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SOME OPERATOR INEQUALITIES

by Yaozhong HU

Introduction. According to a suggestion of Prof. P.A. Meyer, I have collected in this
paper a number of interesting inequalities concerning operators. I have tried to include
useful results, choosing in the literature the simplest proofs.

The author thanks Prof. P.A. Meyer for his careful reading of preliminary versions
of the paper, pointing out several mistakes and simplifying some proofs.

§1. Operator-monotone and operator-convex functions

We denote by 1i a complex Hilbert space with scalar product  . , . . >. . In this
section we assume H is finite dimensional, leaving to the reader the extension to
(bounded) operators on an infinite dimensional space. We assume the reader is familiar
with elementary definitions as positivity, spectrum, trace, etc.

The definition of a continuous function which is monotone non-decreasing (abbrevi-
ated below to monotone) or convex on self-adjoint operators is clear, and recalled below.
Such a function is of course monotone (convex) in the ordinary sense, but this is far
from sufficient. The most important result is Lowner’s theorem ([30], 1934) which gives
an explicit form for the operator monotone (convex) functions.

We denote by T some interval of R and by the set of all operators A
whose spectrum Sp(A) is contained in T. These operators are self-adjoint, and the
description of the set Sp-1(T)

a « Ar,:r >  b )

shows that it is convex.

DEFINITION. A real (Borel) function f defined on T is called operator-monotone if for
(any finite-dimensional Hilbert space ~l and) any two operators A  B E 
on ~l, , we have I(A) _ I(B). . It is called operator-convex, if for any two operators
A, B E we have

(1.1) /(AA+(1-A)B)A/(A)+(1-A)/(J9) , ~ (o  a  1) . .

If f is monotone or convex in T it is so in a smaller interval. On the other hand it is
monotone or convex in the ordinary sense, hence locally bounded. Therefore it can be
regularized by convolution in the usual way, remaining monotone (convex) on a slightly
smaller interval. It will be convenient at some places to deal with C1 or C2 functions,
but the results extend to full generality.

Here is the main theorem in this section. We break it into three statements for
convenience.
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THEOREM 1.1 (Löwner [30]). For every operator-monotone function f on (-1,1), there
exists a (unique ) probability measure p on [-1,1] such that

(1.2) f(t) = f(0) + f’(0) 
1-1 t 1-xt d (x)

.

THEOREM 1.2. If f is operator-convex on T =J -1,1( and f (0) = 0 then g(t) = 
is operator-monotone on T (and conversely).

It follows that :

THEOREM 1.3. For each operator-convex function f on T = (-1,1), , there exists a
(unique) probability measure p. on [-1,1] such that

(1.3) f( t) = f( 0) + f’(0) t + 1-1 tx 1-xt 
d (x) .

It follows in particular that operator-monotone or convex functions are real analytic,
and can be extended analytically outside T. But we will not discuss this important topic
(see Donoghue (15~).

There are several proofs of this celebrated theorem, see (1~, (?~, (13~, (15~, (22~, (26~,
[30], [37] etc. Three remarkable proofs due to Löwner [30], Bendat and Sherman (7J and
Korányi [26]) are included in the book [15]. The proof we give here is adapted from the
last remark in [22], where it is given as a simplification of Korányi’s proof.

Example. We begin by an example of operator-monotone function which will show
the sufhciency of (1.2). First take two operators 0 - a  b, and a > 0. Then we have
0  ~ + a _ a + b, implying I  (a + a)-1/2(.1 + + a)-1/2 , Taking inverses we
get I >_ (a + + b)-1(a + and finally the function I(t) = 1/(.1 + t) is
operator-decreasing. Then 1- a f (t) = + t) is operator-monotone on T = (0, oo(
and the same follows for any homographic function which is increasing on T, and maps
T into itself.

It follows that the mapping (t -1)/(t + 1) is a monotone increasing 1-1 mapping
from Sp-1(0, 00) onto Sp-1)-1,1(. Carrying the result to the new interval we find that
homographic increasing maps of J -1,1( into itself are operator-monotone. This is the
case for with x E~-1,1(, and it follows that (1.2) is indeed operator-monotone.

