
SÉMINAIRE DE PROBABILITÉS (STRASBOURG)

KENNETH DAVID ELWORTHY

MARC YOR
Conditional expectations for derivatives of
certain stochastic flows
Séminaire de probabilités (Strasbourg), tome 27 (1993), p. 159-172
<http://www.numdam.org/item?id=SPS_1993__27__159_0>

© Springer-Verlag, Berlin Heidelberg New York, 1993, tous droits réservés.

L’accès aux archives du séminaire de probabilités (Strasbourg) (http://portail.
mathdoc.fr/SemProba/) implique l’accord avec les conditions générales d’utili-
sation (http://www.numdam.org/conditions). Toute utilisation commerciale ou im-
pression systématique est constitutive d’une infraction pénale. Toute copie ou im-
pression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=SPS_1993__27__159_0
http://portail.mathdoc.fr/SemProba/
http://portail.mathdoc.fr/SemProba/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


CONDITIONAL EXPECTATIONS FOR DERIVATIVES

OF CERTAIN STOCHASTIC FLOWS

K.D. Elworthy(1) and M. Yor(2)

ci) Mathematics Institute - University of Warwick - Coventry CV4 7 AL UK

c21 Laboratoire de Probabilités - Université Paris VI - 4, place Jussieu -

Tour 56 - Etage - 75252 PARIS CEDEX 05

1. Introduction.

Consider a stochastic differential equation

dx = X(x )odB + A(x )dt (l~
t t t t

on an n-dimensional C~° manifold M. Here {Bt : : t ~ 0} is a Brownian mo-

tion on some Euclidean space Rm and for each x in M, X(x) : : Rm -~ T M
x

is a linear map into the tangent space at x to M. Both X and the vector

field A are assumed C~.

Given a solution {xt : : t a 0} to (1), assumed to exist for all time, and

v 
o 

E T 
x 

M, . , there is a derivative process {v : t : t a 0} with v 
t 
E T 

x 
M. This

o t

can be obtained by dif f erentiating the solutions of ( 1 ), with respect to their

initial point, in the direction v . . It can be given as the solution of a cer-

tain S.D.E. on the tangent bundle TM ((E11 or (E31) or more concisely by the

covariant equation

DVt = VX(vt)odBt. + ~A(vt)dt (2)

using an affine connection on M, where

VA E L(TM ; ; TM) and VX E L(TM ; ; ; TM))
are the covariant derivatives, with Rm the trivial bundle M x Rm over M.
Recall that (2~ is to be interpreted as the corresponding Stratonovich equa-
tion for Tx M-valued processes obtained by parallel translation back along
o
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{xt, t ~ 0} ; Z compare (3) below.

This derivative process {vt, t >- 0} plays a f undamental role in the ergodic

theory of solution flows of stochastic differential equations, in particular
in the def inition of Lyapunov exponents and so in related questions of stabi-

lity e.g. see [E3]. It also contains geometrical and topological information : :

see [K] and (E21. Here we consider the conditional expectation

x

E{v 

of vt with respect to the 03C3-algebra Fxt := : 0 ~ s ~ t}.

By definition, this will be another process over {x : : 0} i.e.

x

t

given by 
= ~ ~

where // : , T M ~ T M denotes parallel translation along : t ~ 0}.

Note : As Michel Emery pointed out, the def inition (3) does not depend on the

choice of the connection. Indeed, the "difference" //t between two pa-

rallel transports is a linear operation’ from T 

x 
M into itself, which is mea-

xx
surable with respect to ,,-; ; hence, it commutes with conditional expecta-

tions. °

We will also consider analogously defined conditional expectations for certain

processes of vectors. Our main result is that for gradient Brownian systems

with drift, this conditional expectation gives the Hessian flow, see 1E21, or

the Weitzenbock flow for q-vectors. In a corollary, the results in tE2] on

topological obstructions to moment stability for gradient systems 
are consi-

derably strengthened. We identify the conditional distribution for 1-dimen-

sional Brownian flows. We also give more limited results for more general

Brownian systems on Ricci flat. constant curvature, and other Riemannian

manifolds.
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2. Preliminaries. .

