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Let B = (Bt't = 0) be a planar Brownian motion with B°=0. The re-
normalized self-intersection local time of B, over the time interval

[0,1], is the random variable ¥ formally defined by

Y= Jj (SO(BS—Bt) - E(GO(BS—Bt))) ds dt, (1)
Oss<ts=1

where 60 denotes the Dirac measure at 0. A rigorous definition of ¥
was first provided par Varadhan (7] in the more difficult case of the
Brownian bridge (see [4] and [8] for simple constructions of % for

Brownian motion). It is also known that :
E(exp ~ A7) < » , VAa>0 . (2)
This fact is important in order to define the so-called polymer measures
P (o) = C, exp(-A7 (@) W(dw), (3)

where W(dw) 1is the (two-dimensional) Wiener measure and CA is a nor-
malizing constant. Polymer measures correspond to a model of (weakly)

self-avoiding Brownian motion.

Recently, there has been some interest in self-attracting models for
Brownian motion and random walks (see in particular Bolthausen [1]). In
this connection, it appears natural to replace the weight exp(-Ar(w))
in (3) by exp(Ar(w)). This motivates the following result, which was

suggested by a question of Gordon Slade (personal communication).
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Theorem 1 : There exists a constant Ao € (1,w) such that

<o if A<A_,
[¢]

E(exp A7)
= o if A > AO .

Remark : Our proof will show that

00
4 2= A, = 16 @ e%/(log 2)°.
J=1

Both these bounds can be improved rather easily.

After the first version of this work had been completed we learnt of
an unpublished work of M. Yor [9], who uses a different method based on
his approach in [8] to check that Elexp Ay] < » for A > O small enough.

Before proving Theorem 1, let us briefly recall the construction of
¥ given in [4]. First consider another planar Brownian motion B’ with
Ba = 0, independent of B. The random variable

11
a, = J J 60(Bs-Bt) ds dt
0“0
can be defined as the value at 0 of the continuous density of the ran-

2
dom measure on R

1M
n(g) = [ J g(BS-Bi) ds dt (4)
0°7v0

(see e.g. (3]). Moreover a € LP for every p < o.
Then, for every integer n 2 1 and for every k € (1,...,2n-1), set

A: = [(2k-2)27", (2k-1)27™) x ((2k-1)27%,2k27").

From the case of two independent Brownian motions, it is straightforward
to define

a(A:) = ” ] 3,(B,-B,) ds dt.
A

The following facts are immediate from the standard properties of
Brownian motion.

(i) For every n = 1, the variables a(A?),...,a(Ann_l) are independent.
2

n, (d) ,-n
(1) «(a) € 2" a .
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One can then define ¥ as
® 21’1-1 n n
7y := ¥ ( Y (a(Ak) - E(a(Ak)))] (5)
n=1 ‘k=1
and, from (i) and (ii), it is easy to verify that the series converges

a.s. and in Lz.

Lemma 2 : Set L = 172 , a, = e-s(log 2)2/(8n). There exist two positive

a
constants C, » C, such that for every p =

C2 ag p! = E((ao)p) = C1 af p!.

Proof : The upper bound is essentially contained in Rosen [6], formula
(2.15). We give the argument for the sake of completeness and also to get
an explicit constant. We start from the following identity, which is a

special case of formula (2.5) of [3]

-

Py - -2p
E[(ao) ] = (@2nm) J . d€ ...d&p [ , dsl...dspdtl...dtp
(R%)P (0,11°P

X exp - 1 var[ )X €j (B - B' )]

(to verify that Euao)p] is bounded above by the right side, which is

all that we need for the upper bound, write

1M
@ = lim J [ ds dt pe(Bs_Bt) , a.s.
ev0 0

where pe(-) is the usual Gaussian kernel, express pe(-) in terms of
its Fourier transform and use Fatou’s lemma). Let Yp be the set of all
permutations of {1,...,p} and for o € yp set
= e ; ...<s_s=1, 0< < ... < =1 }.
{(sy0 08yt et )i 0<s,< s,s1, 0<t (4, top)=! }
Then,
E[(e )’]1 = pt(20)™® ¥ [dg ...d€ J ds_...ds_ dt_...dt
(<] 1 p 1 p 1 P
A

ce¥ .
p [+

1
X exp - 5 var Z E ‘(B. - B; )|
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For every fixed ¢ € ?p , set

p p
u, = Z g ’ vV, = z E ’ J€{10~~-9P)»
I &y K J 72y telk)

so that, 1f (s,....t)) € A,

vy (B, B )]

P P P
var| ¥ &.-(B_ -B; )] =var| ¥ u,-(B_ -B ) -}
[j=1 J 55 tj =1 J S5 S3-1 4= a(J) to(J-l)

1

P 2 P 2
i by B o)

where by convention Sy = = 0. However, by the Cauchy-Schwarz

t0'(0)
inequality, if (sl,...tp) € Ao ,

_ 1 (R 2 P 2
J - d&l...dgp exp - 5 [JEI |uj| (sj_sj—l) + ng lvjl (tt(J)_tc(j—l))]
(R

P :
s[ dgl...dﬁpexp -nglujl (sj—sj_lﬂ

1
x ||d€ d€_exp - E |v Iz(t -t ) 2
1 S5pSXP jop 9 Ve e

p -1/2

=m

p =172
JEI [(sj'sj-l) Co i torg-1) ]

Hence, by coming back to the previous formula for EKaO)pL

25 - . dsl...ds 2
E[(« )P] = 27°P «P (p1) ( P .
° Vs (s -s )...(s_-s__.)

