@article{SPS_1996__30__55_0, author = {Kipnis, Claude and Saada, Ellen}, title = {Un lien entre r\'eseaux de neurones et syst\`emes de particules : un mod\`ele de r\'etinotopie}, journal = {S\'eminaire de probabilit\'es de Strasbourg}, pages = {55--67}, publisher = {Springer - Lecture Notes in Mathematics}, volume = {30}, year = {1996}, mrnumber = {1459476}, zbl = {0856.92001}, language = {en}, url = {http://www.numdam.org/item/SPS_1996__30__55_0/} }
TY - JOUR AU - Kipnis, Claude AU - Saada, Ellen TI - Un lien entre réseaux de neurones et systèmes de particules : un modèle de rétinotopie JO - Séminaire de probabilités de Strasbourg PY - 1996 SP - 55 EP - 67 VL - 30 PB - Springer - Lecture Notes in Mathematics UR - http://www.numdam.org/item/SPS_1996__30__55_0/ LA - en ID - SPS_1996__30__55_0 ER -
%0 Journal Article %A Kipnis, Claude %A Saada, Ellen %T Un lien entre réseaux de neurones et systèmes de particules : un modèle de rétinotopie %J Séminaire de probabilités de Strasbourg %D 1996 %P 55-67 %V 30 %I Springer - Lecture Notes in Mathematics %U http://www.numdam.org/item/SPS_1996__30__55_0/ %G en %F SPS_1996__30__55_0
Kipnis, Claude; Saada, Ellen. Un lien entre réseaux de neurones et systèmes de particules : un modèle de rétinotopie. Séminaire de probabilités de Strasbourg, Tome 30 (1996), pp. 55-67. http://www.numdam.org/item/SPS_1996__30__55_0/
[1] Self-organization and convergence of the one-dimensional Kohonen algorithm with non uniformly distributed stimuli. Stoch. Proc. and Appl., 47, 249-274. | MR | Zbl
et (1993).[2] Existence de processus Markoviens pour des systèmes infinis de particules. Ann. Inst. Henri Poincaré, sect. B, 13, 239-257. | EuDML | Numdam | MR | Zbl
et (1977).[3] A stochastic model of retinotopy: a self-organizing process. Biol. Cybern., 53, 405-411. | MR | Zbl
et (1986).[4] Etude d'un processus d'auto-organisation. Ann. Inst. Henri Poincaré, sect. B, 23, 1-20. | EuDML | Numdam | MR | Zbl
et (1987).[5] Algorithmes stochastiques. Poly. de DEA, univ. de Marne-la-Vallée.
(1994).[6] Probability: Theory and examples. Wadsworth & Brooks /Cole. | Zbl
(1991).[7] Ten Lectures on Particle Systems. Notes du cours d'été de Saint-Flour. | Zbl
(1993).[8] An introduction to probability theory and its applications, vol 1, 3rd edition. Wiley, New York. | MR | Zbl
(1968).[9] About the a.s. convergence of the Kohonen algorithm with a generalized neighbourhood function. Preprint. | MR
et (1994).[10] Self-organized formation of topogically correct feature maps. Biol. Cybern., 43, 59-69. | MR | Zbl
(1982).[11] Self-organization and associative memory. Springer-Verlag, New York. | MR | Zbl
(1984).[12] Interacting particle systems. Springer-Verlag, New-York. | MR | Zbl
(1985).[13] Ergodic theorems for coupled random walks and other systems with locally interacting components. Z. Warsch. Verw. Gebiete, 56, 443-448. | MR | Zbl
et (1981).[14] Infinite systems with locally interacting components. Ann. Probab., 9, 349-364. | MR | Zbl
(1981).[15] Convergence of self-organizing neural algorithms. Neural Networks, 5, 485-493.
et (1992).