SÉminaire de probabilités (Strasbourg)

Kiyoshi Kawazu
 Hiroshi Tanaka
 On the maximum of a diffusion process in a drifted brownian environment

Séminaire de probabilités (Strasbourg), tome 27 (1993), p. 78-85
http://www.numdam.org/item?id=SPS_1993_27__78_0
© Springer-Verlag, Berlin Heidelberg New York, 1993, tous droits réservés.
L'accès aux archives du séminaire de probabilités (Strasbourg) (http://portail. mathdoc.fr/SemProba/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numbam

Article numérisé dans le cadre du programme

On the maximum of a diffusion process in a drifted Brownian environment

Kiyoshi Kawazu and Hiroshi Tanaka

1. Introduction

In this paper we investigate asymptotic behavior of the tail of the distribution of the maximum of a diffusion process in a drifted Brownian environment. This problem is a diffusion analogue of the Afanas'ev problem([1]). Our result is naturally compatible with that of Afanas'ev[1].

Let $\{W(x), x \in \mathbf{R}, P\}$ be a Brownian environment, namely, let $\{W(t), t \geq 0, P\}$ and $\{W(-t), t \geq 0, P\}$ be independent Brownian motions in one-dimension with $W(0)=0$. We consider a diffusion process $X(t, W)$ defined formally by

$$
X(t, W)=\text { Brownian motion }-\frac{1}{2} \int_{0}^{t}\left\{W^{\prime}(X(s, W))+c\right\} d s
$$

where c is a positive constant. The precise meaning of $X(t, W)$ is simply a diffusion process with generator

$$
\frac{1}{2} e^{W(x)+c x} \frac{d}{d x}\left(e^{-W(x)-c x} \frac{d}{d x}\right),
$$

starting at 0 . Such a diffusion process can be constructed from a Brownian motion through changes of scale and time. For a fixed environment $W=(W(x), x \in \mathbf{R})$ we denote by P_{W} the probability law of the process $\{X(t, W)\}$ and put

$$
\mathcal{P}=\int P(d W) P_{W}
$$

Thus \mathcal{P} is the full law of $\{X(t, \cdot)\}$. We often write $X(t)=X(t, \cdot)$. Since $c>0, \max _{t \geq 0} X(t)$ is finite (\mathcal{P}-a.s.). The problem is the following : How fast does $\mathcal{P}\left\{\max _{t \geq 0} X(t)>x\right\}$ decay as $x \rightarrow \infty$? Since

$$
\begin{equation*}
\mathcal{P}\left\{\max _{t \geq 0} X(t)>x\right\}=E\left\{A(A+B)^{-1}\right\} \tag{1.1}
\end{equation*}
$$

where

$$
\begin{equation*}
A=\int_{-\infty}^{0} e^{W(t)+c t} d t, \quad B=\int_{0}^{x} e^{W(t)+c t} d t \tag{1.2}
\end{equation*}
$$

the problem is nothing but to find the asymptotics of $E\left\{A(A+B)^{-1}\right\}$ as $x \rightarrow \infty$. The result varies according as $c>1, c=1,0<c<1$, as will be stated in the following theorem.

ThEOREM. (i)If $c>1$, then

$$
\mathcal{P}\left\{\max _{t \geq 0} X(t)>x\right\} \sim \frac{2 c-2}{2 c-1} \exp \left\{-\left(c-\frac{1}{2}\right) x\right\}, x \rightarrow \infty
$$

(ii) If $c=1$, then

$$
\mathcal{P}\left\{\max _{t \geq 0} X(t)>x\right\} \sim(2 / \pi)^{1 / 2} x^{-1 / 2} \exp \{-x / 2\}, x \rightarrow \infty
$$

(iii) If $0<c<1$, then

$$
\mathcal{P}\left\{\max _{t \geq 0} X(t)>x\right\} \sim \text { const. } x^{-3 / 2} \exp \left\{-c^{2} x / 2\right\}, x \rightarrow \infty
$$

where

$$
\text { const. }=2^{5 / 2-2 c} \Gamma(2 c)^{-1} \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} z(a+z)^{-1} a^{2 c-1} e^{-a / 2} y^{2 c} e^{-\lambda z} u \sinh u d a d y d z d u
$$ $\lambda=\left(1+y^{2}\right) / 2+y \cosh u$.

