SÉminaire de probabilités (Strasbourg)

Jean-François Le Gall
 Exponential moments for the renormalized self-intersection local time of planar brownian motion

Séminaire de probabilités (Strasbourg), tome 28 (1994), p. 172-180
http://www.numdam.org/item?id=SPS_1994__28_172_0
© Springer-Verlag, Berlin Heidelberg New York, 1994, tous droits réservés.
L'accès aux archives du séminaire de probabilités (Strasbourg) (http://portail. mathdoc.fr/SemProba/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

Article numérisé dans le cadre du programme

Exponential moments for the renormalized self-intersection

local time of planar Brownian motion

Jean-François Le Gall

```
Laboratoire de Probabilités - Université Paris VI - 4, place Jussieu -
3\mp@code{me}}\mathrm{ Etage - 75252 PARIS CEDEX 05
```

Let $B=\left(B_{t}, t \geq 0\right)$ be a planar Brownian motion with $B_{0}=0$. The renormalized self-intersection local time of B, over the time interval $[0,1]$, is the random variable γ formally defined by

$$
\begin{equation*}
r=\iint_{0 \leq s<t \leq 1}\left(\delta_{0}\left(B_{s}-B_{t}\right)-E\left(\delta_{0}\left(B_{s}-B_{t}\right)\right)\right) d s d t \tag{1}
\end{equation*}
$$

where δ_{0} denotes the Dirac measure at 0 . A rigorous definition of γ was first provided par Varadhan [7] in the more difficult case of the Brownian bridge (see [4] and [8] for simple constructions of γ for Brownian motion). It is also known that :

$$
\begin{equation*}
E(\exp -\lambda \gamma)<\infty \quad, \forall \lambda>0 . \tag{2}
\end{equation*}
$$

This fact is important in order to define the so-called polymer measures

$$
\begin{equation*}
P^{\lambda}(d \omega)=C_{\lambda} \exp (-\lambda \gamma(\omega)) W(d \omega) \tag{3}
\end{equation*}
$$

where $W(d \omega)$ is the (two-dimensional) Wiener measure and C_{λ} is a normalizing constant. Polymer measures correspond to a model of (weakly) self-avoiding Brownian motion.

Recently, there has been some interest in self-attracting models for Brownian motion and random walks (see in particular Bolthausen [1]). In this connection, it appears natural to replace the weight $\exp (-\lambda \gamma(\omega))$ in (3) by $\exp (\lambda \gamma(\omega))$. This motivates the following result, which was suggested by a question of Gordon Slade (personal communication).

Theorem 1 : There exists a constant $\lambda_{0} \in(1, \infty)$ such that

$$
E(\exp \lambda \gamma) \begin{cases}<\infty & \text { if } \lambda<\lambda_{0}, \\ =\infty & \text { if } \lambda>\lambda_{0} .\end{cases}
$$

Remark : Our proof will show that

$$
4 \prod_{j=1}^{\infty}\left(1-2^{-j}\right) \leq \lambda_{0} \leq 16 \pi e^{5} /(\log 2)^{2}
$$

Both these bounds can be improved rather easily.
After the first version of this work had been completed we learnt of an unpublished work of M. Yor [9], who uses a different method based on his approach in [8] to check that $E[\exp \lambda \gamma]<\infty$ for $\lambda>0$ small enough.

Before proving Theorem 1, let us briefly recall the construction of $\boldsymbol{\gamma}$ given in [4]. First consider another planar Brownian motion B^{\prime} with $B_{0}^{\prime}=0$, independent of B. The random variable

$$
\alpha_{0}:=\int_{0}^{1} \int_{0}^{1} \delta_{0}\left(B_{s}-B_{t}^{\prime}\right) d s d t
$$

can be defined as the value at 0 of the continuous density of the random measure on \mathbb{R}^{2}

$$
\begin{equation*}
\mu(g)=\int_{0}^{1} \int_{0}^{1} g\left(B_{s}-B_{t}^{\prime}\right) d s d t \tag{4}
\end{equation*}
$$

