@article{SPS_1997__31__232_0, author = {Jacod, Jean}, title = {On continuous conditional gaussian martingales and stable convergence in law}, journal = {S\'eminaire de probabilit\'es de Strasbourg}, pages = {232--246}, publisher = {Springer - Lecture Notes in Mathematics}, volume = {31}, year = {1997}, mrnumber = {1478732}, zbl = {0884.60038}, language = {en}, url = {http://www.numdam.org/item/SPS_1997__31__232_0/} }
TY - JOUR AU - Jacod, Jean TI - On continuous conditional gaussian martingales and stable convergence in law JO - Séminaire de probabilités de Strasbourg PY - 1997 SP - 232 EP - 246 VL - 31 PB - Springer - Lecture Notes in Mathematics UR - http://www.numdam.org/item/SPS_1997__31__232_0/ LA - en ID - SPS_1997__31__232_0 ER -
%0 Journal Article %A Jacod, Jean %T On continuous conditional gaussian martingales and stable convergence in law %J Séminaire de probabilités de Strasbourg %D 1997 %P 232-246 %V 31 %I Springer - Lecture Notes in Mathematics %U http://www.numdam.org/item/SPS_1997__31__232_0/ %G en %F SPS_1997__31__232_0
Jacod, Jean. On continuous conditional gaussian martingales and stable convergence in law. Séminaire de probabilités de Strasbourg, Tome 31 (1997), pp. 232-246. http://www.numdam.org/item/SPS_1997__31__232_0/
[1] On mixing and stability of limit theorems. Ann. Probab. 6 325-331. | MR | Zbl
and (1978):[2] Calcul stochastique et problèmes des martingales. Lect. Notes in Math. 714, Springer Verlag: Berlin. | MR | Zbl
(1979):[3] Weak and strong solutions of stochastic differential equations; existence and stability. In Stochastic Integrals, D. Williams ed., Proc. LMS Symp., Lect. Notes in Math. 851, 169-212, Springer Verla: Berlin. | MR | Zbl
and (1981):[4] Une généralisation des semimartingales: les processus admettant un processus à accroissements indépendants tangent. §éminaire Proba. XVIII, Lect. Notes in Math. 1059, 91-118, Springer Verlag: Berlin. | Numdam | MR | Zbl
(1984):[5] Limit Theorems for Stochastic Processes. Springer-Verlag: Berlin. | MR | Zbl
and (1987):[6] On stable sequences of events. Sankya Ser. A, 25, 293-302. | MR | Zbl
(1963):