2. Proof of the theorem

Since A and B are independent, the right hand side of (1.1) equals $E\{A f(A)\}$ where $f(a)=E\left\{(a+B)^{-1}\right\}, a \geq 0$. Fixing $x>0$, we consider the time reversal $\widehat{W}(t)=$ $W(x-t)-W(x), 0 \leq t \leq x$. Since $\{\widehat{W}(t), 0 \leq t \leq x\}$ is also a Brownian motion, we have

$$
\begin{align*}
f(a) & =E\left\{\left(a+\int_{0}^{x} \exp \{\widehat{W}(t)+c t\} d t\right)^{-1}\right\} \\
& =E\left\{\left(a+e^{-W(x)} \int_{0}^{x} \exp \{W(x-t)+c t\} d t\right)^{-1}\right\} \\
& =E\left\{\left(a e^{W(x)-c x}+\int_{0}^{x} e^{W(t)-c t} d t\right)^{-1} e^{W(x)-c x}\right\} \tag{2.1}\\
& =e^{(1 / 2-c) x} E\left\{\left(a e^{W(x)-c x}+\int_{0}^{x} e^{W(t)-c t} d t\right)^{-1} e^{W(x)-x / 2}\right\} \\
& =e^{(1 / 2-c) x} E\left\{\left(a e^{W(x)-(c-1) x}+\int_{0}^{x} e^{W(t)-(c-1) t} d t\right)^{-1}\right\} \\
& =e^{(1 / 2-c) x} E\left\{\left(a+\int_{0}^{x} e^{W(t)+(c-1) t} d t\right)^{-1} e^{W(x)+(c-1) x}\right\} .
\end{align*}
$$

In deriving the fifth equality in the above we used the formula of Cameron-Martin-MaruyamaGirsanov; the last equality was derived by using $\widehat{W}(t)$ as in the case of the first equality. From the fifth equality of (2.1) we obtain the following lemma.

LEMMA 1. For any $c>0$ and $x>0$

$$
\begin{equation*}
\mathcal{P}\left\{\max _{t \geq 0} X(t)>x\right\}=e^{(1 / 2-c) x} E\left\{A\left(A e^{W(x)-(c-1) x}+\int_{0}^{x} e^{W(t)-(c-1) t} d t\right)^{-1}\right\} \tag{2.2}
\end{equation*}
$$

where A is given by (1.2).
The following lemma due to Yor will also be used.
Lemma 2(Yor[2]). For any $\nu>0$ we have

$$
\begin{equation*}
\int_{0}^{\infty} \exp \left(W(t)-\frac{\nu t}{2}\right) d t \stackrel{d}{=} 2 / Z_{\nu} \tag{2.3}
\end{equation*}
$$

where $\stackrel{d}{=}$ means equality in distribution and Z_{ν} is a gamma variable of index ν, that is,

$$
P\left\{Z_{\nu} \in d t\right\}=\Gamma(\nu)^{-1} t^{\nu-1} e^{-t} d t \quad(t>0)
$$

2.1. Proof of (i)

When $c>1$, Lemma 1 implies

$$
\lim _{x \rightarrow \infty} e^{-(1 / 2-c) x} \mathcal{P}\left\{\max _{t \geq 0} X(t)>x\right\}=E\left\{A\left(\int_{0}^{\infty} e^{W(t)-(c-1) t} d t\right)^{-1}\right\} .
$$

It is easy to see that the above expectation is finite. To obtain its exact value we use Lemma 2. We thus obtain (i).
2.2. Proof of (ii)

For $x>0$ we put

$$
\varphi(x)=E\left\{\log \int_{0}^{x} e^{W(t)} d t\right\}, \quad \psi(x)=\frac{d}{d x} \varphi(x) .
$$

Then it is easy to see that

$$
\psi(x)=E\left\{\left(\int_{0}^{x} e^{W(t)} d t\right)^{-1} e^{W(x)}\right\}=E\left\{\left(\int_{0}^{x} e^{W(t)} d t\right)^{-1}\right\} ;
$$

in fact, the second equality is a consequence of the last equality of (2.1) with $a=0$ and $c=1$. Thus $\psi(x)$ is monotone decreasing in x.

