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Exponential moments for the renormalized self-intersection

local time of planar Brownian motion

Jean-François Le Gall

Laboratolre de Probability - Université Paris VI - 4, place Jussieu -

3ème Etage - 75252 PARIS CEDEX 05

Let B = 0) be a planar Brownian motion with Bo=0. The re-

normalized self-intersection local time of B, over the time interval

[0,1], is the random variable y formally defined by

03B3 = (03B4o(Bs-Bt) - E(03B4o(Bs-Bt))) ds dt, (1)

where 6 denotes the Dirac measure at 0. A rigorous def inition of y

was first provided par Varadhan [7] in the more difficult case of the

Brownian bridge (see [4] and [8] for simple constructions of y for

Brownian motion). It is also known that : : 
_

E(exp -  co , V ~ > 0 . . (2)

This fact is important in order to define the so-called polymer measures

= C~ (3)

. 
where is the (two-dimensional) Wiener measure and CA is a nor-

malizing constant. Polymer measures correspond to a model of (weakly)

self-avoiding Brownian motion.

Recently, there has been some interest in self-attracting models for

Brownian motion and random walks (see in particular Bolthausen [1]). In

this connection, it appears natural to replace the weight 

in (3) by This motivates the following result, which was

suggested by a question of Gordon Slade (personal communication).
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Theorem 1 : There exists a constant lo e (l,oo) such that

 ~ if 03BB  03BBo ,
E(exp 03BB03B3

= ~ if J1>A .

Remark : : Our proof will show that

. . 
5 2

4 03A0 (1-2-J) ~ 03BB0 ~ 16 n e /(log 2)2.
J=l 

"

Both these bounds can be improved rather easily. 
’

After the first version of this work had been completed we learnt of

an unpublished work of M. Yor [9], who uses a different method based on

his approach in [8) to check that E[exp  co for A > 0 small enough.

Before proving Theorem 1, let us briefly recall the construction of

y given in [4]. First consider another planar Brownian motion B’ with

= 0,independent of B. The random variable

1 1

ao := 03B4o(Bs-B’t) ds dt

can be defined as the value at 0 of the continuous density of the ran-

dom measure on IR2

(g) = 1010 g(Bs-B’t) ds dt (4)

(see e.g. [3]). Moreover ao E L for every p  oo.

Then, for every integer n ~ 1 and for every k E ~1,...,2n 1}, set

A~ = [(2k-2)2 n,(2k-1)2 n) x ((2k-1)2 n,2k2 n~.
From the case of two independent Brownian motions, it is straightforward
to define

The following facts are immediate from the standard properties of

Brownian motion.

(i) For every n ~ 1, the variables a(A~),...,a(A~ ) are independent.

(ii) a(An) (d) 2-n a .
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One can then define 03B3 as

y := E f (a(Ak) - (5)
n=1 

" 

and, from (i) and (ii), it is easy to verify that the series converges

a.s. and i n L2 .

Lemma 2 : Set ai 
= 1/2 , a2 

= e-5(log 2)2/(8n). There exist two positive

constants Ci , C2 such that for every p ~ 1,

C2 a2 P! ‘- E((ao)p) -‘ Cl ap p! .

Proof : The upper bound is essentially contained in Rosen (61, formula

(2.15). We give the argument for the sake of completeness and also to get

an explicit constant. We start from the following identity, which is a

special case of formula (2.5) of [3] .

E[(ao)p] _ ( 2n ) 2p (~2)P d~i ... d~ P dsl ... dspdti ... dtp

x exp - 1 2 var ( 03BEj.(Bsj - B’tj))
(to verify that is bounded above by the right side, which is

all that we need for the upper bound, write

1 1

ao = lim ds dt a.s.

~0 Jo Jo
where p c (’) is the usual Gaussian kernel, express p c (’) in terms of

its Fourier transform and use Fatou’s lemma). Let p be the set of all

permutations of {1,...,p} and for 03C3 ~ p set

A~, _ {{si, ... , sp, tl, ... , tp); 0sl ... sp~l, 0t~,( 1 ) ... }.

Then, ,. -

= p! (2n ) 2p E d~l ... d~p 
A
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For every fixed 03C3 ~ Jp, set

uj =  03BEk, vj=  03BE03C3(k), j ~ {1,...,p},

so that, if (s,...,t)~A ,’ i p~ r

varf E 03BEj.(Bsj -B. )1 = var( u.(B -B ) -  v.(B. -B. ))

where by convention s 
= t03C3(0) = 0. However, by the Cauchy-Schwarz

inequality, if (s ,...t ) ~ A ,

( 
2 P 

di;l" .di;p exp - 2 (03A3 |uj|2 (sj-sj-1) + |vj|3 (tv(j)-tV(j-l»

~(d03BE1...d03BEpexp - |uj|2(sj-sj-1))1 2

 (d03BE1...d03BEpexp - |vj|2(t03C3(j)-t03C3(j-1)))1 2

= n (sj-sj-1) (t03C3(j)-t03C3(j-1))-1/2) .

Hence, by coming back to the previous formula for E[(x o)p],

E[(~)P] . 2-~ .-P (p. )~ ~0s~...Sp~ ft 51  ...  Sp ~1 ~(s,-s~)...(Sp-Sp~)~ ~ ~ 201420142014~’. .
Elementary calculations give

Jp = 0s1...sp~1 

ds1...dsp s1(s2-s1)...(sp-sp-1)

= { 

2p p (p-2) ... 2 (03C0 2)p/2 if p is even

2~ ~)(P-1)/2px(p-2)x...x3xl ~2~ 
. 