First characterization of monotone functions. Recall that the Hadamard product
of two matrices (not operators ! ) A = (aij) , B = (bij ) is the matrix A o B = .

Shur’s well known theorem asserts that the Hadamard product of a given matrix A
with an arbitrary positive matrix B is positive if and only if A is positive.

~Ve use in the whole paper the notation

dk
(1.4) Dt f(A, H) = dtk f(A + ,

whenever the right hand side exists. When t is omitted it is meant that t = 0. .
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The operator f (A + tH) is well defined for A, H self-adjoint and f continuous.
Which regularity of f implies that f (A + tH) is, say, differentiable ? Here is a simple
result in that direction. We will need a similar result for second order derivatives, but
the proof is given in a paper in the same volume.

LEMMA 1.4. Let f be a function of class C1 on some open interval T . Then for
A E Sp-1(T) and arbitrary self-adjoint H the derivative D f (A, H) exists. In a
basis where .A is a diagonal matrix with eigenvalues (al, ... an), , this derivative is
the Hadamard product o H where is the matrix with coefficients

(1.5) f[1](A)ij = (f(03BBi) - f(03BBj))/(03BBi - 03BBj)
f’(03BBi) if 03BBi = 03BBj

The function f is operator-monotone on T if and only if we have D f (A, H) > 0 for
and HO. .

PROOF. The crucial point in the proof is that, if f (t) = tic, we may write the matrix
(1.5) as

f[1](A)ij = 03A3k-1p=0 03BBpi03BBk-1-pj.
It is clear that f (A + tH) is well defined for A e and t small enough. When
f (t) = tk all derivatives exist

= .

dt 
, p=o

We take t = 0 and represent operators by matrices in a basis where A is diagonal as
stated. The elements of the last matrix are equal to and we get the
corresponding Hadamard product. Thus the formula is proved for a polynomial. Then it
is extended to by approximation, because the Hadamard product is continuous
on a finite dimensional Hilbert space. Note the Hadamard product is basis dependent,
and no explicit formula is given in an arbitrary basis.

From the Hadamard product formula it follows that .

~ Df(A,H) II _ C~f’~A~H~
where C depends on the dimension of ~l, , IIA is the uniform norm of f’ on the
spectral interval of A. . Then it also follows that (assuming f is defined on IR for

simplicity)
~Dtf(A+tH)~ _ C~f’~~H~

where II f’ II is computed on some large compact set. But then approximating f in C1
norm by polynomials we see that I(A + tH) is continuously differentiable. The last
statement is nearly obvious.

COROLLARY. A function f of class C1 on T is operator monotone if and only if the
kernel

f(x,y) = f(y) - f(x) y - x (f’(x) if y = x)
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is of positive type on T .
This follows at once from the Hadamard product formula, and Shur’s theorem.

Proof of Theorem 1.1. The representation (1.2) will be proved for operator-
monotone functions of class C1. . The extension of the representation to arbitrary
functions will be left to the reader.

We may assume that f (o) = 0 so that g(t) = is continuous. We will need
the following property, to be proved later :

(1.6) the functions are operator-monotone.

Then let us sketch the proof. We consider the reproducing kernel Hilbert space E
associated with the kernel f (x, y) on T =~ -1,1(. That is, we consider the linear space
of measures with finite support in ] -1, 1[ with the scalar product  Ex, êy >= ,

and we complete it. We now define a symmetric bilinear form on the space of finite
measures by the formula  >’= g(x,y), and the fact that f f g is monotone

means that on this subspace we have -  u, u >_  u, u >’ _  u, u > . Therefore there
is an operator G of norm  1 such that  u, v >~== u, Gv > . For t E~ -1,1 ( define
u = (I - tG) ~t Then we have

 u, ~y >_ (7 - ~y >= f (x, y) - 

= 
f(t) - f(y) t - y 

- t 
f(t) t - f(y) y t - y = f(y) y 

= g(y)

Therefore u = g doesn’t depend on t. Consider now the spectral decomposition
G = f 11 sdEB (there may be masses at fl ) and introduce ,the positive measure
.J.L(ds) _ u, dEsu > For (t~  1 I - tG is invertible and we have Et = (I - tG)-lu,
therefore

1-1 (1 - ts)-1 (ds) = u, (I - tG)-1u >= ,~t >= g(t) = f(t)/t
.