Lemma 3. When $c=1$, we have

$$
\begin{equation*}
E\left\{A\left(\int_{0}^{x} e^{W(t)+t} d t\right)^{-1}\right\} \sim \sqrt{2 / \pi} x^{-1 / 2} e^{-x / 2} \text { as } x \rightarrow \infty . \tag{2.4}
\end{equation*}
$$

Proof. Since $E\{A\}=2$ in case $c=1$, the left hand side of (2.4) equals $2 E\left\{\left(\int_{0}^{x} e^{W(t)+t} d t\right)^{-1}\right\}$ which also equals $2 e^{-x / 2} E\left\{\left(\int_{0}^{x} e^{W(t)} d t\right)^{-1} e^{W(x)}\right\}$ by virtue of (2.1) with $a=0$ and $c=1$. Thus we have

$$
\begin{equation*}
E\left\{A\left(\int_{0}^{x} e^{W(t)+t} d t\right)^{-1}\right\}=2 e^{-x / 2} \psi(x) \tag{2.5}
\end{equation*}
$$

On the other hand, using the scaling property $\{W(t)\} \stackrel{d}{=}\{\sqrt{x} W(t / x)\}$ we have

$$
\varphi(x)=E\left\{\log \int_{0}^{1} e^{\sqrt{x} W(t)} d t\right\}+\log x
$$

and hence

$$
\begin{aligned}
\lim _{x \rightarrow \infty} x^{-1 / 2} \varphi(x) & =\lim _{x \rightarrow \infty} E\left\{\frac{1}{\sqrt{x}} \log \int_{0}^{1} e^{\sqrt{x} W(t)} d t\right\} \\
& =E\left\{\max _{0 \leq t \leq 1} W(t)\right\}=\sqrt{2 / \pi}
\end{aligned}
$$

which combined with the monotonicity of $\psi(x)=\varphi^{\prime}(x)$ implies

$$
\begin{equation*}
\psi(x) \sim(2 \pi x)^{-1 / 2} \quad \text { as } x \rightarrow \infty \tag{2.6}
\end{equation*}
$$

This together with (2.5) proves the lemma.
Lemma 4. For $x>0$ we have

$$
\begin{equation*}
E\left\{\left(\int_{0}^{x} e^{W(t)} d t\right)^{-2} e^{W(x)}\right\} \leq \psi(x / 2)^{2} \tag{2.7}
\end{equation*}
$$

Proof. The left hand side of (2.7) is dominated by

$$
\begin{aligned}
& E\left\{\left(\int_{0}^{x / 2} e^{W(t)} d t\right)^{-1}\left(\int_{x / 2}^{x} e^{W(t)} d t\right)^{-1} e^{W(x)}\right\} \\
= & E\left\{\left(\int_{0}^{x / 2} e^{W(t)} d t\right)^{-1}\left(\int_{x / 2}^{x} e^{W(t)-W(x / 2)} d t\right)^{-1} e^{W(x)-W(x / 2)}\right\} \\
= & E\left\{\left(\int_{0}^{x / 2} e^{W(t)} d t\right)^{-1}\right\} E\left\{\left(\int_{0}^{x / 2} e^{W(t)} d t\right)^{-1} e^{W(x / 2)}\right\} \\
= & \psi(x / 2)^{2} ;
\end{aligned}
$$

in deriving the second equality in the above we used the fact that $\left.\left\{W\left(t+\frac{x}{2}\right)\right)-W\left(\frac{x}{2}\right), t \geq 0\right\}$ is a Brownian motion independent of $\{W(t), 0 \leq t \leq x / 2\}$.

The proof of (ii) is now given as follows. By (1.1) we have

$$
\begin{align*}
0 & \leq E\left\{A\left(\int_{0}^{x} e^{W(t)+t} d t\right)^{-1}\right\}-\mathcal{P}\left\{\max _{t \geq 0} X(t)>x\right\} \\
& =E\left\{A B^{-1}-A(A+B)^{-1}\right\} \tag{2.8}\\
& \leq E\left\{2^{-1} A^{3 / 2} B^{-3 / 2}\right\}=2^{-1} E\left\{A^{3 / 2}\right\} E\left\{B^{-3 / 2}\right\} .
\end{align*}
$$

We prove

$$
\begin{gather*}
E\left\{A^{3 / 2}\right\}<\infty, \tag{2.9}\\
E\left\{B^{-3 / 2}\right\}<\text { const. } x^{-3 / 4} e^{-x / 2} . \tag{2.10}
\end{gather*}
$$

