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An alternative proof of a theorem of Aldous

concerning convergence in distribution for martingales.

Maurizio Pratelli

We consider regular right continuous stochastic processes X = de-
fined on the finite time interval [0,1]: let P~ be the distribution of X on the
canonical Skorokhod space D = ® ( (0,1~; R) of "cadlag" paths.

We consider on D , besides the usual Skorokhod topology referred as S-topology
(Jacod-Shiryaev is perhaps the best reference for our purposes, see [4]), the "pseudo-
path" or MZ-topology: we refer to the paper of Meyer-Zheng ([6]) for a complete
account of this rather neglected topology (see also Kurtz [5]).

We will use the notation Xn ~S X (respectively X’~ X ) to indicate
that the probabilities converge strictly to P~ when the space D is endowed
respectively with the S- or the MZ-topology. We will write also X’~ to
indicate that all finite dimensional distributions of converge to those of

~

The following theorem holds true:

Theorem. Let be a sequence of martingales, and M a continuous mar-
tingale, and suppose that the following integrability condition is satisfied:

(I) all random variables = 1, 2, ... are uniformly inte-
grable.
Then the following statements are equivalent:

(a) Mn ~S M,

(b) Mn ~f.d.d. M, 
(c) M. .

The implication (a)====~(~) is quite obvious, since Skorokhod convergence implies
convergence of finite dimensional distributions for all continuity points of M (see [4]).
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The implications (6)==~(c) is an easy consequence of the results of Nleyer-
Zheng : in fact the sequence is "tight" for the MZ-topology ([6] p. 368) and,
if X is a limit process, there exists ([6] p. 365) a subsequence and a set
I C [0,1] of full Lebesgue measure such that all finite dimensional distributions

converge to those of necessarily = 
.

Aldous (in [2]) gives a proof of the implication (b) ====~ (a), but (although he does
not mention the MZ-topology) the implication (c) ~(a) is more or less implicit in
his paper (see [2] p. 591).

The purpose of this paper is to give a proof of the implication (c) ===~ (a) ,
completely different form the Aldous’ original one and strictly in the spirit of the
paper of Nleyer-Zheng; I hope that this contributes also to a better knowledge of
the result of "Stopping times and tightness II" ([2]), which is in my opinion very
important and seems to be almost unknown.

The proof will be postponed after some remarks.

Remark 1. I want to point out that Aldous’ proof of the implication (b) =~ (a)
requires the following weaker integrability condition:

(2) all random variables iVIr , n = 1,2,... are uniformly integrable.
Condition (2) implies that all r.v. of the form Mp , n =1, 2, ..., with T a natural
stopping .time for , are uniformly integrable; instead our proof needs a more
stringent condition, i.e. that all r.v. of the form Ms , n =1, 2, ..., with S a random
variable in ~0,1~ , are uniformly integrable.

Remark 2. The extension of the Theorem to processes whose time interval is

[0, +oo) is straightforward: in that case the correct hypothesis is that, for every
fixed t, the r.v. ~ , n =1, 2, ... are uniformly integrable.

In fact, if the limit function f is continuous, --~ f for the S-topology (respec-
tively the MZ-topology) on D(R+ ; R) if and only if the restrictions of f n to every
finite time interval converge to those of f (for the S- or the MZ-topology).

Remark 3. The Theorem fails to be true if the limit martingale NI is not continuous
([2] p. 588), and fails for more general processes, e.g. for supermartingales.

Let indeed T be a Poisson r.v. and put, for every n : :

Xt = t A T) - n 1) .
The processes X’~ are supermartingales whose paths converge in measure (but not
uniformly) to the paths of the continuous supermartingale Xt = -(t A T). .

Remark 4. Suppose that the processes Xn are supermartingales, and consider
their Doob-Meyer decompositions X~ = . If separately M’~ M

and the martingale NI is continuous, and if A’~ M Z A and the increasing process
A is continuous, then X’~ ~S X = NI - A (remark that, for monotone processes,
convergence in the MZ-sense to a continuous limit implies convergence for the S-
topology).
An application of the latter result can be found in [7], theorem 5.5 .
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The proof of the implication (c) ====~ (a) of the Theorem is rather technical, and
will be divided in several steps.