(see e.g. [3]). Moreover $\alpha_{0} \in L^{p}$ for every $p<\infty$.
Then, for every integer $n \geq 1$ and for every $k \in\left\{1, \ldots, 2^{n-1}\right\}$, set

$$
A_{k}^{n}=\left[(2 k-2) 2^{-n},(2 k-1) 2^{-n}\right) \times\left((2 k-1) 2^{-n}, 2 k 2^{-n}\right]
$$

From the case of two independent Brownian motions, it is straightforward to define

$$
\alpha\left(A_{k}^{n}\right)=\iint_{A_{k}^{n}} \delta_{0}\left(B_{s}-B_{t}\right) d s d t
$$

The following facts are immediate from the standard properties of Brownian motion.
(i) For every $n \geq 1$, the variables $\alpha\left(A_{1}^{n}\right), \ldots, \alpha\left(A_{2^{n}-1}^{n}\right)$ are independent. (ii) $\alpha\left(A_{k}^{n}\right) \stackrel{(d)}{=} 2^{-n} \alpha_{0}$.

One can then define γ as

$$
\begin{equation*}
\gamma:=\sum_{n=1}^{\infty}\left(\sum_{k=1}^{2^{n-1}}\left(\alpha\left(A_{k}^{n}\right)-E\left(\alpha\left(A_{k}^{n}\right)\right)\right)\right) \tag{5}
\end{equation*}
$$

and, from (i) and (ii), it is easy to verify that the series converges a.s. and in L^{2}.

Lemma 2 : Set $a_{1}=1 / 2, a_{2}=e^{-5}(\log 2)^{2} /(8 \pi)$. There exist two positive constants C_{1}, C_{2} such that for every $p \geq 1$,

$$
C_{2} a_{2}^{p} p!\leq E\left(\left(\alpha_{0}\right)^{p}\right) \leq C_{1} a_{1}^{p} p!
$$

Proof : The upper bound is essentially contained in Rosen [6], formula (2.15). We give the argument for the sake of completeness and also to get an explicit constant. We start from the following identity, which is a special case of formula (2.5) of [3] :

$$
\begin{array}{r}
E\left[\left(\alpha_{0}\right)^{p}\right]=(2 \pi)^{-2 p} \int_{\left(\mathbb{R}^{2}\right)^{p}} d \xi_{1} \ldots d \xi_{p} \int_{[0,1]^{2 p}} d s_{1} \ldots d s_{p} d t_{1} \ldots d t_{p} \\
\quad \times \exp -\frac{1}{2} \operatorname{var}\left(\sum_{j=1}^{p} \xi_{j} \cdot\left(B_{s_{j}}-B_{t}\right)\right)
\end{array}
$$

(to verify that $\mathrm{E}\left[\left(\alpha_{0}\right)^{\mathrm{p}}\right]$ is bounded above by the right side, which is all that we need for the upper bound, write

$$
\alpha_{0}=\lim _{\varepsilon^{\downarrow}} \int_{0}^{1} \int_{0}^{1} d s \operatorname{dt} p_{\varepsilon}\left(B_{s}-B_{t}^{\prime}\right)
$$

where $p_{\varepsilon}(\cdot)$ is the usual Gaussian kernel, express $p_{\varepsilon}(\cdot)$ in terms of its Fourier transform and use Fatou's lemma). Let φ_{p} be the set of all permutations of $\{1, \ldots, p\}$ and for $\sigma \in \varphi_{p}$ set

$$
A_{\sigma}=\left\{\left(s_{1}, \ldots, s_{p}, t_{1}, \ldots, t_{p}\right) ; 0<s_{1}<\ldots<s_{p} \leq 1,0<t_{\sigma(1)}<\ldots<t_{\sigma(p)} \leq 1\right\} .
$$

Then,

$$
\begin{aligned}
E\left[\left(\alpha_{0}\right)^{p}\right]=p!(2 \pi)^{-2 p} \sum_{\sigma \in \varphi_{p}} \int & d \xi_{1} \ldots d \xi_{p} \int_{A_{\sigma}} d s_{1} \ldots d s_{p} d t_{1} \ldots d t_{p} \\
& \times \exp -\frac{1}{2} \operatorname{var}\left(\sum_{j=1}^{p} \xi_{j} \cdot\left(B_{s_{j}}-B_{t_{j}}^{\prime}\right)\right) .
\end{aligned}
$$

