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Sufficient statistics for the Brownian sheet

by
Oliver Brockhaus

Institut fur Angewandte Mathematik
Universitat Bonn

0. Introduction

Let P denote Wiener measure on (0,.1’), with H := Co[0,oo) :=

{z E C[O,oo) : : z(0) = 0? and .1’ := > 0). Then the following state-
ment holds with respect to P:

(I) The process X defined by

/~X. (t>0)
os

is a Brownian motion, and, in addition, X, is independent of  t)
for all t > 0.

One may ask whether it is possible to replace P by some other probability
measure Q on (SI, .~) such that this statement remains true with respect to
Q. It turns out that the class J of such measures Q is characterized by the
following condition:

(II) There exists a Q-Brownian motion B and a random variable Y such that

(t > 0).

In addition, Band Y are Q-independent.

Let ~’t, respectively Ft, denote the subfield  t) respectively >

t), of .~’. Due to Girsanov’s theorem, any Q E J is equivalent to P on for

each t > 0, and the densities are given by

(III) = h(Xt, t) (t > 0),

with h denoting some space-time harmonic function. . This implies
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(III’) I (t>~)~

In fact, the conditions (I) to (III’) are all equivalent and may thus be viewed
as four different characterizations of the convex set ,~ of probability measures
on (SI, ~’); cf. Jeulin-Yor [5] for the equivalence of (I) to (III). Note that (II)
implies the integral representation

Q = R03BD(dy)PV

of any measure Q E J, where Py denotes the distribution of Brownian motion
with constant drift y E IR and v some probability measure on IR, i.e. v(dy) =
Q[ Y E dy ].

These results admit a generalization to infinite dimensions: Regarding X, ,
Bt and Y as E-valued random variables, E := {x E C’[0,1] : :c(0) = 0}, and P
on SI := {x E C([0, oo), E) : x(o) = 0} as the distribution of the Brownian sheet,
the conditions (I), (II) and (III’) (with "Brownian sheet" instead of "Brownian
motion" ) remain equivalent while the equivalence with (III) is lost, cf. [4]. . In
this context, the formula in condition (II) becomes

(1) = B"t (s E [0~ 1]~ t > 0).
The equivalence of (II) and (III’) was shown by Follmer [4] using Dynkin’s tech-
nique of sufficient statistics.

A second approach to a generalization from Brownian motion to Brownian
sheet was suggested by Jeulin and Yor in [5]. This approach consists basically
in replacing the time parameter t by the pair (s, t) with s, t > 0 and giving the
appropriate generalization of condition (I). Our purpose in this paper is to for-
mulate the analogues of conditions (II) and (III’), and to prove their equivalence
with (I). In particular, we obtain the formula

Xs,t = Bs,t + - tY1s sY2t (s, t ~ 0),
which shows the connection with the first approach, cf. formula (1). In fact,
the equivalence of the conditions (I), (II) and (III’) in the first approach can be
shown analogously to our proof of the Theorem below, cf. [1].

1. The result for the Brownian sheet

Let 0 := ~)2) ~_ ~x E C([0~ ~)2) = = ~~ s, t >_ oj. Using
the coordinate mapping Xa,t(w) := w(s, t), we define the fields

.~ := S, t > 0), :_ ~ ~  S, v  t)



46

and := Q(Xu,v i u >- 8 or v > t)
on f Z. In order to simplify the notation, we introduce

Rd,t :_ ~0, sJ x ~0, tJ, Rd,t:= ~0, s) x ~0, t) and BRa.,= := Rd,t . .

Finally, let P on S~ denote the distribution of the Brownian sheet, i.e. X is a
continuous gaussian two parameter process with covariance .

EPL J = (S1 n s2)(ti n t2)
with respect to P. Now we can state our main result:

Theorem Let Q be a probability measure on (03A9,F). Then the following three
assertions are equivalent:

l. (a) With respect to Q, the process X defined by
- 

. d du t dv a du ~ dvX,,t := -Xd.~ + - -Xuw ), 
~~o 

’ 

~ u 
’ 

E v E u E v
is a Brownian sheet. (We assume the right hand side to be well

defined Q-almost surely.)
(b) (Xu,vi (u, v) E aRa,t) and (u, v) E Ra,t) are Q-independent.

Il. (a) There exists a Q-Brownian sheet B as well as a pair of oo)-
valued random variables (Y1, YZ) such that

X a,t = Bd,t + tY,l ~ sYtd (s, t > 0).

(b) Band (Y1, Y2) are Q-independent.
III. For all s,t > 0 and f E bF (i.e. f bounded and F-measurable),

f I J = 

holds Q-almost sur~ly.

