $M^n \Longrightarrow^{MZ} M$ and the martingale M is continuous, and if $A^n \Longrightarrow^{MZ} A$ and the increasing process A is continuous, then $X^n \Longrightarrow^S X = M - A$ (remark that, for monotone processes, convergence in the MZ-sense to a continuous limit implies convergence for the S-topology).

An application of the latter result can be found in [7], theorem 5.5.

The proof of the implication $(c) \Longrightarrow (a)$ of the Theorem is rather technical, and will be divided in several steps.

Step 1. Given $\epsilon > 0$, there exists $\delta > 0$ such that, if S is a r.v. with values in [0,1] and $0 \le d \le \delta$:

$$(3) \qquad \qquad \mathsf{E}\left[|M_{S+d} - M_S|\right] \le \epsilon \ .$$

This is an easy consequence of the path-continuity of the limit process M, and of the integrability of $M^* = \sup_{0 \le t \le 1} |M_t|$. Remark that the function $f \to \sup_{0 \le t \le 1} |f(t)|$ is lower semi-continuous on $\mathbb D$ endowed with the topology of convergence in measure (i.e. the MZ–topology); therefore the integrability of M^* is a consequence of condition (1) of the theorem.

Step 2. Suppose that (a) is false; then the sequence does not verify Aldous' tightness condition ([1] p. 335, see also [4]); therefore there exists $\epsilon > 0$ such that for every $\delta > 0$ it is possible to determine a subsequence n_k and, for every k, a natural stopping time T_k (i.e. a stopping time for the filtration generated by M^{n_k}) and $0 < d_k \le \delta$ such that

(4)
$$\mathsf{E}^{n_k} \left[|M_{T_k+d_k}^{n_k} - M_{T_k}^{n_k}| \right] \ge \epsilon.$$

(In the sequel, for the sake of simplicity of notations, we will assume that indices have been renamed so that the whole sequence verifies (4)). We choose δ such that, for any r.v. S whatsoever, we also have (step 1) $\mathbb{E}[|M_{S+2\delta} - M_S|] \leq \frac{\epsilon}{4}$.

Step 3. There exists a random variable T with values in [0,1] such that (M^n, T_n) converge in distribution to (M,T) on the space $D([0,1], \mathbb{R}^+) \times [0,1]$ equipped with the product topology (D being equipped with the MZ-topology).

In fact the laws of (M^n, T_n) are evidently tight since the laws of M^n are tight on D ([6] p. 368); we point out that the limit r.v. T is not a natural stopping time for the stochastic process M (but it can be proved that M is a martingale for the canonical filtration on $D \times [0, 1]$, i.e. the smallest filtration that makes M adapted and T a stopping time).

Step 4. For c and d in [0,1], we have the inequality

(5)
$$\mathsf{E}^{n}\left[\left|M_{T_{n}+\delta+c}^{n}-M_{T_{n}-d}^{n}\right|\right] \geq \frac{\varepsilon}{2} \; .$$

(It is technically convenient to regard each process M as extended to [-1,2] by putting $M_t = M_0$ for t < 0 and $M_t = M_1$ for t > 1: this enables us to write $M_{T+\delta}$ instead of $M_{(T+\delta) \wedge 1}$.)

Concerning the inequality (5), firstly we note that

$$\left(M_{T_n+d_n}^n - M_{T_n}^n\right) = \mathbb{E}^n \left[M_{T_n+\delta+c}^n - M_{T_n}^n \middle| \mathcal{F}_{T_n+d_n}\right]$$

and therefore

$$\mathsf{E}^n \left[\left| M^n_{T_n + \delta + c} - M^n_{T_n} \right| \right] \ge \mathsf{E}^n \left[\left| M^n_{T_n + d_n} - M^n_{T_n} \right| \right] \ge \epsilon.$$

Then we remark that (T_n-c) is not a stopping time, but the r.v. $M^n_{T_n-c}$ is \mathcal{F}_{T_n} —measurable: in fact $M^n_{T_n-c}.I_{\{T_n\leq t\}}=M^n_{(T_n\wedge t)-c}.I_{\{T_n\leq t\}}$ and $(T_n\wedge t-c)$ is \mathcal{F}_t —measurable.