If p Is odd.
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which implies

Jp ~ (2 03C0)1/4 p-1/4 (203C0)p/2 (p!)-1/2.

This gives the upper bound of Lemma 2.

For the lower bound, we use another equivalent formula for E[(a )~]
(see Proposition 2.1 of [5]). If A 

p 
= {(s ,...,s )~(0,oo)P;s+...+s ~ 1}

we have

E[(03B1po)]=(203C0)-2p(R2)pdy1..dyp(03A3 0394pds1...dsp s1...sp exp-|y03C3(j)-y03C3(j-1)|2 2sj)

2

~ (203C0)-2p(R2)p dy1...dyp(03A3 03A0 1/p0 ds s exp - |y03C3(j)-y03C3(j-1)|2 2s)2

= (203C0)-2p p’P

 {03A3 (R2)pdz1...dz p (03C8(|z03C3(j)-z03C3(j-1)|2 2 )03C8(|z03C4(j)-z03C4(j-1)|2 2 ))

where

03C8(r) = 10 ds s e-r/s = ~1 du u e-ru.

We then use the crude bound > e-2 log 2 for r ~ (0,1] and

by integrating over {~z.~ ~ 1/~} in the previous inequality, we get

the lower bound of Lemma 2. a

= ~or simplicity, write x ~ 
= ~(A~) ~~ ~ k ~ ~ k

- 

E(a~ ~) . , ~o " ~o " ~o~’ > 0, set

~(A) = E[exp A c~].

By Lemma 2,  oo for 03BB  2. Since 03C6’(0) = 0 we may for every

~ ~(0,2) find a positive constant c such that

’ 

~(A) ~ 1 + c A~ , V~ ~ [0,~ ].

Fix 03BB1 
i 
~ (0,2) and a ~ (0,1). For every N ~ 1 set

b, = 203BB1 03A0 (1-2-a(j-1))
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(bi = 2~11). Then, by the Holder inequality, and properties (i), (ii)

above, we have for N z 2 ,

r N M 2n-1 
- i

E exp bN  E 
.

s E an,k1-2 
~’" " 

n=1 k=1 ~’"

r N-1 2-a(N-1)
x E exp 2 a(N-1) bN ~ 2 

"k=l ~"

~ E[exp bN-1 03B1n,k] 03C6(bN 2a(N-1)-N)2(1-a)(N-1)

Notice that b 2a(N-1)-N ~ ~ . It follows that .

2(1-a)(N-1) 2(1-a)(N-1)
03C6( b N 

2a(N-1)-N  1 + cb2N 22((a-1)N-a))

for a constant c’ independent of N. By induction we get

E[exp bN 03B1n,k ] ~ exp(c’ 
 2(a-1)n) E(exp 

b1 03B11,1)

~ exp(c’(1-2a-1)-1) 03C6(03BB1).

Letting N tend to 0o and using Fatou’ s lemma, we obtain E[exp b 03B3]  o0

00 
_

for b~ = 203BB1 03A0 (1-2-aj). Since a E (o,i) and 03BB ~ (0,2) were

J=1 i
arbitrary, we conclude that E[exp 03BB03B3]  oo, for 03BB  4 03A0 (1-2 -j).

,j=1
Let us now check that E[exp 03BB03B3] = oo for 1 large enough. From the

def ini t ion of 03B3 we have

03B3 = 03B11,1 + 03B11,2 + 
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where a 1,1 ,a 1,2 are independent and distributed as a /2 , , and y is

distributed as y/2. Using (2), it follows that if E[exp a y]  co for

some a > 0 then E[exp b ao] ]  oo for b  a/2. By Lemma 2 we have

E[exp b a ] = oo, if b > 1 . a .
2

It follows that E[exp = co for À > "- . . a

2

Remarks : : (a) The first part of the proof of Theorem 1 is easily adapted
to give a short proof of (2). We have trivially E[exp - B aoJ ]  oo for

every A > 0 so that for every K > 0 there exists a constant c such

that

E[exp - X a o ] * 1 + c À 2 , d1 e [0,K].

We then fix À > 0 and take : :

b = -203BB 03A0 ( 1 _2 ’a(,j’1) ) , , bao = -2x (1-2-aj)

and the same calculations as in the previous proof yield E[exp boor]  oo.

This gives (2) since a was arbitrary.

(b) In the one-dimensional case, the analogue of the variable y is

the integral

R dx (Lx1)2

where Li denotes the local time at level x, at time 1 of the linear
Brownian motion B started at 0 (there is no need for renormalization

in dimension 1). It is easy to check that for every À > 0

E(exp 03BB R dx (Lx1)2)  co.

One may argue as follows. By Jensen’s inequality,

exp(03BB  dx (Lx1)2) ~ dx Lx1 exp .B Lx1.
However, if Tx = inf{t, Bt = x},

E[L x1 
exp 03BBL

x1 ] = E [1{Tx~1} L x1 
exp 03BBL

x1] 
~ P(T

x 
~ 1) E[L o1 

exp 03BBL
o1
].
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Hence,

E[exp( a dx {LX)2)J ~ dx P[T  1])~ E[L° exp 1L°] = C E[L° exp 1L°J.1 1 1 1

By a classical result of Levy, L° has the same distribution as 

Therefore, E[L01 exp  oo, which gives the desired result.

Another approach to (~6~, suggested by M. Yor, would be to bound

dx (Li)2 ‘ L1 := sup Li ,~ ~ ~ 

and then to use the fact that LX has exponential moments (see Borodin

[21, Theorem 1.7, it is even true that E(exp for ~>0 small).
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