(2.9) follows immediately from Lemma 2 ; a direct proof can also be given as follows. Using Hölder's inequality we have

$$
\begin{aligned}
E\left\{A^{3 / 2}\right\} & =E\left\{\left(\int_{0}^{\infty} e^{W(t)-4 t / 5} e^{-t / 5} d t\right)^{3 / 2}\right\} \\
& \leq(5 / 3)^{1 / 2} E\left\{\int_{0}^{\infty} \exp \left\{\frac{3}{2}\left(W(t)-\frac{4 t}{5}\right)\right\} d t\right\}=(5 / 3)^{1 / 2} \cdot(40 / 3)
\end{aligned}
$$

(2.10) can be proved by making use of the CMMG formula, the Schwarz inequality, Lemma 4 and then (2.6); in fact, putting $B_{0}=\int_{0}^{x} e^{W(t)} d t$ we have

$$
\begin{aligned}
E\left\{B^{-3 / 2}\right\} & =E\left\{B_{0}^{-3 / 2} e^{W(x)-x / 2}\right\} \\
& \leq e^{-x / 2} E\left\{B_{0}^{-1} e^{W(x)}\right\}^{1 / 2} E\left\{B_{0}^{-2} e^{W(x)}\right\}^{1 / 2} \\
& \leq e^{-x / 2} \psi(x)^{1 / 2} \psi(x / 2) \\
& \leq \text { const. } e^{-x / 2} x^{-1 / 4} \cdot x^{-1 / 2}
\end{aligned}
$$

The assertion (ii) of our theorem follows from Lemma 3, (2.8), (2.9) and (2.10).

2.3. Proof of (iii)

The proof of (iii) relies essentially on the following Yor's formula.
Yor's formula([3: the formula(6.e)]). For any bounded Borel functions f and g we have

$$
\begin{aligned}
& E\left\{f\left(\int_{0}^{t} e^{2 W(s)} d s\right) g\left(e^{W(t)}\right)\right\} \\
= & c_{t} \int_{0}^{\infty} d y \int_{0}^{\infty} d z g(y) f(1 / z) \exp \left\{-z\left(1+y^{2}\right) / 2\right\} \psi_{y z}(t),
\end{aligned}
$$

where

$$
\begin{aligned}
c_{t} & =\left(2 \pi^{2} t\right)^{-1 / 2} \exp \left\{\pi^{2} / 2 t\right\} \\
\psi_{r}(t) & =\int_{0}^{\infty} \exp \left\{-u^{2} / 2 t\right\} e^{-\tau(\cosh u)}(\sinh u) \sin (\pi u / t) d u
\end{aligned}
$$

To proceed to the proof of (iii) we put

$$
\begin{gathered}
f(a, z)=a(a+4 z)^{-1}, \quad g(y)=y^{2 c} \\
B^{(\nu)}(t)=\int_{0}^{t} e^{2(W(s)+\nu s)} d s
\end{gathered}
$$

Using first the CMMG formula and then Yor's formula we have

$$
\begin{aligned}
& E\left\{a\left(a+\int_{0}^{x} e^{W(t)+c t} d t\right)^{-1}\right\}=E\left\{a\left(a+4 B^{(2 c)}(x / 4)\right)^{-1}\right\} \\
& =E\left\{a\left(a+4 B^{(0)}(x / 4)\right)^{-1} \exp \left(2 c W(x / 4)-\frac{c^{2} x}{2}\right)\right\} \\
& =\exp \left(-c^{2} x / 2\right) E\left\{f\left(a, B^{(0)}(x / 4)\right) g\left(e^{W(x / 4)}\right)\right\} \\
& =\exp \left(-c^{2} x / 2\right) c_{x / 4} \int_{0}^{\infty} d y \int_{0}^{\infty} d z g(y) f(a, 1 / z) \exp \left\{-z\left(1+y^{2}\right) / 2\right\} \psi_{y z}(x / 4)
\end{aligned}
$$