$$
\begin{aligned}
& \text { For every fixed } \sigma \in \mathscr{\varphi}_{p} \text {, set } \\
& u_{j}=\sum_{k=j}^{p} \xi_{k}, \quad v_{j}=\sum_{k=j}^{p} \xi_{\sigma(k)}, \quad j \in\{1, \ldots, p\}, \\
& \text { so that, if }\left(s_{1}, \ldots, t_{p}\right) \in A_{\sigma} \text {, } \\
& \operatorname{var}\left(\sum_{j=1}^{p} \xi_{j} \cdot\left(B_{s_{j}}-B_{t}^{\prime}\right)\right)=\operatorname{var}\left(\sum_{j=1}^{p} u_{j} \cdot\left(B_{s_{j}}-B_{s_{j-1}}\right)-\sum_{j=1}^{p} v_{j} \cdot\left(B_{t_{\sigma(j)}^{\prime}}-B_{t_{\sigma(j-1}}^{\prime}\right)\right) \\
& =\sum_{j=1}^{p}\left|u_{j}\right|^{2}\left(s_{j}-s_{j-1}\right)+\sum_{j=1}^{p}\left|v_{j}\right|^{2}\left(t_{\sigma(j)}-t_{\sigma(j-1)}\right)
\end{aligned}
$$

where by convention $s_{0}=t_{\sigma(0)}=0$. However, by the Cauchy-Schwarz inequality, if $\left(s_{1}, \ldots t_{p}\right) \in A_{\sigma}$,

$$
\begin{aligned}
& \int_{\left(\mathbb{R}^{2}\right)} d \xi_{1} \ldots d \xi_{p} \exp -\frac{1}{2}\left(\sum_{j=1}^{p}\left|u_{j}\right|^{2}\left(s_{j}-s_{j-1}\right)+\sum_{j=1}^{p}\left|v_{j}\right|^{2}\left(t_{\sigma(j)}-t_{\sigma(j-1)}\right)\right) \\
& \leq\left(\int d \xi_{1} \ldots d \xi_{p} \exp -\sum_{j=1}^{p}\left|u_{j}\right|^{2}\left(s_{j}-s_{j-1}\right)\right)^{\frac{1}{2}} \\
& \times\left(\int d \xi_{1} \ldots d \xi_{p} \exp -\sum_{j=1}^{p}\left|v_{j}\right|^{2}\left(t_{\sigma(j)}-t_{\sigma(j-1)}\right)\right)^{\frac{1}{2}} \\
& =\pi^{p} \prod_{j=1}^{p}\left((s _ { j } - s _ { j - 1 }) ^ { - 1 / 2 } \left(t_{\sigma(j)^{-t}}{ }_{\left.\sigma(j-1))^{-1 / 2}\right) . ~}^{\text {. }}\right.\right.
\end{aligned}
$$

Hence, by coming back to the previous formula for $E\left[\left(\alpha_{o}\right)^{p}\right]$,

$$
E\left[\left(\alpha_{o}\right)^{p}\right] \leq 2^{-2 p} \pi^{-p}(p!)^{2}\left(\int_{0<s_{1}<\ldots<s_{p} \leq 1} \frac{d s_{1} \ldots d s_{p}}{\left.\sqrt{s_{1}\left(s_{2}-s_{1}\right) \ldots\left(s_{p}^{-s} s_{p-1}\right.}\right)}\right)^{2}
$$

Elementary calculations give

$$
\begin{aligned}
J_{p} & =\int_{0<s_{1}<\ldots<s_{p} \leq 1} \frac{d s_{1} \ldots d s_{p}}{\sqrt{s_{1}\left(s_{2}-s_{1}\right) \ldots\left(s_{p}-s_{p-1}\right)}} \\
& = \begin{cases}\frac{2^{p}}{p \times(p-2) \times \ldots \times 2}\left(\frac{\pi}{2}\right)^{p / 2} & \text { if } p \text { is even } \\
\frac{2^{p}}{p \times(p-2) \times \ldots \times 3 \times 1}\left(\frac{\pi}{2}\right)^{(p-1) / 2} & \text { if } p \text { is odd }\end{cases}
\end{aligned}
$$

which implies

$$
J_{p} \underset{p \rightarrow \infty}{ }\left(\frac{2}{\pi}\right)^{1 / 4} p^{-1 / 4}(2 \pi)^{p / 2}(p!)^{-1 / 2} .
$$

