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Exact Rates of Convergence to the Local Times
of Symmetric Levy Processes

Michael B. Marcus*and Jay Rosen~

1 Introduction

Let X = {~()~ ~ R~} be a symmetric real-valued Levy process with characteristic
function

(1.1) = e-~)

and Levy exponent
(1.2) ~(A) = 2 jT(l - cos uA) 
for !/ a Levy measure, i.e. Jt/(u)  oo. We also include the case ~(A) = A~/2
which gives us standard Brownian motion.

Such Levy processes X have an almost surely jointly continuous local time which
we denote by Z = (~ ~) 6 R~ x R}, and normalize by requiring that

where 

u1(x) = 1 03C0 ~0 cos x03BB 1+03C8(03BB)
d03BBu1(x)=1 03C0~0 cosx03BB 1+03C8(03BB)d03BB

is the 1-potential density for X. We set

(1.3) 03C32(x)=2 03C0~0 1-cosx03BB 03C8(03BB)d03BB.
It follows from Pitman [9] that 03C8(03BB) is regularly varying at infinity of order 1  03B2 ~ 2,
if and only if o~(~) is regularly varying at zero of order /? 2014 1, and we have

(1.4) -~ 0

with c~ depending only on ~. Throughout this paper we use the notation / ~ ~ to
mean that = 1.

Since L~ is jointly continuous we have that

(1.5) lim1 ~t01[x,x+~](Xs)ds=Lxt
almost surely for each 

The object of this paper is to determine the exact rates of convergence in (1.5).

*Department of Mathematics, City College of CUNY, New York, NY 10031.
~Department of Mathematics, College ofStaten Island, CUNY, Staten Island, NY 10301.
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Theorem 1 Let X = ~X(t), t E R+} be a real valued symmetric Levy process with
concave on [0,03B4] and regularly varying at zero of order 03B2 2014 1 where 1  p - 2,

and Iet , (t, x) E R+ x R} be the local time of X. . Then

(1.6) limp sup 
|1 ~t01[x,x+~](Xs)ds- Lxt| 03C3(~)2log(1/~) 

= 2 03B2+1supLxt

almost surely for almost every t E R+.

Let us note that the exact uniform modulus of continuity for Lt is given by

lim sup sup (Lt - Lt = 2 sup Lt
-0 V ~R~

almost surely for every t E R+, which immediately implies (by (2.6) below) that the
left hand side of (1.6) is bounded above by 2 supx~R1 Lxt. However, this is not the
the actual value, supx~R1 Lxt, which appears on the right hand side.

There is an analogous local theorem, which applies with even less restrictive con-
ditions on 

Theorem 2 Let X = {X(t), t E R+} be a real valued symmetric Levy process with
regularly varying at zero of order 03B2 -1 where 1  ,Q  2, and let E

R+ x R} be the local time of X. . Then for each x E Rl

(1.7) limsup|1 ~t01[x,x+~](Xs)ds-Lxt|  = 2 Lxt
E-.o a + 1

almost surely for almost every t E R+ .

In case Xt is a symmetric stable process with ~(t) these theorems take a
more explicit form.

Theorem 3 Let X = ~X (t), t E R+} be the symmetric stable process of order /?
where 1  2, and let E R+ x R} be the local time of X. . Then

( 1.8 ) lim sup sup = 203B103B2  sup Lxt
E ~ 

almost surely for almost every t E R+, and for each x E Ri

( 1.9 ) 
-’ 

almost surely for almost every t E R+, where

(1.10) a03B2 = 1 0393(03B2)sin(03C0 2(03B2-1)).
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The above theorems were first established for Brownian local time by Khoshnevisan
[2], who asked us whether we could generalize this to local times of other Markov
processes.

To prove the above theorems we use Lemma 4.3 in [7], a consequence of an iso-
morphism theorem of Dynkin, which enables us to obtain results for the local times of
symmetric Markov processes from analogous results about their associated Gaussian
processes. The mean zero Gaussian process {G(x),x E R} with covariance g(x,y)
is said to be associated with the Markov process X, if g( x, y) is the 1-potential of
X. In [7] we pointed out that it is useful to study local times of symmetric Markov
processes through their associated Gaussian processes because there are many tools
available to us in the theory of Gaussian processes. This is the approach we use in
this paper.

We now present the results about Gaussian processes which we will need.

Theorem 4 Let G = E be a real valued Gaussian process with stationary
increments and incremental variance 03C32(x) = E(Gy+x - Gy)2 which is concave on
[0,03B4] and regularly varying at zero o f order 03B2 - 1 where 1  ,B _ 2. Then for any 
compact interval I

(1.11) limsupsup = 2 1 03B2+1 sup’ ’ 

~(E) 2log(1/E) 
a.s. Furthermore, for regularly varying at zero of order a 2014 1 where 1  p - 2
we have that for each x E Rl

( 1.12) 
_ G~ I = 

’ ’ 
-o 

a.s.