In the theorem above, is defined by
0

~a t f := Ep ~ f (Xu,v~~ ~ (u~ v) 
where denotes the Brownian bridge from 0 to (u, v) E BRd,t),
i.e.

d.t.9 . 
u V uv 

xX v" .= Xu,v - ~ (X d,~ - 9d,v ) - v (Xu,t - 9u,t) ’f’ uv ( a,t - 9a,t)u,v . 8 t 8t

for (u, v) E R,,= and g E 00)2).
Remark 1 Since X a,t,9 is P-independent of P satisfies (III).

Remark 2 It is easy to see that II :_ (~d,t, s,t > 0) is a specification in
the sense of ~2J and ~3J .
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2 . Proof of t he Theorem

We prove (I) » (II) » (III) » (1).

2.I (I) # (II)
The key to this part of the proof is the following

Lemma I Let B denote a Brownian sheet and X a process satisfying the fol-
lowing stochastic differential equation:

(2) Xs,t = Bs,t + s0du uXu,t + t0 dv v
Xs,v - s0 du u t0 dv v

Xu,v

(we assume ihe right hand side lo be well defined almosl surely.)
Then 

.

Xs,2t2 s2t2 - Xs2,t1 s2t1 - Xs1,t1 s1t1 s2s1t2t1 dBs,t st

holds for all s; , t; satisfying 0  s1 ~ s2 and 0  t1 ~ t2, or, shorter but less

precisely,
~ .

st st 
°

Proof: The proof is straightforward but involves some computation:

j~? j’? dBs ,, = 
Bs~ ,,~ Bs~ ,,~ Bs ~ ,,~ 

+ t2t1 dt t(Bs2,t s2t - Bs1,t s1t) + s2s1 ds s(Bs,t2 st2 - Bs,t1 st1)

+ s2s1 ds s t2t1 dt t Bs,t st

= Xs2,t2 s2t2 - Xs2,t1 s2t1 - Xs1,t2 s1t2 + Xs1,t1 s1t1.

The first equation follows by considering the corresponding indicator functions.
To conclude, replace B by X using (2) and simplify according to the classical
product rule. []

Since Q satisfies (I. a ), we may apply Lemma I . The right hand side of

Xu,v - Xu,t Xs ,v X,,t j~ j" dka,bW ut sv 
~ 

st 
~ 

. , ab

converges in L~(Q, X, Q) for u, v -to oo. Therefore,
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Ys,t := lim (Xs,v sv + Xu,t ut - Xu,v uv )
u,v~~

exists Q-a.s. for all s,t > 0, i.e.

(3) Xd,t = B.,, + =: + .

Obviously, B defined by

Bs,t := st ~s ~t da,b ab

is a Brownian sheet.

We investigate the drift H. We see from (3) that H lives on 00)2)
Q-almost surely. Since

Ys,t2 - Ys,t1 = lim(Xu,t2 ut2 - Xu,t1 ut1)

is independent of s > 0, we may introduce

Y 1:= sYs,1 and Y2t := tY1,t - tY1,1 = tYs,t - tYs,1

and decompose H as

H,,t = tY,l + (S, t > 0).

Now, since H E 00)2) holds, Y1, Y2 E Co [0, oo).

It remains to show the Q-independence of B and (Y1, YZ), or, equivalently,
the Q-independence of Band H: Let Z E o(Xa,t; s, t > 0)
and let 03C6 ~ C([0,~)n2) be bounded. Then (I. b) implies

EQ[ EQ[ Z|u,v]03C6(sjtk(Xsj,v sjv + Xu,tk utk - Xu,v uv);j,k~n)]

= EQ[Z] EQ[03C6(sjtk(Xsj,u sjv + Xu,tb utk - Xu,v uv);j,k ~ n)].

The independence follows by taking limits u, v -> oo. 0

2.2 (II) ~ (III)
We assume Q to satisfy (II). Since H and Bare Q-independent, (II) trans-

lates into the integral representation .
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(4) Q = 1M ,

where v(dh) := ~[ H E dh ~, Ph := Th(P), ~, denotes translation by h and the
"Martin boundary" M is given by

M := {h E C0([0, 00)2) : 3 yl y2 E C0[0, oo) : = tya + syi }. .