Multiplying by t we get Lowner’s representation (1.2).

Operator convex functions.

The following result is theorem 2.1 from [22].
LEMMA 1.5. Let f be continuous on T, , any interval containing 0 . . The following
properties are equivalent :

I) f is operator-convex and f(0)  0. .

2) f (a*xa)  a* f (x) a for ~~ a ~~  1, x e S(T ) .
3) f (a*xa + b*yb)  a* f (x) a + b*yb for a*a + b*b  I , x, y e S(T ) .
4) Like 2), but a is a projection.

PROOF. We consider the operateurs (B given by

- (X 0) ’ ~(:-~). , -(:~) .
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with b = (1 - aa*)1/2, c = (1 - a*a)1/2. Then U and V are unitary (this amounts
to saying ac - ba = 0 = ca* - a*b, and the first equality suffices. We have ah(a*a) =
h(aa* ) a for h(x) = xn , , then for a polynomial, and finally for h(x) = (1- x)1~Z ) Then
we have

y* Xy - .
~ 

bxa bxb 
’ 

~ 

-bxa bxb 
°

If Sp(x) C T, the same is true for X, U*X U, V*XV (we need here to know that 0 e T ). .
If f is operator-convex, we have

(f(a*xa) 0 ) = f (a*xa 0) = f(1 2(U*XU + V*XV))
 + V)

= f (x) ~ v + f (x) ~ V. 2 0 /(0)~+~ ~ 0 

~1 2U* (f(x) 0) U+ 1 2V*(f(x) 0) V

= (a*f(x)a 0) .

In particular, we get f (a*xa)  a* f (x) a. .
It is clear that 2) ~ 4). To show 2) ~ 3), apply 2) in ?~ with

~=~ 0; ’ "=(o J- .
It remains to show that 4) ~ 1). Given z,y e S(T ) and t e [0,1] we put

X = ( ) ,U = () , P = ( )
Then X e S(T ) , U is unitary, thus U* X U E S(T ) , P is a projection. We write
f(PU*XUP) ~ Pf(U*XU)P = PU*/(X) UP whence

(f(tx + (1- t)y) 0) ~ (tf(x) + (1- t)f(y) 0)
and 1) follows.

LEMMA 1.6. J~ A function f is operator-monotone in T =]0, o:[ if and only if h(t) = tf(t)
is operator-convex in T. .

2) Let T =]-1,1[ and f be operator-monotone. Then (t+a) I(t) is operator-convex
in T for 03BB ~ T .

3) Let T =] - 1,1(, assume f is operator-monotone and f (0) = 0, and put
g(t) = . Then f + ag is operator-monotone for t E T .
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PROOF. 1) Assume f is operator-monotone. Let P be a projection. For X E 
we have  X, therefore

 

 X’~2P = P X f(X) P = Ph(X) P

f (PX P)  Ph(X ) P

Here we have used the identity = f(PXP), , which is
proved first for f (t) = tk and extended to continuous f The left hand side is h(PX P)
and it follows that h is operator-convex.

Conversely, assume h is operator-convex. Take X, Y e with X  Y . .

They are invertible, and the operator A = has a norm  1. Writing that

h(A*YA)  h(Y) proves that f (X )  f (Y) .
Let us prove 2). According to 1) t - t f (t -1) is operator-convex on ~0, 2~, hence

t --~ ( 1 + t) f (t) is operator convex on T. Applying this result to the operator-monotone
function t --~ - f (-t) we have that t - -(t + 1) f (-t) is operator-convex. But the

mapping t -~ -t preserves convexity, thus t -~ (t -1) f (t) is operator-convex. Taking
a convex combination we get that (t + A) f is operator convex for A e (-1,1~ . .