0<sl<...<sp51 1772 1777 Y p Tp-1

Elementary calculations give

ds_...ds
1 P

J‘o<s1<. . .<spsl '/Sx(sz_sl ). '(sp-sp-l)

2P (E)p/Z
px(p-2)x...x2 ‘2

if p is even

n)(p-l)/z

Zp
px(p=2)x...x3x1 (Z ~ if p is odd,
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which implies

2,174 _-1/4

J (i) p (Zu)p/z (p! )-1/2.

P P

This gives the upper bound of Lemma 2.

For the lower bound, we use another equivalent formula for E[(ao)p]

(see Proposition 2.1 of [S]). If Ap = ((51""'Sp)E(O‘m)p;sx+"’+sp = 1)
we have

p -2p ds1"'dsp p Iy«r(j)_yo'(\j—l)|2
E[(ao)]=(2n) dyl..dyp Y - 5 oXp- '): 55

(Rz)p ve?p Ap 1 P Jj=1 J
} P (1/p Yo 1y Yeriony 2 |F
= (2m)% J dyl dy ¥ n [ gz exp - __ELQ%E_ELQ_ll_
(Ra)p 0e?p J=1 0
= (2n)® pP
P 1255y %0 -1y 1Y (12 Zegn |
x L I dz...dz_ [w[ "Jz ]w[ T Tl ]]
,TEY (Rz)p p j=1

where

1 )
_ ds -r/s _ du -ru
Y(r) = J =< ¢ = I =€ -
0 1
We then use the crude bound y(r) = y(1) > e? log 2 for r € (0,1] and
by integrating over {]zjl = 1/¥2} in the previous inequality, we get

the lower bound of Lemma 2. o

= n o =
Proof of Theorem 1 : For simplicity, write an,k = a(Ak) and %k an,k

- E(an,k) ve = E(ao). For A > 0, set
¢(X) = E[exp A Eo].

By Lemma 2, ¢(A) < o for A < 2. Since ¢’'(0) = 0 we may for every
Ale(o,z) find a positive constant c¢ such that

p(A) s 1+ cA® . Vae[oA]

Fix )\1 € (0,2) and a € (0,1). For every N =2 1 set

N

by =22 [ (1-2
J=2

—a(J-l))
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(b1 = 2A1). Then, by the Holder inequality, and properties (1), (ii)

above, we have for N z 2 ,

n-1

N 2
E[exp b, ¥ Y o ]
N =t k=1 ™K
_ 14_,-a(N-1)
by N1t |12
= Elexp o Y I «a
1-2 a(N-1) n=1 k=1 n,k
2N_1 -z-a(N-l)
a(N-1) -
x Elexp 2 bN kgl % ¥
N-1 2071 B A(N-1)-N ,(1-a)(N-1)
s E|exp bN_1 Y X « x| ® by 2
n=1 k=1
Notice that bN Za(N_l)_N = Al. It follows that
(1-a)(N-1) (1-a)(N-1)

1A

2 2
¢[bN 2a(N-l)—N] [1 . cb; 22((a—1)N-a)]

(a-1)N

1A

exp(c’ 2 ):

for a constant ¢’ independent of N. By induction we get

N (a-1)n -
exp[c' r 2 ] E[exp b1 ail]
n=2 ’

1A

N 20l
Elexpb, T [ «
N1 kst ™K

1A

exp[c'(l—za_l)'l] #(x)).

Letting N tend to » and using Fatou's lemma, we obtain E[exp bw1] < o

00
for b =22 | (1-27J). since a € (0,1) and A, € (0,2) were
J=1
00
arbitrary, we conclude that E[exp A¥] < o, for A < 4 n (I-Z-J)
J=1
Let us now check that E[exp Ay] = » for A large enough. From the
definition of ¥ we have
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where all , a12 are independent and distributed as a°/2 , and ¥ is
distributed as 9/2. Using (2), it follows that if E[exp a 7] < » for

some a > 0 then E[exp b ao] <w for b < a’/2. By Lemma 2 we have

_ 1
E[exp b ao] = o, if b > T

2

It follows that E[exp Ay] = « for A > g— . o
2

Remarks : (a) The first part of 'the prdof of Theorem 1 is easily adapted
to give a short proof of (2). We have trivially E[exp - A &O] < o for
every A > 0 so that for every K > 0 there exists a constant ¢ such
that

Elexp - A &]=1+c A’ , VA e [0,K].

We then fix A > 0 and take :
N

=-2a (1—2"’(3'”), b =-2a || (1-273)

b
N j=2 !

and the same calculations as in the previous proof yield E[exp bw7] < o,

This gives (2) since A was arbitrary.

(b) In the one-dimensional case, the analogue of the variable 7y is

J dx (1_’1‘)2
R

where Lf denotes the local time at level x, at time 1 of the linear

the integral

Brownian motion B started at O (there is no need for renormalization

in dimension 1). It is easy to check that for every A > 0
E[exp A J dx (LT)Z] < o,
R

One may argue as follows. By Jensen’s inequality,
exp[ A J' dx (L):)z] = _[dx LY exp A L.

However, if TX = inf{t, Bt = x},

E[L] exp ALT] = E[ LY exp AL’:] = P(T, < 1) E[L‘: exp AL‘:].

Y1 <1



179
Hence,

E[exp( A I dx (LT)Z)] = [Jax P[T, < 1])] E[Lf exp AL?] =C E[Lf exp AL?].

By a classical result of Lévy, L? has the same distribution as |B1L

Therefore, E[L? exp AL?] < w, which gives the desired result.

Another approach to (6), suggested by M. Yor, would be to bound

I dx (L):)2 = L: := sup L? ,
x€R

and then to use the fact that L; has exponential moments (see Borodin
[2], Theorem 1.7, it is even true that E(exp A(L;)2)<m for A>0 small).
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