@article{SPS_1995__29__231_0, author = {Burdzy, Krzysztof and Khoshnevisan, Davar}, title = {The level sets of iterated brownian motion}, journal = {S\'eminaire de probabilit\'es de Strasbourg}, pages = {231--236}, publisher = {Springer - Lecture Notes in Mathematics}, volume = {29}, year = {1995}, mrnumber = {1459464}, zbl = {0853.60061}, language = {en}, url = {http://www.numdam.org/item/SPS_1995__29__231_0/} }
TY - JOUR AU - Burdzy, Krzysztof AU - Khoshnevisan, Davar TI - The level sets of iterated brownian motion JO - Séminaire de probabilités de Strasbourg PY - 1995 SP - 231 EP - 236 VL - 29 PB - Springer - Lecture Notes in Mathematics UR - http://www.numdam.org/item/SPS_1995__29__231_0/ LA - en ID - SPS_1995__29__231_0 ER -
Burdzy, Krzysztof; Khoshnevisan, Davar. The level sets of iterated brownian motion. Séminaire de probabilités de Strasbourg, Tome 29 (1995), pp. 231-236. http://www.numdam.org/item/SPS_1995__29__231_0/
[A] The uniform dimension of the level sets of a Brownian sheet, Ann. Prob. 6 509-515. | MR | Zbl
(1978).[B] Iterated Brownian motion and Stable (1/4) subordinator, to appear in Prob. and Stat. Lett. | MR | Zbl
(1995).[B1] Some path properties of iterated Brownian motion. Sem. Stoch. Proc. 1992, 67-87 (Ed. K.L. Chung, E. Çinlar and M.J. Sharpe) Birkhäuser, Boston. | MR | Zbl
(1993).[B2] Variation of iterated Brownian motion. Measure-valued Processes, Stochastic Partial Differential Equations and Interacting Systems, (Ed. D.A. Dawson) CRM Proceedings and Lecture Notes, 5 35-53. | MR | Zbl
(1994).[CsCsFR1] Global Strassen type theorems for iterated Brownian motion, to appear in Stoch. Proc. Theor Appl. | MR | Zbl
, , AND (1995).[CSCSFR2] The local time of iterated Brownian motion, Preprint. | MR
, , AND (1995).[DM] A functional LIL approach to pointwise Bahadur-Kiefer theorems, Prob. in Banach Spaces, 8, 255-266 (eds.: R.M. Dudley, M.G. Hahn and J. Kuelbs) | MR | Zbl
AND (1992).[F] A probabilistic construction of the solution of some higher order parabolic differential equations, Proc. Japan Acad. 55, 176-179. | MR | Zbl
(1979).[HPS] Laws of the iterated logarithm for iterated Wiener processes, to appear in J. Theor. Prob. | MR | Zbl
, AND (1994).[HS] The Csörgö-Révész modulus of non-differentiability of iterated Brownian motion, to appear in Stoch. Proc. Theor Appl.. | MR | Zbl
AND (1994).[IM] Diffusion Processes and Their Sample Paths, Springer, Berlin, Heidelberg. | Zbl
AND (1965).[KL1] Chung's law of the iterated logarithm for iterated Brownian motion, to appear in Ann.Inst. Hen. Poinc.: Prob. et Stat. | Numdam | MR | Zbl
AND (1995).[KL2] The modulus of continuity for iterated Brownian motion, to appear in J. Theoretical Prob. | MR | Zbl
AND (1995).[Mc] A Hölder condition for Brownian local time, J. Math. Kyoto Univ., 1-2, 195-201. | MR | Zbl
(1962).[P] The exact Hausdorff measure of the level sets of Brownian motion, Z. Wahr. verw. Geb. 58, 373-388. | MR | Zbl
(1981).[RY] Continuous Martingales and Brownian Motion, Springer, New York. | MR | Zbl
AND (1991).[S] Lower limits of iterated Wiener processes, to appear in Stat. Prob. Lett. | MR | Zbl
(1994).