To prove 3) - which plays an essential role in the proof of L6wner’s theorem - we
will assume the operator-convex function f on T =] 2014 1,1[ such that /(0) = 0 belongs
to C2. Then g e C1 and it is sufficient to prove that Dg(A, H) > 0 for A e 
and H > 0 small enough. Consider the following operators (B ?-l

X = 
(A  0 0 0) B = ( 0 H H 0) P = (I 0 0 0)

Then we will prove that

PD2f(X,B)P = (Dg(A,H) 0)

Since f is operator-convex, the left hand side is positive, and therefore the result will
follow. To prove this formula, it is sufficient to deal with polynomials, and then with
f (t) = tk , k > 0 . Then we have

= 03A3 XpBXqBXr .

p+q+r=k-2

On the other hand, 0 we have XpBXq = 0. Therefore this sum reduces
to = Applying P on both sides we get the desired
formula.

From 2) and 3), the mapping f (t) H g(t) = f (t)~t sets a 1-1 correspondence between
operator-convex functions on ] - 1,1[ such that f(O) = 0 and operator-monotone
functions. Thus the two remaining parts of the main theorem are proved.
ADDITION. One of the consequences of L6wner’s theorem is that if A > B > 0 we have

Br for 0  r  1. Under special hypotheses on the exponents it is possible to
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prove that > (Furota’s inequality, see additional references at the
end).

§2. Concavity related to the trace

The topics in this section are loosely related to those of the preceding one, by the use
of Pick functions. A Pick function (Donoghue (15)) is a holomorphic function f = u+iv
in the upper half-plane which has a positive (i.e. > 0 ) imaginary part v’. A Herglotz
f unction is defined in the same way, but in the unit disc (Epstein (16) uses this name
also in the upper half-plane). Since v is a positive harmonic function it has a Poisson
representation,

03BD(x,y) = 03B1 + by + y d03B8(t) (t - x)2 + y2
with b > 0, a > 0, and B is a positive measure on 1R such that 1/(1 +t2) is integrable.
Let us write 8 as (1 + t2) p, a bounded measure. We have

(1 + t2) y (t - x
)2

+ y2 = 
m 

1+ tz t - z

and therefore

f(z) = a + bz + ~-~ 1 + tz t - z d03C1(t)
- z

where p is a positive bounded measure, ~m(a) > 0 and b > 0. .
Suppose now p does not charge T = (-1,1) . Then f (z) is meaningful for z e T

real, and in fact can be continued analytically across T Putting t = l/.s we get from
p a bounded measure T on [-1,1] which doesn’t charge 0, and then we have

f(z) = a + bz + 1-1 (s + z)d(s) 1- sz = a’ + bz + 1-1 z(1 + s2)d(s) 1 - sz
where a’ is a new constant with positive imaginary part (the ’ will be omitted from
now on). The unit masses at f: 1 yield the two functions (1 + x)~{ 1- z ) == 1 2014 2z/( 1- z) ,
(z - 1)/(~ + 1) = -1 + 2~/(1 + ?), which are operator-monotone functions. Note also
that allowing T to have a mass at 0 we may take the function bz into the integral, and
then we have the Lowner representation - except that the constant a must be real in
the operator-monotone case.

Now let us quote Epstein’s theorem. Let A be a (complex) C*-algebra ; the
mappings ~e(a) and m( a) are defined as for scalars. Let D be the open set of all
elements a e A such that

for some 9 e (- ~ , z ~ and some ê > 0, , > ~ .

Let Ds be the set of self-adjoint elements of D - they are positive and invertible.
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Let f be a complex valued holomorphic function in D, positively homogeneous of

degree s , 0  s  1, which has the same property as L6wner’s functions : :

If a e D and > 0 (  0 ), then > 0 (  0 ).

By continuity, f is real on D~. ..
THEOREM 2.1, , Under these hypotheses, the restriction of f to Ds is concave.

EXAMPLES 2.2. Take for A the algebra of matrices. For B fixed, the following functions
satisfy these hypotheses. In this way, Epstein unifies a number of results of Lieb.

1) f ( A) = Tr exp( B + log A) ( B self-adjoint).

2) f (A) = ( n integer, BO).