A - Suppose M is Riemannian and compact for simplicity. We will use its

Levi-Civita connection. Suppose that the differential generator for (1) is

2 1 D + . where the vector f ield AX will l be given by

= 2 1 trace OX(X(x)(-))(-) + A(x) (x E M) (4)

This holds if and only if

X(x) X(x) v = v v e T M .(5)
x

from which follows

VX(w) XIx) (v) + X(x) VX(w).v = 0 (6)

f or all v, w in T M.
x

Let n : : OM - M be the orthonormal f rame bundle of M, so if u E OM

with n(u) = x, then u : : R~’ --~ TxM is an isometry. Given uo E n ~(xo), a
solution {xt : : t z 0} to (1) has a horizontal lift {u~ : : t z 0} starting

x

at . Then, n(ut) = xt and ut so that, for t ~ 0,

u x

F-t = F-t. (7)

Def ine a Brownian motion on Rn by 9 - t u _ 1 X(x )dB (8)
t ~o * * *0

The following is fairly well known

x 8 u

Lemma : For t~0, , 5~ = 5~ = §~
~ t t t

.. u

Proof : Clearly ~t ’c ~t . . On the other hand, let

H . : T M ~--~ T OM u E 
u x u

be the horizontal lift map for the Levi-Civita connection. Then

du t = Hut (X(xt)odBt + A X(x t )dt)
and so dut = Hu (utod8t) + (9)
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(the canonical equation on OM) with AX the horizontal lift of AX.

u 
_ 

8

Thus ~ c ~ . p
. t t

B - For an orthonormal base e ,...,e of Rm. let Xi be the vector field

X( .)e1 ’and let S f : : M ~ M, r E R be its solution flow. This has deriva-

tive f low TSi : TM ~ TM which induces : qTM ~ qTM, linear on
r r

fibres -and determined by

n...n vq) = n...n 

for a q-vector v 1 n.... , vq in M. .
x

Define : qTxM ~ qTxM (x E M, q = 0 to n)

by Qqx(V) = D2 ~r2qTS1r(V)|r=0 (10)

When (1) is a gradient Brownian system with drift , Qq depends only on the

curvature of M. Such systems are def ined by an isometric immersion

f 

(for example, the standard inclusion of the sphere S~ into The

diffusion coeff icient X(x) is def ined to be the orthogonal pro jection of Rm
onto the tangent space at x to M (considered as a subset of Rm by using

T x f as an identification). Thus if f(x),e~> Rm 
then

X 
, 
= ~f1 .

In this case, ( 1 ) has generator 1 2 0 + A.

As an example, for the standard inclusion of S1 in R2, the correspon-
ding equation (1) can be written

dx t * (sin xt)dB1t + (cos x 
t 

for Bt = (Bt,Bt) Brownian motion on R2, parametrizing S~ by angle as

usual. Then (2) is

dvt (cos x)v t (sin x)v t dB2t .
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It makes no difference whether these are considered as It6 or Stratonovich

equations.

Proposition IEZ) : : Let . ~ qT*xM, x E M be the Weitzenböck

curvature tensor for q = 0,...,n. Then for a gradient Brownian system

with drift

QX = -1J1X).. .

In particular Q1(u),v> - -Ric(u,v) u,v E T M

for Ric(-,-) the Ricci tensor. For general Brownian systems,

= -Ric(u,v) + E .

The Weitzenböck curvature arises in the Weitzenbock formula : y

= trace V2tp - (11)

where eq = -(dd~ + d~d) is the Hodge Laplacian (with probabilist’s sign
convention) and Rq is the zero order operator on q-forms : y

(~°(~))X = ~X(~x), see f E31, IG).

C - Let ’ 0~ be a solution flow for (1). It can be chosen to con-

sist of C" diffeomorphisms of M and, in particular, has derivative flow
TM ~ TM with v = TF (v) satisfying (2) for v ~ T M. As for the

deterministic flows S1t , there are induced processes )(V ) E AqT M

f or V 
o 

E A9T M. ° 
t

o x
0

Set Vt = Aq(TF )(V ) and for t E set - (03A8) and

03A8t = Aq(ut) (03A8) ~ qTxt M , ’ where {u: ’ t ~ Oy is as in § 2A. There are then

the covariant equations along {x : . t >- Oy : 

D03A8t = 0 (12)

and DVt = t 
+ dt (13)

where, for any linear S : i E --~ E of a vector space, i AqE ---~ Aq(E)
is the linear map determined by
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(d)q(S) (v1 A...A vq) = ( vi A..:vJ-i A svJ A vj+1 A...A vq.
j=1

By Itd’s formula, e.g. 1E3l, Prop. 1.3A,

03A8t ,Vt >xt = 03A8o ,Vo >xo + t0 03C8s ,(d)q(~X(. dBs

)Vs>xs
+ t0 03A8s,1 2 Qqxs (Vs) + (d)q (~A(. ))Vs > xs ds (14)

by (10) and (13).

