@article{SPS_1996__30__108_0, author = {Zheng, Wei-An}, title = {Meyer's topology and brownian motion in a composite medium}, journal = {S\'eminaire de probabilit\'es de Strasbourg}, pages = {108--116}, publisher = {Springer - Lecture Notes in Mathematics}, volume = {30}, year = {1996}, mrnumber = {1459480}, zbl = {0859.60071}, language = {en}, url = {http://www.numdam.org/item/SPS_1996__30__108_0/} }
TY - JOUR AU - Zheng, Wei-An TI - Meyer's topology and brownian motion in a composite medium JO - Séminaire de probabilités de Strasbourg PY - 1996 SP - 108 EP - 116 VL - 30 PB - Springer - Lecture Notes in Mathematics UR - http://www.numdam.org/item/SPS_1996__30__108_0/ LA - en ID - SPS_1996__30__108_0 ER -
Zheng, Wei-An. Meyer's topology and brownian motion in a composite medium. Séminaire de probabilités de Strasbourg, Tome 30 (1996), pp. 108-116. http://www.numdam.org/item/SPS_1996__30__108_0/
[1] Dirichlet forms and structural estimates in discontinuous media,", C.R.Acad.Sci.Paris, t. 313, Sery I, (1991); | MR | Zbl
and , "[2] Discontinuous media and Dirichlet forms of diffusion type", Developments in Partial Differential Equations and Applications to Math. Physics, Plenum Press, New York, (1992); | MR | Zbl
and , "[3] On reflecting diffusion processes and Skorohod decompositions", Prob. Theory and Related Fields, Vol.94, No.3, (1993), 281-315; | MR | Zbl
, "[4] Reflecting Brownian motions: quasimartingales and strong caccioppoli sets", Potential Analysis 2 (1993), p.219-243; | MR | Zbl
, and , "[5] Weak and Variational Methods for Moving Boundary Problems, Pitman Publishing Inc. (1982); | MR | Zbl
and ,[6] Dirichlet forms and Markov Processes, North-Holland, (1985); | MR | Zbl
,[7] Measure Theory and Fine Properties of Functions, CRC Press, (1992); | MR | Zbl
and ,[8] A certain class of diffusion processes associated with nonlinear parabolic equations," Z.Wahrsch. verw. Gebiete, 67, (1984); | MR | Zbl
, "[9] Heat Conduction, Blackwell Scientific Publications, (1987); | MR | Zbl
and ,[10] Random time changes and convergence in distribution under the Meyer-Zheng conditions", the Annals of Prob., (1991), V19, No.3, 1010-1034; | MR | Zbl
, "[11] Linear and Quasilinear Equations of Parabolic Type, AMS, (1968);
, and ,[12] Analytical Heat Diffusion Theory, Academic Press, (1968);
,[13] Note on convergence of Dirichlet processes", Bull. London Math. Soc. 25 (1993), 353-356; | MR | Zbl
and , "[14] A Crossing estimate for the canonical process on a Dirichlet space and a tightness result" , Colloque Paul Levy sur les Processus Stochastiques, Asterisque 157-158 (1988), 249-271; | Numdam | MR | Zbl
and , "[15] Diffusion Processes with Non-smooth Diffusion Coefficients and Their Density Functions", the Proceedings of Edinburgh Mathematical Society, (1990), 231-242; | MR | Zbl
and , "[16] Tightness criteria for laws of semimartingales," Ann. Inst. Henri Poincaré. 20 (1984), No. 4, 357-372; | Numdam | MR | Zbl
and , "[17] Heat Conduction, 2nd ed., John Wiley & Sons, Inc. (1993);
,[18] Continuity of solutions of parabolic and elliptic equations", Amer. J. Math., (1958), 80, 931-954; | MR | Zbl
, "[19] Tightness property for symmetric diffusion processes"Proc. Japan Acad. Ser.A, Math. Sci. , (1988), 64; | MR | Zbl
, "[20] On weak convergence of diffusion processes generated by energy forms", Preprint, 1994; | MR
, "[21] On reflecting Brownian motion - a weak convergence approach, "A. Inst. H. Poincare, (1990), 26, No.3, p.461-488; | Numdam | MR | Zbl
and , "[22] Tightness results for laws of diffusion processes application to stochastic machanics, "A. Inst. H. Poincare, (1985), 21; | Numdam | MR | Zbl
, "[23] Conditional propagation of chaos and a class of quasi-linear PDE", Annals of Probobability, (1965), Vol.23, No.3, 1389-1413. | MR | Zbl
, "