This gives the upper bound of Lemma 2.
For the lower bound, we use another equivalent formula for $E\left[\left(\alpha_{0}\right)^{p}\right]$ (see Proposition 2.1 of [5]). If $\Delta_{p}=\left\{\left(s_{1}, \ldots, s_{p}\right) \in(0, \infty)^{p} ; s_{1}+\ldots+s_{p} \leq 1\right\}$ we have
$E\left[\left(\alpha_{o}^{p}\right)\right]=(2 \pi)^{-2 p} \int_{\left(\mathbb{R}^{2}\right)^{p}} d y_{1} \ldots d y_{p}\left(\sum_{\sigma \in \varphi_{p}} \int_{\Delta_{p}} \frac{d s_{1} \ldots d s_{p}}{s_{1} \ldots s_{p}} \exp -\sum_{j=1}^{p} \frac{\left|y_{\sigma(j)}-y_{\sigma(j-1)}\right|^{2}}{2 s_{j}}\right)^{2}$
$\geq(2 \pi)^{-2 p} \int_{\left(\mathbb{R}^{2}\right)^{p}} d y_{1} \ldots d y_{p}\left(\sum_{\sigma \in \varphi_{p}} \prod_{j=1}^{p} \int_{0}^{1 / p} \frac{d s}{s} \exp -\frac{\left|y_{\sigma(j)}-y_{\sigma(j-1)}\right|^{2}}{2 s}\right)^{2}$
$=(2 \pi)^{-2 p} p^{-p}$

$$
\times \int_{\sigma, \tau \in \varphi_{p}} \int_{\left(\mathbb{R}^{2}\right)^{p}} d z_{1} \ldots d z_{p} \prod_{j=1}^{p}\left(\psi\left(\frac{\left|z_{\sigma(j)^{-z} \sigma(j-1)}\right|^{2}}{2}\right) \psi\left(\frac{\left|z_{\tau(j)}-z_{\tau(j-1)}\right|^{2}}{2}\right)\right)
$$

where

$$
\psi(r)=\int_{0}^{1} \frac{d s}{s} e^{-r / s}=\int_{1}^{\infty} \frac{d u}{u} e^{-r u}
$$

We then use the crude bound $\psi(r) \geq \psi(1)>e^{-2} \log 2$ for $r \in(0,1]$ and by integrating over $\left\{\left|z_{j}\right| \leq 1 / \sqrt{2}\right\}$ in the previous inequality, we get the lower bound of Lemma 2. a

Proof_of_Theorem_1 : For simplicity, write $\alpha_{n, k}=\alpha\left(A_{k}^{n}\right)$ and $\bar{\alpha}_{n, k}=\alpha_{n, k}$ $-E\left(\alpha_{n, k}\right), \bar{\alpha}_{0}=\alpha_{0}-E\left(\alpha_{0}\right)$. For $\lambda>0$, set

$$
\varphi(\lambda)=\mathrm{E}\left[\exp \lambda \bar{\alpha}_{0}\right]
$$

By Lemma 2, $\varphi(\lambda)<\infty$ for $\lambda<2$. Since $\varphi^{\prime}(0)=0$ we may for every $\lambda_{1} \in(0,2)$ find a positive constant c such that

$$
\varphi(\lambda) \leq 1+c \lambda^{2} \quad, \quad \forall \lambda \in\left[0, \lambda_{1}\right]
$$

Fix $\lambda_{1} \in(0,2)$ and $a \in(0,1)$. For every $N \geq 1$ set

$$
b_{N}=2 \lambda_{1} \prod_{j=2}^{N}\left(1-2^{-a(j-1)}\right)
$$

$\left(b_{1}=2 \lambda_{1}\right)$. Then, by the Hölder inequality, and properties (i), (ii) above, we have for $\mathrm{N} \geq 2$,