Since Lemma 2 implies

$$
P\{A \in d a\}=2^{2 c} \Gamma(2 c)^{-1} a^{-2 c-1} e^{-2 / a} d a \quad(a>0),
$$

we have

$$
\begin{align*}
& \mathcal{P}\left\{\max _{t \geq 0} X(t)>x\right\} \\
& =2^{2 c+1 / 2} \Gamma(2 c)^{-1} \pi^{-1} \exp \left(2 \pi^{2} / x\right) x^{-1 / 2} \exp \left(-c^{2} x / 2\right) \tag{2.11}\\
& \quad \times \int_{0}^{\infty} d y \int_{0}^{\infty} d z \int_{0}^{\infty} d u y^{2 c} h(z) e^{-\lambda z} \exp \left(-2 u^{2} / x\right)(\sinh u) \sin (4 \pi u / x),
\end{align*}
$$

where

$$
\begin{aligned}
h(z) & =\int_{0}^{\infty} a z(a z+4)^{-1} a^{-2 c-1} e^{-2 / a} d a, \\
\lambda & =\left(1+y^{2}\right) / 2+y \cosh u .
\end{aligned}
$$

Lemma 5. Let $0<c<1$ and put

$$
F(y, z, u)=y^{2 c} h(z) e^{-\lambda z} u \sinh u .
$$

Then we have

$$
M=\int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} F(y, z, u) d y d z d u<\infty,
$$

Proof. By a change of variable $\cosh u=v$, we have

$$
M=\int_{0}^{\infty} d y \int_{0}^{\infty} d z \int_{1}^{\infty} d v y^{2 c} h(z) e^{-\lambda z} \log \left(v+\sqrt{v^{2}-1}\right)
$$

where $\lambda=\left(1+y^{2}\right) / 2+y v$. Since

$$
h(z)=2^{-2 c-1} z \int_{0}^{\infty} u^{2 c-1} e^{-u}\left(u+\frac{z}{2}\right)^{-1} d u
$$

it is easy to see that

$$
\begin{gather*}
h(z) \longrightarrow 2^{-2 c} \Gamma(2 c) \quad \text { as } z \rightarrow \infty, \tag{2.12}\\
h(z) \sim_{\text {as } z+0} \begin{cases}2^{-2 c-1} \Gamma(2 c-1) z & \text { if } c>1 / 2, \\
2^{-2} z \log 1 / z & \text { if } c=1 / 2, \\
2^{-4 c} \int_{0}^{\infty} a^{2 c-1}(a+1)^{-1} d a \cdot z^{2 c} & \text { if } 0<c<1 / 2 .\end{cases} \tag{2.13}
\end{gather*}
$$

Therefore for any $\varepsilon>0$ and $\alpha>0$ we have

$$
\begin{aligned}
M_{1} & =\int_{0}^{\infty} d y \int_{1}^{\infty} d z \int_{1}^{\infty} d v y^{2 c} h(z) e^{-\lambda z} \log \left(v+\sqrt{v^{2}-1}\right) \\
& \leq \text { const. } \int_{0}^{\infty} \int_{1}^{\infty} y^{2 c} v^{c} \lambda^{-1} e^{-\lambda} d y d v \\
& \leq \text { const. } \int_{0}^{\infty} \int_{1}^{\infty} y^{2 c} v^{c} \lambda^{-\alpha} d y d v \\
& \leq \text { const. } \int_{0}^{\infty} \int_{0}^{\infty} y^{2 c-\epsilon-1}\left(1+y^{2}\right)^{-\alpha+1+c} z^{c}(1+z)^{-\alpha} d y d z
\end{aligned}
$$

$$
\text { (by putting } v=(2 y)^{-1}\left(1+y^{2}\right) z \text { with } y \text { fixed), }
$$

which is finite if $\varepsilon>0$ is sufficiently small and $\alpha>0$ sufficiently large. Note that const. in the above may vary from place to place and depend on ε and α. Next we prove that

$$
\begin{equation*}
M_{2}=\int_{0}^{\infty} d y \int_{0}^{1} d z \int_{1}^{\infty} d v y^{2 c} h(z) e^{-\lambda z} \log \left(v+\sqrt{v^{2}-1}\right)<\infty \tag{2.14}
\end{equation*}
$$