3) f (A) = ( B arbitrary, 0  p, q, p + q _ 1 ).
4) f (A) = Tr(ApBAqB*)

, §3. Some trace inequalities

We will now prove some inequalities related to the trace of the operators. First we
have

THEOREM 3.1. If If A and B are two positive operators on some Hilbert space x (of
finite dimension n). Let 0  al ....  an, , 0  ...  bn be their eigenvalues.
Then for m positive integer

n n

(3.1) i    

i=l 
, i=l

REMARK 3.1. The inequality Tr(AB)m  Tr(AmBm) was proved by Lieb and Thirring
[29]. The other parts were proved by Couteur [12] and by Bushell and Trustrum [10].
PROOF. We only prove that Tr(AB)m  Tr(Am Bm) (from (29~). By a unitary
transformation we may suppose that A is diagonal. Put C = Bm > 0 and f (C) =
Tr(AC1/m)m - Tr(AmC). . Let C = D + C’ where D is the diagonal of C, and
Ca = D + ..I C’ = aC + (1- a) D for a e [0, lj . . Put = R(a) . We want to
show that R(l)  0. Now it is elementary to see that R(0)  0 and by the preceding
section, second example in 2.2 we know that R(A) is a concave function. Thus it lies
below its tangent at 0 and it is sufficient to prove that

(3.2) ) da ~ d a=o R ( ) a = 0 . °
Recall that A and D are diagonal and C’ has vanishing diagonal elements. So

d~ =0
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For the other term we have

d d03BB |03BB=0 Tr[A(D + 03BBC’)1/m]m = mTr[AD1/m]m-1 Tr[A d d03BB |03BB=0 (D + 03BBC’)1/m].

We may compute this derivative (since D is diagonal) by the result of section 1 using
Hadamard products, and see its diagonal elements vanish. Thus the trace of the product
with A (diagonal) is 0.

By the same techniques as Lieb and Thirring’s, one can prove
THEOREM 3.2. If A and B are two selfadjoint operators, then

(3.3) TreA+B  Tr(eAeB) .
This inequality was discovered by Golden [18] and Thompson [38] and further studied
by Deift [14], Lenard [27], Thompson [39] etc.
ADDITION. The trace is used in the LP norm of operators, ~A ~p = .

An excellent exposition of the results on these norms, including deep new inequalities
(non-trivial even in the commutative case) can be found in a preprint by Ball, Carlen
and Lieb (see the additional references). .

. §4. Inequalities concerning absolute value

The absolute value of a non-necessarily selfadjoint operator A is defined by 
(A*A)1/z . . Any operator A has a polar decomposition A = with U a partial
isometry. Generally it is not true that  An example (from B. Simon)
is 

’

A = (1 1) B = (0 0)
|A + B| = (2 0) , |A| + |B| = (1 1)

However, we have ~~z is the Hilbert-Schmidt norm, i.e. = Tr(A*A) ).
THEOREM 4.1. For any two (non-necessarily self-adjoint ) operators A and B we have

(4.1) B~~a

and when A and B are selfad joint we have furthermore

(4.2) 
~ 

.

PROOF (from [5] and [6]). First we have the Schwarz inequality :

2  2  + 
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Thus for any X > 0, Y > 0 and Q such that  1 we have

4I Tr(QX Y) I  4 
. 

 

~ 2 Tr(XQ*YQ) + 2 Tr(XY)
~ + 2 Tr(XY)

+ Y2 + XY + YX) = Tr((X + Y)~)
Now let A = UIAI and B = V|B be the polar decompositions of A and B . Applying
the above inequality for X = IAI, Y = I B I and Q = V * U we have .

= 2 Tr(IAI2 + 
> + + |B|)2
= = 

To prove (4.2) it suffices to prove

First we may suppose that A is diagonal A = diag(03BB1, ... , a" ) . Note by bii the diagonal
elements of B and c~= those of IBI. Since B is self-adjoint we have ,

hence c=i > Consequently,

Tr(AB) ._ ~  ~ I
 03A3 |03BBi|cii = Tr |A||B|.

THEOREM 4.2. If f (t) is a non-negative operator-monotone function on (o, oo), then for
A, B > 0 we have .

(4.3) ~ .