This in turn will follow from the next theorem, which we prove in section 2.

Theorem 5 Let G = E be a real valued Gaussian process with stationary
increments and incremental variance 03C32(x) = which is concave on

[0,03B4] and regularly varying at zero of order 03B2 2014 1 where 1  ,8 - 2. Then for any
compact interval I

( I .13 ) lim sup sup |1 ~x+~xGydy-Gx| 03C3(~)2log(1/~) = 1 03B2+1,

a.s. Furthermore, for 03C32(x) regularly varying at zero of order 03B2 2014 1 where 1  03B2 ~ 2
we have that for each x E Rl

(1.14) ,’ ’ 

a.s.
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For purposes of comparison and later reference we note here the exact uniform
and local moduli of continuity for the Gaussian processes considered in Theorem 5:

(1.15) lim sup sup 2014 = 1,

a.s., and for each x ~ R1

(1.16) lim sup sup = 1,
-o log(l/~)

a.s. The uniform modulus limit (1.15) follows from Theorem 7, [4]. The condition on
2014 log y(a?) in that theorem is satisfied because of the monotone density theorem for
regularly varying functions, (see Theorem 1.7.2, [1]). The local modulus limit follows
from Kono’s Theorems 5 and 6, [3], taking into account the remarks made in the proof
of Theorem 5.5, [5].

Theorem 2 is quite general. It applies to the local times of Levy processes in the
domain of attraction of a stable process of order /?, 1  /? ~ 2. Theorem 1 applies to
the local times of a more restricted class of Levy processes which nevertheless is quite
large as can be seen from the following theorem proved in [8j.

Theorem 6 Z/e h(x) be any function which M regularly varying and increasing M
a? ~ ~, onJ let 1  03B2 ~ 2. Then we can find a Levy process with 03C32(x) concave such
~a~

03C32(x) ~ |x|03B2-1h(ln I/a:) ~ 0.

2 Proofs

We first prove Theorem 5 and then indicate how Theorems 1-4 will follow from the
methods of [5]-[7].

Proof of Theorem 5: We first prove (1.13). To do this we only need to make a
few modifications to Khoshnevisan’s proof of the same result for Brownian motion,
Theorem 2.1(a), [2]. Let

I(h,x) = 1 hx+hx Gydy- Gx = 1 hx+hx(Gy- Gx)dy,

and note that

(2.1) E({I(h,x)}2)
=1 h2x+hxx+hxE {(Gy- Gx)(Gz- Gx)} dy dz

=2 h2 x~y~z~x+h 1 2 (E {(Gy- Gx)2} +E {(Gz- Gx)2}
- 
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= 1 h2 h0 z0 (03C32(y) +03C32(z)-03C32(z- y)) dydz

=

1 h2 h0 z0 03C32(z) dy dz

1 h 
= 

h~ 0 xoz(x) dz

^’ ,~ + 1 1 

where we have used the fact that is regularly varying with index ,~.
VVe now follow the proof in ~2~. . The only non-trivial change occurs in obtaining

an upper bound for

P (max|I(03C1-n, k03C1-n)| ~ 03C3(~)2log(1/~)03B8 03B2+1) .

In [2], Khoshnevisan uses the fact that for Brownian motion

~ v  k  

is a set of independent random variables. However, in our case, due to the concavity
of the incremental variance, it is easy to see that our I is a set of negatively corre-
lated mean-zero Gaussian random variables and the inequality derived in (2~ using
independence, follows in our case from Slepian’s lemma. This gives the lower bound
in (1.13). For the upper bound we just follow (2~ and use (1.15).

We now obtain (1.14). Khoshnevisan just states the corresponding result for Brow-
nian motion in Theorem 2.2,(a), ~2~ and says that the proof is similar to his proof for
the uniform case. We agree, and so, as for (1.13), we will only show how to handle
the lower bound in ( 1.14) without the assumption of independence. We take ~ = 0
and set

I(h)=1 h h0 Gydy -G0= 1 h h0(Gy-G0)dy .

