@article{SPS_1997__31__40_0, author = {Mazet, Olivier}, title = {Classification des semi-groupes de diffusion sur $\mathbb {R}$ associ\'es \`a une famille de polyn\^omes orthogonaux}, journal = {S\'eminaire de probabilit\'es de Strasbourg}, pages = {40--53}, publisher = {Springer - Lecture Notes in Mathematics}, volume = {31}, year = {1997}, mrnumber = {1478714}, zbl = {0883.60072}, language = {en}, url = {http://www.numdam.org/item/SPS_1997__31__40_0/} }
TY - JOUR AU - Mazet, Olivier TI - Classification des semi-groupes de diffusion sur $\mathbb {R}$ associés à une famille de polynômes orthogonaux JO - Séminaire de probabilités de Strasbourg PY - 1997 SP - 40 EP - 53 VL - 31 PB - Springer - Lecture Notes in Mathematics UR - http://www.numdam.org/item/SPS_1997__31__40_0/ LA - en ID - SPS_1997__31__40_0 ER -
%0 Journal Article %A Mazet, Olivier %T Classification des semi-groupes de diffusion sur $\mathbb {R}$ associés à une famille de polynômes orthogonaux %J Séminaire de probabilités de Strasbourg %D 1997 %P 40-53 %V 31 %I Springer - Lecture Notes in Mathematics %U http://www.numdam.org/item/SPS_1997__31__40_0/ %G en %F SPS_1997__31__40_0
Mazet, Olivier. Classification des semi-groupes de diffusion sur $\mathbb {R}$ associés à une famille de polynômes orthogonaux. Séminaire de probabilités de Strasbourg, Tome 31 (1997), pp. 40-53. http://www.numdam.org/item/SPS_1997__31__40_0/
[1] Sur l'identité de Bougerol pour les fonctionnelles exponentielles du mouvement Brownien avec drift. A paraître, 1996. | MR | Zbl
, , and .[2] La propriété de sous-harmonicité des diffusions dans les variétés. In Séminaire de probabilité XXII, Lectures Notes in Mathematics, volume 1321, pages 1-50. Springer-Verlag, 1988. | Numdam | MR | Zbl
.[3] L'hypercontractivité et son utilisation en théorie des semi-groupes. In Lectures on Probability Theory, volume 1581. Springer-Verlag, 1994. | MR | Zbl
.[4] Remarques sur les semi-groupes de Jacobi. In Hommage à P.A. Meyer et J. Neveu, volume 236, pages 23-40. Astérisque, 1996. | Numdam | MR | Zbl
.[5] Hypercontractivité de semi-groupes de diffusion. C.R.Acad. Paris, 299, Série I(15):775-778, 1984. | MR | Zbl
and .[6] Sturm-Liouville and heat equations whose eigenfunctions are ultra-spherical polynomials or associated Bessel functions. Proc. Conf. Differential Equations, pages 23-48, 1955. | MR | Zbl
.[7] The parabolic differential equations and the associated semi-groups of transformations. Ann. of Math., 55:468-519, 1952. | MR | Zbl
.[8] Diffusion processes in one dimension. Trans. Amer. Math. Soc., 77:1-31, 1954. | MR | Zbl
.[9] Positive definite kernels on homogeneous spaces and certain stochastic processes related to Lévy's Brownian motion of several parameters. Ann. Inst. Henri Poincaré, III(2):9-226, 1967. | Numdam | MR | Zbl
.[10] Banach algebras for Jacobi series and positivity of a kernel. Ann. of Math., 2(95):261-280, 1972. | MR | Zbl
.[11] Diffusion processes and their sample paths, volume 125. Springer-Verlag, 1965. | Zbl
and .[12] Classical diffusion processes and total positivity. Journal of mathematical analysis and applications, 1:163-183, 1960. | MR | Zbl
and .[13] Jacobi functions and analysis on nomcompact semisimple Lie groups. In R.A. Askey et al. (eds.), editor, Special functions: group theoretical aspects and applications, pages 1-85. 1984. | MR | Zbl
.[14] An example in the theory of hypercontractive semigroups. Proc. A.M.S., 94:87-90, 1985. | MR | Zbl
and .[15] Note sur le processus d'Ornstein-Uhlenbeck. In Séminaire de probabilités XVI, volume 920, pages 95-133. Springer-Verlag, 1982. | Numdam | MR | Zbl
.[16] Probabilistic properties of bilinear expansions of Hermite polynomials. Teor. Verujatnost. i Primenen, 12:470-481, 1967. | MR | Zbl
and .[17] Bessel diffusions as a one-parameter family of diffusion processes. Z. Wahrscheinlichkeitstheorie verw. Geb., 27:37-46, 1973. | MR | Zbl
and .[18] Introduction to Fourier Analysis on Euclidean Spaces. Princeton University Press, 1971. | MR | Zbl
and .[19] Probability Theory: an analytic view. Cambridge University Press, 1993. | MR | Zbl
.[20] Orthogonal Polynomials. American Mathematical Society, 4th edition, 1975. | MR
.[21] Two-point homogeneous spaces. Annals of Mathematics, 55:177-191, 1952. | MR | Zbl
.[22] The construction of a class of stationary Markov processes. Amer. Math. Soc., Proc. of the XVIth Symp. of App. Math., pages 264-276, 1964. | MR | Zbl
.[23] Functional Analysis. Springer-Verlag, 1968.
.