PROOF (due to Ando [2]). Let C = A - B. Since C is self-adjoint we have C  ICI
hence 0A=J3+CB+jC’j.So f(A) f(B + ICI) and

f(A)-f(B)_f(B+ICI)-f(B)
and we are reduced to the case where C is positive. By L6wner’s theorem (for the
interval (o, oo( ) we have

(4.4) . f (t) = a + 03B2t + 1-1xt 1 + xtd (x)
for some 03B1,03B2 > 0 and a positive measure  on (0, oo) such that ~0 x 1+x (dx)  oo. .

So it is sufficient to consider the function f (t) = + t) and we may take x = 1. .
Since f (t) =1- (1 + we are reduced to proving that for B, C > 0

(4.5) + 1)-1 _ (B + C + 1)-1~  Tr[l - (C + 1)--1~ , . .
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Put 1/ I + B) = H  1. Then HDH  D for D > 0 and the operator on the left is

H(1 - 1 1 + HCH )H ~ 1 - 1 1 + HCH ~ 
1 - 

1 1+C
.

Then applying Tr we get the result.

5. Grothendieck’s Inequality

Grothendieck’s inequality [19] has been the starting point of the modern theory
of Banach spaces (see the paper by Lindenstrauss and Pelczynsky in the additional
references. For the history see [32]). It has been the subject of many publications ([9],
[20], [21], [25], [31], [32], [33]...). Here we present Krivine’s proof which uses a probability
language and gives the best (known) estimate for the real case Grothendieck constant.
Then we point out an equivalent form which can be extended to the non-commutative
case.

The elementary form of Grothendieck’s inequality is the following : let T be a finite
set, and let C = C(T ) be the finite dimensional space of real valued functions on T with
the 3up norm.

THEOREM 5.1. Let u be a bilinear form on C x C of norm  1

(5.1) u(a, b) _ Y~ u(s, t) a(s) b(t) with .

s,tET 8 ’

There exists an absolute constant K (called the real Grothendieck constant) such that,
if A, B now take values in a real Hilbert space ?~

(5.2) ) ~ u(s, t)  A(s) , B(t) >  K sup IIA(s) II sup ~~ .

S,tET s ’

Replacing real functions and Hilbert spaces by complex ones defines the complex
Grothendieck constant (which is smaller). The exact value of these constants is not
known, though the estimates are rather precise.

The general case is as follows : :
THEOREM 5.1’ . Let S and T be two compact spaces, u a bilinear form of norm  1

on C(S) x C(T) be a real Hilbert space and u be extended to a bilinear form
on (c(s) ® x) x (C(T) ® x) as

u(a 0 h, b ~ k) = u(a, b)  h, k > . .

Then u can be extended to C(S, ~l) x in such a way that

(5.2’) I _ K sup ~~ A(s) II SuP II °

a t
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The fact that S may be different from T is not important. Taking a basis for ~l ,
another way of stating (5.2’) is : given finite families a; E C(S) , bs E C(T ), we have

(5.2") | u(ai,bi)| ~ K sup(03A3i ai(s)2)1/2 sup(03A3i bi(t)2)1/2 .

We will prove the elementary form of the theorem. Working on a finite set instead of
compact spaces will preserve the essential idea of the proof, but spare some technical
details. To help the reader imagine the general proof, we put between braces a few
words which are useless in the finite case. One can also deduce the general case from
the elementary case. ,

We will need some preliminary explanations.
1) Since T is finite, C~C, the set of all functions F(s, t) = 03A3i a=(s) bi(t),( a; bi E C)

is the set of all functions of two variables. If T were compact, it would merely be dense
in C(T x T ) .

2) There is a norm on the space C ~ C, called the projective norm, such that the
conjugate space is that of (bounded) bilinear functionals on C x C with its usual norm.
It can be computed as

(5.3) ~~ F = inf ~t (~ as (~ ~~ bi ~)

over all decompositions F(s, t) = ~i a=(s) bs(t).
3) Let us define another norm on functions of two variables. We denote by £ the set

of all functions F(s t) that can be represented as

t) _ X(s), Y(t) >

for a pair of (continuous) functions X, Y taking values in some Hilbert space and
such that for all s, t ,

(5.4) II X(s) II = ~~ Y(t) ~I = p (some constant) .

