Some calculations for perturbed brownian motion
Séminaire de probabilités de Strasbourg, Tome 32 (1998), pp. 231-236.
@article{SPS_1998__32__231_0,
     author = {Doney, R.A.},
     title = {Some calculations for perturbed brownian motion},
     journal = {S\'eminaire de probabilit\'es de Strasbourg},
     pages = {231--236},
     publisher = {Springer - Lecture Notes in Mathematics},
     volume = {32},
     year = {1998},
     mrnumber = {1655296},
     zbl = {0911.60067},
     language = {en},
     url = {http://www.numdam.org/item/SPS_1998__32__231_0/}
}
TY  - JOUR
AU  - Doney, R.A.
TI  - Some calculations for perturbed brownian motion
JO  - Séminaire de probabilités de Strasbourg
PY  - 1998
SP  - 231
EP  - 236
VL  - 32
PB  - Springer - Lecture Notes in Mathematics
UR  - http://www.numdam.org/item/SPS_1998__32__231_0/
LA  - en
ID  - SPS_1998__32__231_0
ER  - 
%0 Journal Article
%A Doney, R.A.
%T Some calculations for perturbed brownian motion
%J Séminaire de probabilités de Strasbourg
%D 1998
%P 231-236
%V 32
%I Springer - Lecture Notes in Mathematics
%U http://www.numdam.org/item/SPS_1998__32__231_0/
%G en
%F SPS_1998__32__231_0
Doney, R.A. Some calculations for perturbed brownian motion. Séminaire de probabilités de Strasbourg, Tome 32 (1998), pp. 231-236. http://www.numdam.org/item/SPS_1998__32__231_0/

[1] J. Azéma and M. Yor. Une solution simple au problème de Skorokhod. Sém. de Prob. XIII, Lecture notes in Mathematics, 721, 90-115, Springer, 1978. | Numdam | MR | Zbl

[2] P. Carmona, F. Petit, and M. Yor. Some extensions of the arc-sine law as (partial) consequences of the scaling property of Brownian motion. Prob. Th. and Rel. Fields, 100, 1-29, 1994. | MR | Zbl

[3] P. Carmona, F. Petit, and M. Yor. Beta variables as the time spent in [0, ∞) by certain perturbed Brownian motions. J.London Math. Soc.,(to appear,1997). | MR | Zbl

[4] L. Chaumont and R.A. Doney. Applications of a path decomposition for doubly perturbed Brownian motion. Preprint, 1997.

[5] B. Davis. Weak limits of perturbed random walks and the equation Yt = Bt + α sups≤tYs + β infs≤tYs. Ann. Prob. 24, 2007-2017, 1996. | Zbl

[6] R.A. Doney, J. Warren, and M. Yor. Perturbed Bessel processes. This volume. | Numdam | Zbl

[7] F. Petit. Sur les temps passé par le mouvement brownien au dessus d'un multiple de son supremum, et quelques extensions de la loi de l'arcsinus. Thèse de doctorat de l'université Paris 7, 1992.

[8] M. Perman and W. Werner. Perturbed Brownian motions. Prob. Th. and Rel. Fields, 108, 357-383, 1997. | MR | Zbl

[9] D. Revuz and M. Yor. Continuous Martingales and Brownian Motion. .Springer-Verlag , Berlin, 1991. | MR | Zbl

[10] W. Werner. Some remarks on perturbed Brownian motion. Sém. de Prob., Lecture notes in Mathematics, 1613, 37-42, Springer, 1995. | Numdam | MR | Zbl

[11] M. Yor.Some aspects of Brownian motion, part I; some special functionals.Lectures in Mathematics, Birkhäuser, ETH Zürich, 1992. | MR | Zbl