Assume $1 / 2<c<1$. Then by (2.13)

$$
\begin{aligned}
M_{2} \leq & \text { const. } \int_{0}^{\infty} d y \int_{0}^{1} d z \int_{1}^{\infty} d v y^{2 c} z e^{-\lambda z} v^{\varepsilon} \\
\leq & \text { const. } \int_{0}^{\infty} \int_{1}^{\infty} \lambda^{-2} y^{2 c} v^{\varepsilon} d y d v \quad \quad\left(\text { we used } \int_{0}^{1} z e^{-\lambda z} d z \leq \lambda^{-2}\right) \\
\leq & \text { const. } \int_{0}^{\infty} \int_{0}^{\infty} y^{2 c-1-\varepsilon}\left(1+y^{2}\right)^{-1+\varepsilon} z^{\varepsilon}(1+z)^{-2} d y d z \\
& \left(\text { by putting } v=(2 y)^{-1}\left(1+y^{2}\right) z \text { with } y\right. \text { fixed) }
\end{aligned}
$$

which is finite for sufficiently small $\varepsilon>0$ by virtue of $1 / 2<c<1$. When $c=1 / 2,(2.13)$ implies

$$
M_{2} \leq \text { const. } \int_{0}^{\infty} d y \int_{0}^{1} d z \int_{1}^{\infty} d v y z^{1-\varepsilon} e^{-\lambda z} v^{\varepsilon}
$$

for $0<\varepsilon<1$. Since $\int_{0}^{1} z^{1-\varepsilon} e^{-\lambda z} d z \leq$ const. $\lambda^{-2+\varepsilon}$, we have

$$
\begin{aligned}
M_{2} & \leq \text { const. } \int_{0}^{\infty} \int_{1}^{\infty} \lambda^{-2+\varepsilon} y v^{\varepsilon} d y d v \\
& \leq \text { const. } \int_{0}^{\infty} \int_{0}^{\infty} y^{-\varepsilon}\left(1+y^{2}\right)^{-1+2 \varepsilon} z^{e}(1+z)^{-2+\varepsilon} d y d z<\infty
\end{aligned}
$$

provided that $\varepsilon>0$ is small enough. Finally assume $0<c<1 / 2$. Then by (2.13)

$$
\begin{aligned}
M_{2} & \leq \text { const. } \int_{0}^{\infty} d y \int_{0}^{1} d z \int_{1}^{\infty} d v y^{2 c} z^{2 c} e^{-\lambda z} v^{e} \\
& \leq \text { const. } \int_{0}^{\infty} \int_{1}^{\infty} \lambda^{-1-2 c} y^{2 c} v^{e} d y d v \\
& \leq \text { const. } \int_{0}^{\infty} \int_{0}^{\infty} y^{2 c-e-1}\left(1+y^{2}\right)^{-2 c+c} z^{e}(1+z)^{-1-2 c} d y d z<\infty
\end{aligned}
$$

provided that $\varepsilon>0$ is small enough. Thus (2.14) is proved.
We can now complete the proof of (iii) as follows. From (2.11) we have

$$
\begin{equation*}
\mathcal{P}\left\{\max _{i \geq 0} X(t)>x\right\}=2^{2 c+5 / 2} \Gamma(2 c)^{-1} \exp \left(2 \pi^{2} / x\right) x^{-3 / 2} \exp \left(-c^{2} x / 2\right) M(x), \tag{2.15}
\end{equation*}
$$

where

$$
M(x)=\int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} F(y, z, u) \sin (4 \pi u / x) /(4 \pi u / x) \exp \left(-2 u^{2} / x\right) d y d z d u
$$

By Lemma 5 we have $\lim _{x \rightarrow \infty} M(x)=M$ which equals

$$
2^{-4 c} \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} z(a+z)^{-1} a^{2 c-1} e^{-a / 2} y^{2 c} e^{-\lambda z} u \sinh u d a d y d z d u .
$$

Thus the assertion (iii) follows from (2.15).
Acknowledgment. We wish to thank Prof.S.Kotani and Prof. M.Yor for giving us valuable information ; Prof. M. Yor kindly sent us preprints including [2] and [3], without which the result (iii) would not have been obtained.

References

[1] V.I.Afanas'ev, On a maximum of a transient random walk in random environment, Theor.Probab.Appl.35(1990), 205-215.
[2] M.Yor, Sur certaines fonctionelles exponentielles du mouvement brownien réel, J.Appl.Probab.29(1992), 202-208.
[3] M. Yor, On some exponential functionals of Brownian motion, to appear in Adv.Appl. Probab. (September 1992).
Kiyoshi Kawazu
Department of Mathematics
Faculty of Education
Yamaguchi University
Yosida, Yamaguchi 753
Japan

Hiroshi Tanaka
Department of Mathematics
Faculty of Science and Technology
Keio University
Hiyoshi, Yokohama 223
Japan