Therefore we only have to show that Ph [ . ~ ,~’s,t ) = for h e M. We prove
this assertion by observing that = X ~~t~~T"9~ holds on Ra,t for any
h E M, as a short computation shows, and thus

EP~ [ (~t f ) 9 ] 1
= 03A9Ph(d03C9)EP[f(Xs,t,03C9u,v, (u, v) ~Rs,t;Xu,v(03C9), (u, v) ~ Ros,t)] g(03C9)

= 03A9P(d03C9)EP[f(Xs,t,Th03C9 uv, -; (hX)u,v(03C9), 2014) ] (g o h)(03C9)

= 03A9P(d03C9)EP[(foh)(Xs,t,03C9u,v,-;Xu,v(03C9),2014) ](goh)(03C9)

= EP[(03C0s,t(fh))(gh)]
= ~p~ [ f 91 ]

for all f E b~’ and g E . a

2.3 (III) ~ (I)
This part of the proof is based on the fact that P satisfies (I), cf. Jeulin-Yor

[5]. We include an argument for part (I. b~:

Lemma 2 Let X denote a Brownian sheet. Then, for all a, b > 0,

Q(X,,t; (s, t) E Ra,b)
= (u, v) E Ra,t; (s, t) E Ra,b)
= (s~t) E 

Proof: We have

s,t = s0 du u t0dv vXs,t,0u,v, Xs,t,0u,v = (Xa,b,0)s,t,0u,v

and Xa,b,0s,t = stasbt du,v uv.
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The third equation is a consequence of Lemma l. 0

Now we assume that Q satisfies It is easy to see that is well defined

Q-almost surely: Denote the set in question by A. Then

Q[{s,t is well defined} ] = EQ[ IA ] = EQ[ 03C0a,bIA ]

= 03A9Q(d03C9)EP[lim(Xa,b,03C9s,t -se du u Xa,b,03C9u,t - ...+...) is well defined ]
10 e-+O’ 

E 
U .

- l,

since

= lim(Xa,b,gs,t - 
scdu u

Xa,b,su,t 
- 

tsdu v

Xa,b,ss,v + se du utcdv u Xa,b,su,v

= s,t + lim
( s~ du ut b (Xu,b - gu,b) + t~ dv v s a (Xa,v -ga,v)

-s~du ut~ dv v[ u a(Xs,v -ga,v) + v b(Xu,b - gu,b)])

= s,t + lim(~ bs ~du u(Xu,b - gu,b) + ~ at~ dv v(Xa,v - ga,v))
e-+ b E u a E v

- 

whenever Xa,t is well defined. In order to show that Q satisfies (I~, we consider
complex-valued functions which depend on X: Let sj-1 ~ sJ  s, tj-1 ~ tj  t.

Then for Q-almost every w, one has

n

EQ( exp{i E Xa;,tk_, - 
n

- EP[ exp{i 03BBj,k((Xs,t,03C9)sj,tk - ... - ... + ...)} ]
n

= EP[ exp{i 03BBj,k(sj,tk-sj,tk-1-sj,tk-1-sj-1,tk-1)}]

= exp{ -1 203BB2j,k(sj-sj-1 )(tk - tk-1)}. []
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3. Another proof using ~Dynkin’s technique of
Sufficient Statistics

In the following, we give an alternative direct proof of the implication 
in the Theorem. This is analogous to Follmer’s proof in [4], cf. Introduction.

We assume familiarity with the notions and results in [2]. As mentioned in
Remark 2, II := (.~d,t, ~a,t, s, t > 0) is a local specification. Therefore,

I I ~’~,t

is sufficient for the set G(II) of Gibbs-states specified by n, i.e. the set of prob-
ability measures Q satisfying Furthermore, the integral representation

Q = G(II)* (d)
holds where  denotes a probability measure on the set of extreme points
of G(n). In order to prove or equivalently

Q = M03BD(dh)Ph

for some probability measure i/ on M, cf. formula (4), it suffices to show

C hEM}

since Ph h is a measurable mapping from to M.

Now we assume Q E G(II)t and choose two sequences (s~) and with
-~ oo. Then

~ ~-~oo ~=~ V~

i.e. weak convergence holds for some w E S~, cf. [2]. In particular, the marginal
distributions at a fixed parameter (s, t) converge, and this implies the existence
of

(5) hs,t := lim(s skXsk,t(03C9) +  t tkXs,tk(03C9 - st sktkXsk,tk(03C9)) ~ IR

for any s,t ~ 0.
We claim Q = Ph. Indeed, we may regard Q as well as Ph as measures

on the set of all real-valued functions on ~0, 00)2. Then, for any continuous,
bounded function / = g(Xd,,tl , ... , Xa,~,t,~ ), we obtain
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Q[f] = lim 03C003C9sk,tkf
= lim P[g(Xsk,tk,si,ti, 0 ~ i ~ n) ]
= P[g(Xsi,ti + hsi,ti, 0 ~ i ~ n)]
= Ph~ f ~~

The function h in formula (5) is continuous on [0, since, choosing sequences
(sk ) and (ti) with sk -~ sand tk -~ t, one has

1 = = lim sup ]
’

= P[ lim inf(Xsk,tk + hsk,tk) = lim sup(Xsk,tk + hsk,tk) ]
k-m 

’ ’ ’ ’

= P[lim inf hsk,tk = lim sup hsk,tk ].

Finally, h E M follows as in section 2.1. D 
’
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