The smallest possible value of p2 is denoted ~~ F . Of course it is larger than the
uniform norm of F. We prove a few elementary facts.
- Given then -F (change X - -X ) and t2F E £, (change X - tX

and 
- Given F, F’ E £, , then F + F’ E £ (use X ® X’, Y ® Y’ taking values in ~l ® x’ ).
- Given F, F’ e £, then FF’ E £ (use A’ ~ X’, Y taking values in ~-l ® ~l’ ). .

It is not difhcult to see that ~~ . ~~* is a norm on £. . To cover the general case it is
necessary also to prove that £ is complete (hence a Banach algebra). This is one of the
points we may skip.
- Let F(s, t) = X(s), Y(t) > with (~  o and ~~  T . Then F E £

and (~ F  oT .

To see this, first add to X two vectors ~, r~ orthogonal to each other and to ~l , and
replace X, Y by X(s) + u( s ) ~, , Y(t) + v(t) r~ so that the norms are increased to a, b
without changing  X, Y >. Then replace X, Y by X b/a, Y a/b so that the norms
are equal. .
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- As a consequence, taking ?l = R, F(s, t) = a(s) b(t) belongs to E with
~F~* ~ sups|a(s)|supt|b(t)| .

Then it follows that C ® C c e and the ~~ . ~~~ norm is larger than )). (~* . .
More generally, we get the following result, which will be useful later on : :

(5.5) 
. 

~~ ~i bi ~ ~~ (~i as )~~2 (~ o0 () (~i bl)1/21f .
If we remember now that 1111’ is the conjugate norm of the usual norm of bilinear
functionals, the Grothendieck inequality can be read as : :
THEOREM 5.2. We have on C 0 C 

’

(5.6) .

with K  + = 1, 782....

PROOF. Krivine’s argument relies on the following probabilistic result : let X, Y be two
normalized real jointly Gaussian random variables. Then we have

(5.7) IE[sign X sign Y]  = 2 03C0 arcsin IE[XY] .
It is proved as follows (from [32]). Put 80 = e [7T/2, ?r/2]. Then we may write,
denoting by Z a normalized Gaussian r.v. independent from X

IE[sign X sign Y] =  sign X sign (X sin 03B80 + Z cos 03B80)e-(x2+y2)/2dxdy 203C0

Computing this in polar coordinates we get

sign(cos 03B8) sign(sin(03B8 + 03B80))e-r2/2dr d03B8 203C0

= 1 203C0 203C00 sign(cos 03B8) sign((03B8 + 03B80)) d03B8 = 
203B80 03C0

.

Next, we remark that any Hilbert space 1t is isomorphic to a Hilbert space of Gaussian
random variables on some probability space {St, ,~,1P) . Let F(s, t) belong to C ®C with
a norm ~~ F ~~*  1 (in particular, the uniform norm of F is at most 1). Then since £
is a Banach algebra, for b > 0 sin(aF(s, t)) belongs to ~ with a norm 

~ sin(aF) ~*  sinh a .

Take a  log(1 + B/~)  1, so that sinh a  1. Then sin(aF) has a representation using
normalized Gaussian r.v.’s .

sin(aF(s, t)) = IE[XsYt]

Since a  1, a) F (  ~r/2 and we can invert, computing F(s, t) as

1 a arcsin sin(aF(s,t)) = 03C0 2a IE[singn Xs sign Yt] = 03C0 2a  sign Yt(03C9) dIP(03C9) .

a 2a 2a ~
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On the right hand side we have an average of functions of (s t) depending on w whose
norm !~ . ~!~ is smaller than 1. Thus the norm of F is at most and the theorem
is proved.

Remarks and extensions 
’

We first indicate a consequence of theorem 5.1~. Let /~ ~, be elements of 0(5’), C(T)
(finitely many) with (~ y, ~~~  1 and apply (5.2’~) to the functions a; = f; , b; = asgi
where = 1, and take a supremum over (as). Then we get

(03A3iu(fi,gi)2)1/2 ~ K sup (03A3i fi(s)2)1/2. 
Take now a sup over (gs). Calling U the operator from C(S) to C(T)* associated with
u, this can be written

(~, I~ Ufi I~2)il2 ~ K Sup (~ ~(fi)2)1~2
i P i

where ~ ranges over the unit ball of C(S)* . In the technical language of Banach spaces,
one says that U is a 2-summing operator.