V~e compute for t > s > 0 small

(2.2) E (I(s)I(t))

=1 st t0 s0E {(Gy - G0)(Gz - G0)} dy dz

= 1 st t0s01 2 (E {(Gy-G0)2} + E{(Gz -G0)2}- E {(Gz -Gy)2}) dy dz

=1 2stt0s0 (03C32(y) + 03C32(z) -03C32(z - y)) dydz

=

1 2st(
t s003C32(y) dy +st0 03C32( z) dz-

t0s003C32(z-y)dydz)

_ 1 t ~ oz y dy + s t oa x dz - t a-x 2st o 
( ) 

o 
( ) 

o -

 1 t ~ oz y dy + s t oz x dx - d-t a-v o~(v) dz dv )‘ 2st o 
( ) 

o 
( ) 

o -v

where the next to last line came from the change of variables (y, x) H (v, x) with
v = y - x, and the last line came from the observation that
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Since

s-t0 s-v-y03C32(n)dzdv=st-s003C32(v)dvJo J-v JO
we see from (2.2) that

(2.3) E (I(s)I(t)) ~ 1 2st ( s0 03C32(y) dy+stt-z03C32(z)dz)

We now take 03B8  1 and set

~) ~=(E{7(~"~~~
by (2.1). Note that by Theorem 1.5.6 of [1] we have that for j  k and 03B8 sufficiently
small

y~) ~ 
for all ~ -  2- ~ Hence by (2.3), and using Theorem 1.5.6 of [1] once again,
we see that for all j  t and 03B4 > 0

~~)+~))- ’ r(~)’r(~)’
~~’’’~)~~+(~’’’~~)
~

for 03B8 sufficiently small.
Let t/i, t/:,... and Z be a set of independent ~V(0,1) random variables and set

Note also that are mean- zero Gaussian random variables with =

E(Y2k) = 1 and for j ~ Jb. Hence by (2.4), Slepian’s lemma
and the independence of the we see that for all 0  ~  1/2

t-. 

> P(lim sup 
Xk 2log(k) 

> 1 - 03B4)

= lim P(sup 
~ 

> 1 - ~)20142014 

> Mm P(sup 
* 

> 1 - F)’"2014 

= P(limsup 
" 

> 1 - ~)

= P(lim sup 
Uk 2log(k) 

~ 1-03B4)

=1
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and this gives us the lower bound in (1.14). The upper bound follows easily from (2.1)
and interpolation using (1.16) as in the proof of (1.13). D

Proofs of Theorems 1-4: The passage from Theorem 5 to Theorem 4 is simple
and follows methods worked out in section 2, [5]. Given (1.11), the next step is to
apply Theorem 4.3, [5] which enables us to transfer results about Gaussian processes .

to results about the local times of the associated Markov processes. However, the
Gaussian process in Theorem 4 is not the Gaussian process associated with X. The
Gaussian process associated with X has incremental variance

2(x)=2 03C0~01-cosx03BB 1+03C8(03BB) d03BB.

(Clearly, o~(x) as x -~ 0). The extension of Theorem 4 to these processes
is handled exactly the same way as the transition from Theorem 2.4 to Theorem 2.5
in [6]. As in [6], we first consider Gaussian processes with incremental variance (1.3)
because it is easier to find examples of such functions which are concave. One can
also see from section 3 of [6] how theorem 4.3 of [7] is used. Thus we get from (1.11)
that 

(2.5) lim sup sup |1 ~x+~x Lyt dy - Lxt| 03C3(~)2log(1/~) 
= 

2 03B2+1
sup Lxt

almost surely for almost every t E R+. Now, since E R+ x R} is contin-
uous almost surely for the Levy processes which we are considering, we have with
probability one that

(2.6) 
x+~x

Lyt dy = t01[x,x+~](Xs)
ds

for all x and E. Using (2.6) in (2.5) gives us (1.6), and a similar argument takes us
from (1.12) to (1.7). Theorem 3 consists of special cases of Theorems 1 and 2. The
constant ap in Theorem 3 is determined in [6]. .

Remark 1: The only new ingredient in this note is Theorem 5, since its application
to local times is immediate following the methods worked out in [5]-[7]. Furthermore,
concerning Theorem 5, the reader no doubt realizes that this was essentially proved
by Khoshnevisan in [2] since the extension from Brownian motion to the more general
cases we consider only requires a few modifications. However, in [2], because he
doesn’t use the isomorphism theorem, Khoshnevisan has to consider much more than
Brownian motion. In fact, he deals with explicit representations for Brownian local
time. Thus it seems that even if one only wants to obtain results for Brownian local
time, the methods used in this paper are more efficient. However, we must qualify
this statement since our Theorems 1-3 are only for almost all t whereas the result in
[2] for Brownian local time holds for all t.

Remark 2: It is possible to prove results similar to Theorem 5 for a large class of
Gaussian processes and thereby extend Theorems 1 and 2. In particular, the upper
bounds in Theorems 1 and 2 can be obtained under much more general conditions
than the ones given. When o~(x) is slowly varying at zero the situation changes.
In some cases the denominator has a different form than in (1.6) and (1.7). This
is because (1.15) and (1.16) have different denominators for certain slowly varying

see [5]. VVe have not pursued these points because our primary concern has
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been to demonstrate the usefullness of Dynkin’s isomorphism theorem rather than in
carrying on an exhaustive study of the rate of convergence in (1.5).
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