$$
\begin{aligned}
E\left[\exp b_{N}\right. & \left.\sum_{n=1}^{N} \sum_{k=1}^{2^{n-1}} \bar{\alpha}_{n, k}\right] \\
\leq & E\left[\exp \frac{b_{N}}{1-2^{-a(N-1)}} \sum_{n=1}^{N-1} \sum_{k=1}^{2^{n-1}} \bar{\alpha}_{n, k}\right]^{1-2^{-a(N-1)}} \\
& \times E\left[\exp 2^{a(N-1)} b_{N} \sum_{k=1}^{2^{N-1}} \bar{\alpha}_{n, k}\right]^{2^{-a(N-1)}} \\
\leq & E\left[\exp b_{N-1} \sum_{n=1}^{N-1} \sum_{k=1}^{2^{n-1}} \bar{\alpha}_{n, k}\right] \varphi\left[b_{N} 2^{a(N-1)-N}\right]^{2(1-a)(N-1)}
\end{aligned}
$$

Notice that $b_{N} 2^{a(N-1)-N} \leq \lambda_{1}$. It follows that

$$
\begin{aligned}
\varphi\left(b_{N} 2^{a(N-1)-N}\right)^{2(1-a)(N-1)} & \leq\left(1+c b_{N}^{2} 2^{2((a-1) N-a)}\right)^{(1-a)(N-1)} \\
& \leq \exp \left(c^{\prime} 2^{(a-1) N}\right)
\end{aligned}
$$

for a constant c ' independent of N. By induction we get

$$
\begin{aligned}
E\left[\exp b_{N} \sum_{n=1}^{N} \sum_{k=1}^{2^{n-1}} \bar{\alpha}_{n, k}\right] & \leq \exp \left(c^{\prime} \sum_{n=2}^{N} 2^{(a-1) n}\right) E\left(\exp b_{1} \bar{\alpha}_{1,1}\right) \\
& \leq \exp \left(c^{\prime}\left(1-2^{a-1}\right)^{-1}\right) \varphi\left(\lambda_{1}\right) .
\end{aligned}
$$

Letting N tend to ∞ and using Fatou's lemma, we obtain $E\left[\exp b_{\infty} \gamma\right]<\infty$ for $b_{\infty}=2 \lambda_{1} \prod_{j=1}^{\infty}\left(1-2^{-a j}\right)$. Since $a \in(0,1)$ and $\lambda_{1} \in(0,2)$ were arbitrary, we conclude that $\mathrm{E}[\exp \lambda \gamma]<\infty$, for $\lambda<4 \prod_{j=1}^{\infty}\left(1-2^{-j}\right)$.

Let us now check that $E[\exp \lambda \gamma]=\infty$ for λ large enough. From the definition of γ we have

$$
\gamma=\bar{\alpha}_{1,1}+\bar{\alpha}_{1,2}+\tilde{\gamma}
$$

where $\alpha_{1,1}, \alpha_{1,2}$ are independent and distributed as $\alpha_{0} / 2$, and $\tilde{\gamma}$ is distributed as $\gamma / 2$. Using (2), it follows that if $E[\exp a \gamma]<\infty$ for some $a>0$ then $E\left[\exp b \alpha_{0}\right]<\infty$ for $b<a / 2$. By Lemma 2 we have

$$
E\left[\exp b \alpha_{0}\right]=\infty, \quad \text { if } \quad b>\frac{1}{a_{2}}
$$

It follows that $E[\exp \lambda \gamma]=\infty$ for $\lambda>\frac{2}{a_{2}}$.

Remarks : (a) The first part of the proof of Theorem 1 is easily adapted to give a short proof of (2). We have trivially $E\left[\exp -\lambda \bar{\alpha}_{0}\right]<\infty$ for every $\lambda>0$ so that for every $K>0$ there exists a constant c such that

$$
\mathrm{E}\left[\exp -\lambda \bar{\alpha}_{0}\right] \leq 1+c \lambda^{2} \quad, \quad \forall \lambda \in[0, \mathrm{~K}]
$$