Step 1. Given f > 0, there exists b > 0 such that, if S is a r.v. with values in [0,1]

(3) 6. .

This is an easy consequence of the path-continuity of the limit process M, and of the
integrability of AT = . Remark that the function f - 
is lower semi-continuous on D endowed with the topology of convergence in mea-
sure (i.e. the lVIZ-topology); therefore the integrability of NI* is a consequence of
condition (1) of the theorem.

Step 2. Suppose that (a) is false; then the sequence does not verify Aldous’ tightness
condition ([1] p. 335, see also [4]); therefore there exists E > 0 such that for every
6 > 0 it is possible to determine a subsequence nk and, for every k ; ~ a natural
stopping time Tk (i.e. a stopping time for the filtration generated by Mnk ) and
0  d,~  b such that

(4) . Enk [ ( I ~ ~ E .
(In the sequel, for the sake of simplicity of notations, we will assume that indices
have been renamed so that the whole sequence verifies (4)). We choose 8 such that,
for any r.v. S whatsoever, we also have (step 1) .

Step 3. There exists a random variable T with values in [0,1] such that (Mn, Tn)
converge in distribution to (NI,T) on the space ®(~0, lj,~+) x (o,1~ equipped with
the product topology (D being equipped with the MZ-topology).

In fact the laws of (Mn, Tn) are evidently tight since the laws of M’~ are tight
on D ([6] p. 368); we point out that the limit r.v. T is not a natural stopping time
for the stochastic process M (but it can be proved that M is a martingale for the
canonical filtration on D x [0,1], i.e. the smallest filtration that makes M adapted
and T a stopping time).

Step 4. For c and d in [0,1], we have the inequality

(5) E~ 

(It is technically convenient to regard each process M as extended to [-1, 2] by
putting Mt = Mo for t  0 and Jvlt = M1 for t > 1: this enables us to write MT+6
instead of 

Concerning the inequality (5), firstly we note that

= En ~Tn J

and therefore

.. .
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Then we remark that (Tn - c) is not a stopping time, but the r.v. is

FTn-measurable: in fact - and (Tn I1 t - c) is

3lt-measurable.
Let X = , Y = {MnTn - MnTn-c) and 9 = FTn : Y is G_

adapted and = 0. 

We remark that = = 2 E ~I~YI I~~ . and that X + 
+ 

One gets E [ IX + ; and, taking expectations, inequal-
ity (5).

Step 5. There exists a subsequence and a set I C ~-1. I) of full Lebesgue measure
such that the finite dimensional distributions of converge to those of

The proof of this step is a slight modification of the argument given in [6]
(p. 364): Dudley’s extension of the Skorokhod representation theorem implies that
one can find on some probability space (5~,.~, P) some random variables (xn, Sn)
and (X, S) with values in D x [0,1] such that the laws of (xn, Sn) (resp. (X, S)) are
equal to those of Tn) (resp. (Nl, T) and that, for almost all w , (w), Sn (ú) ) )
converge to (X (w), S(w)) : to be accurate, the "paths" t --~ (Xt (w)) converge in
measure to the path t -~ (Xt(w)) and Sn(w) converge to S(w) . .

We remark that the Skorokhod theorem cannot be applied directly since D is
not a Polish space ([6] p. 372), but Dudley’s extension works well (see [3]).

By substituting Xn with we can suppose that X’~ and X are uni-

formly bounded: therefore we have

(6) lim = 0 . .

By taking a subsequence, we find that for every t in a set I C ~-1, l~ of full Lebesgue
measure,

(7) ~ ~ ~(~M - dP(w) = 0 .

Hence one gets easily the convergence of finite dimensional distributions of

(MnT+t)t~I.

Step 6. We choose 0  d, c  1 such that d + c  b and that 
converge in distribution to MT-d); since the r.v. involved are uniformly
integrable, the inequality (5) gives in the limit

and finally we have a contradiction.
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