Let $X=\left(M^n_{T_n+\delta+c}-M^n_{T_n}\right)$, $Y=\left(M^n_{T_n}-M^n_{T_n-c}\right)$ and $\mathcal{G}=\mathcal{F}_{T_n}\colon Y$ is \mathcal{G} -adapted and $\mathsf{E}[X|\mathcal{G}]=0$.

We remark that $\mathsf{E}[X^+|\mathcal{G}]=\mathsf{E}[X^-|\mathcal{G}]=\frac{1}{2}\mathsf{E}[|X||\mathcal{G}]$, and that $|X+Y|\geq X^+.I_{\{Y\geq 0\}}+X^-.I_{\{Y<0\}}$.

One gets $\mathsf{E}\big[|X+Y|\,\big|\mathcal{G}\big] \geq \frac{1}{2}\,\mathsf{E}\big[|X|\big|\mathcal{G}\big]$; and, taking expectations, inequality (5).

Step 5. There exists a subsequence and a set $I \subset [-1,1]$ of full Lebesgue measure such that the finite dimensional distributions of $(M_{T_n+t}^n)_{t\in I}$ converge to those of $(M_{T+t})_{t\in I}$.

The proof of this step is a slight modification of the argument given in [6] (p. 364): Dudley's extension of the Skorokhod representation theorem implies that one can find on some probability space $(\Omega, \mathcal{F}, \mathbf{P})$ some random variables (X^n, S_n) and (X, S) with values in $\mathbf{D} \times [0, 1]$ such that the laws of (X^n, S_n) (resp. (X, S)) are equal to those of (M^n, T_n) (resp. (M, T)) and that, for almost all ω , $(X^n(\omega), S_n(\omega))$ converge to $(X(\omega), S(\omega))$: to be accurate, the "paths" $t \to (X_t^n(\omega))$ converge in measure to the path $t \to (X_t(\omega))$ and $S_n(\omega)$ converge to $S(\omega)$.

We remark that the Skorokhod theorem cannot be applied directly since **D** is not a Polish space ([6] p. 372), but Dudley's extension works well (see [3]).

By substituting X^n with $\operatorname{arctg}(X^n)$, we can suppose that X^n and X are uniformly bounded: therefore we have

(6)
$$\lim_{n \to \infty} \left(\int_{-1}^{+1} dt \int_{\Omega} \left| X_{T_n(\omega)+t}^n(\omega) - X_{T(\omega)+t}(\omega) \right| d\mathbb{P}(\omega) \right) = 0.$$

By taking a subsequence, we find that for every t in a set $I \subset [-1, 1]$ of full Lebesgue measure,

(7)
$$\lim_{n \to \infty} \int_{\Omega} \left| X_{T_n(\omega)+t}^n(\omega) - X_{T(\omega)+t}(\omega) \right| d\mathbf{P}(\omega) = 0.$$

Hence one gets easily the convergence of finite dimensional distributions of $\left(M^n_{T+t}\right)_{t\in I}$.

Step 6. We choose $0 \le d, c \le 1$ such that $d + c < \delta$ and that $(M_{T_n + \delta + c}^n, M_{T_n - d}^n)$ converge in distribution to $(M_{T + \delta + c}, M_{T - d})$; since the r.v. involved are uniformly integrable, the inequality (5) gives in the limit

$$\mathsf{E}\big[\left|M_{T+\delta+c}-M_{T-d}\right|\big]\geq\frac{\varepsilon}{2}$$

and finally we have a contradiction.

References

- [1] Aldous D.: Stopping Times and Tightness. Ann. Prob. 6, 335-340 (1979)
- [2] Aldous D.: Stopping Times and Tightness II. Ann. Prob. 17, 586-595 (1989)
- [3] Dudley R.M.: Distances of Probability measures and Random Variables. Ann. of Math. Stat. 39, 1563-1572 (1968)
- [4] Jacod J., Shiryaev A.N.: Limit theorems for stochastic processes. Berlin, Heidelberg, New York: Springer 1987.
- [5] Kurtz T.G.: Random time changes and convergence in distribution under the Meyer-Zheng conditions Ann. Prob. 19, 1010-1034 (1991)
- [6] Meyer P.A., Zheng W.A.: Tigthness criteria for laws of semimartingales. Ann. Inst. Henri Poincaré Vol. 20 No. 4, 353–372 (1984)
- [7] Mulinacci S., Pratelli M.: Functional convergence of Snell envelopes: Applications to American options approximations. Finance Stochast. 2, 311–327 (1998)