We then fix $\lambda>0$ and take :

$$
b_{N}=-2 \lambda \prod_{j=2}^{N}\left(1-2^{-a(j-1)}\right), \quad b_{\infty}=-2 \lambda \prod_{j=1}^{\infty}\left(1-2^{-a j}\right)
$$

and the same calculations as in the previous proof yield $E\left[\exp \mathrm{~b}_{\infty} \gamma\right]<\infty$. This gives (2) since λ was arbitrary.
(b) In the one-dimensional case, the analogue of the variable γ is the integral

$$
\int_{\mathbb{R}} d x\left(L_{1}^{x}\right)^{2}
$$

where L_{1}^{x} denotes the local time at level x, at time 1 of the linear Brownian motion B started at 0 (there is no need for renormalization in dimension 1). It is easy to check that for every $\lambda>0$

$$
E\left(\exp \lambda \int_{\mathbb{R}} \mathrm{dx}\left(\mathrm{~L}_{1}^{\mathrm{x}}\right)^{2}\right)<\infty
$$

One may argue as follows. By Jensen's inequality,

$$
\exp \left(\lambda \int d x\left(L_{1}^{x}\right)^{2}\right) \leq \int d x L_{1}^{x} \exp \lambda L_{1}^{x}
$$

However, if $T_{x}=\inf \left\{t, B_{t}=x\right\}$,

$$
E\left[L_{1}^{x} \exp \lambda L_{1}^{x}\right]=E\left[1_{\left\{T_{x} \leq 1\right\}} L_{1}^{x} \exp \lambda L_{1}^{x}\right] \leq P\left(T_{x} \leq 1\right) E\left[L_{1}^{0} \exp \lambda L_{1}^{0}\right]
$$

Hence,
$\left.\left.E\left[\exp \left(\lambda \int d x\left(L_{1}^{\mathrm{x}}\right)^{2}\right)\right] \leq\left(\int \mathrm{dxP}\left[\mathrm{T}_{\mathrm{x}}<1\right]\right)\right) E\left[\mathrm{~L}_{1}^{\mathrm{O}} \exp \lambda \mathrm{L}_{1}^{\mathrm{O}}\right]=\mathrm{CE} E L_{1}^{\mathrm{O}} \exp \lambda \mathrm{L}_{1}^{\mathrm{O}}\right]$.
By a classical result of Lévy, L_{1}° has the same distribution as $\left|B_{1}\right|$. Therefore, $E\left[L_{1}^{0} \exp \lambda L_{1}^{\circ}\right]<\infty$, which gives the desired result.

Another approach to (6), suggested by M. Yor, would be to bound

$$
\int d x\left(L_{1}^{x}\right)^{2} \leq L_{1}^{*}:=\sup _{x \in \mathbb{R}} L_{1}^{x}
$$

and then to use the fact that L_{x}^{*} has exponential moments (see Borodin [2], Theorem 1.7, it is even true that $E\left(\exp \lambda\left(L_{x}^{*}\right)^{2}\right)<\infty$ for $\lambda>0$ small).

Acknowledgments. I thank Gordon Slade for suggesting the problem that is treated in this note, and Marc Yor for his comments on the first version.

References

[1] E. Bolthausen : Localization of a two-dimensional random walk with an attractive path interaction. Ann. Probab. to appear.
[2] A.N. Borodin : On the character of convergence to Brownian local time, II. Proba. Th. Rel. Fields 72, p. 251-277 (1986).
[3]
D. Geman, J. Horowitz and J. Rosen : A local time analysis of intersections of Brownian paths in the plane. Ann. Probab. 12, p. 86-107 (1984).
[4]
J. -F. Le Gall : Sur le temps local d'intersection du mouvement brownien plan et la méthode de renormalisation de Varadhan. Séminaire de Probabilités XIX. Lecture Notes in Maths 1123, p.314-331. Springer (1985).
[5]
J.-F. Le Gall : Propriétés d'intersection des marches aléatoires, I. Comm. Math. Physics 104, p. 467-503 (1986).
J. Rosen : Self-intersections of random fields. Ann. Probab. 12, p. 108-119 (1984).
[7] S.R.S. Varadhan : Appendix to : Euclidean quantum field theory, by K.Symanzik. In : Local Quantum Theory, R. Jost ed. Academic Press (1969).
[8] M. Yor : Compléments aux formules de Tanaka-Rosen. Séminaire de Probabilités XIX. Lecture Notes in Maths. 1123, p. 332-349. Springer (1985).
[9] M. Yor : Remarques sur l'intégrabilité du temps local d'intersection renormalisé. Unpublished manuscript.