~
D - To calculate conditional expectations, take ; R), for

t .

I
(Q,§,P) our underlying probability space. There is then an F-.-predictable

03C6 : [0,t]  03A9 - Rn

with p := p(s,-) in L~ for each s, and
*

o = E.> + t0 p s,dBs>Rn . 15>

From (14),

E{03A6Vt ,03A803C4 >xt }= E{03A6(Vo ,03A8o >xo + t0 03A8s ,1 2 Qqxs (Vs) + (d)q(~A(.)Vs )>ds)}+t (16)

where A 
t 
= E ~ W . W 

* 
)dB 

* 
)V 

* 
> 
x *~

= E () p * ,d% * > ) W (VX( . )dB * )V * > x )
= E u p ,X(x )dB > Jt W (VX( . )dB )V > }
= E{t0 us03C6s,X1(xs) >03A8s,(d)q(~X1(.) )Vs>xs ds} (17)

using (8).
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§ 3. Main results : :

A - Theorem A : : For a gradient Brownian system with drift A on a compact

Riemannian manifold M if V E Aq T M with q = 0,...,n,
~ ° 

0 

x

= 

where ~{Wt(Vo) : t e 0} satisf ies the equation along {xt : t ~ 0}

°- w9(v ) _ - 1 (~q )’ wq(v ) ~ 
t

( 18)

for 9tq the Weitzenböck curvature.

Proof : i For a gradient system at each point x of M, an orthonormal basis

for can be chosen so that either X’(x) = 0 or VX’(x) = 0, see ( E31. From

(17), this 
. 
implies that At = 0 so that (16) together with the Proposition

yields

E{03A6Vt,03A8t>xt} = ° 

+ t0 03A8s,D ~s Wqs(Vo)>xsds)}

= E{03A6(V,03C8 > + 03C8 ,Wq(V )}.~" o o t 

The Theorem follows since : t z 0} was an arbitrary paral lel f ield of

q-vectors along {xt : : t z 0}. o

B - Theorem : Suppose M is compact and (1) is a Brownian system with drift

satisfying 0. Assume there is a constant a with

Ric(u,v) = u,v E T M, x E M
x x

(i.e. M is an Einstein manifold, and so has constant curvature if dim M s 3).

Then, for V E T M and W = ut~ as above with q = 120142014201420142014 201420142014 o x --- t t 2014201420142014201420142014201420142014201420142014201420142014 
’

0

t t > xt ( 
s
> : : 0 s s s t} _ 

03C3t

o 

°
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Proof : : Apply the same proof as for Theorem A but now with ~ of the special
form

t

~=E~+ It 0
f or some predictable : ( o, t 1 x Q ~ R. Then, by ( 17 )

t 
= E([t 03C6os 03A8s, ~X(Vs )X(xs )* 03A8s >ds) = 0t 0 * * * . *

by the skew symmetry (6). By (16J,

E(03A6Vt,03A8t>xt) = E{03A6(Vo,03A8o>xo - t01 2 03C303A8s,Vs>ds)}
Corollary : For M and {Vt: : t Z 0} as above

V 
t t o

Remark : The Corollary can also be easily seen from the Itð form of (2) for an

arbitrary Brownian motion system with drift :

+ 1 2 ,-)~ (19~

Here, Ric(vt,-)’~ : : Tx M --~ Tx M corresponds to the Ricci tensor and, as
t t

usual, the equation refers to the Itð equation obtained after parallel trans-

lation back to x . , It comes from the Proposition in paragraph 2H.
o

C - For M = R or Sl, it is possible to identify the conditional distribu-

tion of vt given {x~ : s z 0} when {x: : : s e 0} is a Brownian motion. In

this case, for M = R, equation (2) reduces to

dvt = 

giving vt = exp(t0 X’(xs)dBs - 1 2 t0 | X’(xs)|2ds) vo.