There are other versions of Grothendieck’s theorem. The following one (Theorem 5.5
of [32]) is rather striking. The constant K is the Grothendieck constant.
THEOREM 5.3. Let S and T be two compact spaces, u a bounded bilinear functional
on C(S) x C(T) of norm  1. There exist two probability measures A on S and p. on
T such that

(5.8) I r 9) I ~ K a( f Z)1~2 ~(92 .

Let us show how this implies Theorem (5.1’). Let ( f=) , (gs) be finite sequences of
elements of C(S) C(T ) . Then applying the Schwarz inequality to (5.8), we have

- I ~ u c f ~~ 9 s)I _  ~ ~ c fZ s) 1~2 ~ ~ ~2 t) 1~2 ~ (~ ~ (f~)) 2 i~Z (~‘,~(9=)~ Z l~ZK , : i i i

We may replace each integral by a ~ up since a, ~ are probability laws, and we get (5.2~’) . .
The proof that Theorem (5.2) implies Theorem (5.3) is due to Amemiya and Shiga

(Kodai Math. Sem. Reports, 9,1957) and very interesting. We just sketch it. We begin
with the case of S = T We do not use Grothendieck’s theorem, but only the assumption
(which follows from ~) u ~~*  1, see (5.5)) that for g; e C(S)

(5.9) .

Then Theorem 5.2 links this property to the hypothesis of Theorem 5.3. We will deduce
from (5.9) and the Hahn-Banach theorem the existence of a probability law p. such that

(5.10) .
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For f E C(S) we put

~f ) = inf ( ~~ f ~’ ~= 9i ~~ - ~ ~,s u(9i~ 9i) ~ ) . .
the inf ranging over finite families (9i) E C(S). Then the assumption (5.9) implies that
- ~) f ~~  p( f )  (~ Next p is shown to be a sublinear function (p(t f ) = tp( f ) for
t > 0, + g)  + p(g) and by the Hahn-Banach theorem there exists a linear
functional p dominated by p. The obvious relation p(-  f ) ~ then shows ~
is a positive measure, which then is shown to have a mass  1 and to satisfy (5.10).

It remains to dominate u( f, g) instead of u( f, f ) To this end we put R = S + T
and define a bilinear form 

.

v(f +9~f~ +9~) = 1(u 2 ( .~~9~ ) +n ~ .~~~9 )) ~ f~f~ E C ~ ) S g,g’ ~ E C ~ T )) .

which from (5.5) is easily shown to satisfy (5.9). Therefore there is a probability measure
on R (i.e. a pair of probability measures À on S and p on T, and a number t E ~0,1) )
such that

I ~i + 9i~ fi + 9i) ~ t~(~. i fi ) + (1- 9s ) .

Replace Ii by Cli, by the left hand side does not change. Then minimize over
c to get

2 t(1 - t) ,

and conclude since 2 t( 1- t)  1. .

- On the other hand, Theorem 5.3 can be generalized to the non-commutative analogue
of spaces C(T ) , i. e. C* -algebras. This answered a conjecture of Grothendieck. The first
result in this direction was Pisier [31], under a special assumption on u , which was
lifted by Haagerup [20]. The result is sharp, and thus the "non-commutative complex
Grothendieck constant" is known, while the commutative one is not.
THEOREM 5.4. Let A and fi be two C* -algebras, u a bounded bilinear form on A x a, y
of norm 1. . There exist four states 03BB1, a2 on A, 1, 2 on fi, such that b) I is
dominated by

+ a2(aa*))1~2 + + .

ADDITION. In his proof [31] of the non-commutative extension of Gr.’s theorem, Pisier
has a very interesting lemma, concerning a bounded linear operator u from A to B :
THEOREM. Given elements a= of A we have ( C being a universal constant)

u(ai)*u(ai))1/2 II ~ C H |sup(~ (03A3ia*iai)1/2~ ~ (03A3i aia*i)1/2~).
The proof has been simplifed by Haagerup (additional references), and the result has
been extended in a preprint by Haagerup and Pisier.
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