Using (6), there is therefore a I-dimensional Brownian motion ~~~ : s a 0}

independent of ~(x : s z 0} with
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vt = exp(t0 |X’(xs)|d03BEs - 1 20 - j 0 
- ,’ at u = t0 I X’(xs)|2ds,

0

for a Brownian motion {~ : : u ~ 0} on R independent of (x : s L 0}.
u :

Thus, conditionally on {xs : : s ~ 0}, the derivative F’(x) has the distri-

bution of exp(03B3u - 1 2 u)vo with u = t0 |X’(xs)|2ds.

4 - Topological and geometric obstructions to moment stability.

For M compact Riemannian, define the moment exponents p (p), x E M,
x o
o

pER. by

(p1 ) = 1 im 1 t ~p)

and write

qxo (1) = lim 1 t log E(~qTxoFt~) q = 1,...,m.

Then, from (A1 or (E31, u 
x 

is convex and p -~ 1 p ~c 
x 

(p) is increasing, with
o 0

p (0) = 0. Clearly (with suitable choice of norms) :
0

q=1 i to m.

0 0

On the other hand, following [ERI] and [ERII], define Rq(x)’ to be
o

the lowest eigenvalue of the Weitzenböck tensor Rq at x . (Thus, 

is a lower bound for the Ricci tensor at x ). Set

vq(xo) = lim t 

for {x . ’ 0 ~ s s t) a Brownian motion on M starting from x . .
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In [ERI], f ERII ), there were shown to be strong topological consequences of

having vq  ~ 0.

ln fact, these were consequences of pR (q)  0 for each x in M where
x o
o

Rxo (q) = - 1 i m 1 log x

for : t Z 0} given by (18) with A = 0. Using Theorem A, for a gradient

Brownian system on compact M

(q) s 1 t log T x ~ ~~"}} t = pq x (1) ~ (q). (20)

Thus, the results of [ERII]_are implied by stability conditions such as

px (q)  0 or pX il)  0. For example :
x xo o

Theorem : For a gradient Brownian flow on a compact manifold M

(i) if p (1)  0 for each x E M ("moment stability"), then Hl(M,Z) = 0.
- x o

o

If also dim M = 3, then n2M = 0.

(ii) if p2 (1)  0, f or each x E M, then n M is a torsion group and
- x --r-- 0 - 2

o 
.

the orders of the elements of 03C02M are bounded. If dim M = 4 and n1M = 0,

then p2 (1)  0 implies that M is dif f eomorphic to the sphere S4.

Proof : , Part (i) comes from (20) and the proof of Corollary SA of [ERI] and

(ii) comes from (20), and the proof of Corollary 3.23 of [ERII]. o

The first part of (i) is proved in [E2] for more general systems. It

should also be noted that the main results of [ERII] are concerned with the

universal cover of M when 03C01M is infinite. However, as pointed out in

[E4~, if

lim 1 t sup log E|TxoFt | 0

("strong moment stability") then 03C01M = 0, for any stochastic flow on a

compact M, ( f or the non-compact case, see f L 1 ) .



169

For more general systems, we can use (19) to obtain

Theorem ’Suppose M is a compact Riemannian manifold, and (1) is a Brownian

system with drift satisfying ~AX = 0. If the Ricci curvature is non positive,

the flow is not moment stable, and if the curvature is negative, then

~x (1) > 4.

xo

Appendix : Consider a general non-degenerate stochastic differential equation

of the form (1) and give M the Riemannian metric and associated connection

so that the generator is 1 2 0 + AX as in § 2 above.

For x E M, the ad joint of X(x) gives an isometric inclusion

X(x) : : ;
x

write for the orthogonal complement of its image (i.e : : the kernel of
x

X(x)) and let Y(x) be the projection of Rm onto T so that :
x

.

Y(x)e = e - X(x) X(x)e.

Let TM| be the subbundle of Rm with fibres and give it the Rieman-

nian metric induced from the standard, trivial, metric of Rm. Take any metric

connection on We will use / / t to denote parallel translation of

the normal space T x M along {xs ; ’ 0 s s s t} to T x M| , as well as
x ~ 

t

parallel translation of tangent vectors. Identifying T M with the corres-
x
t

ponding subspace of Rm, we obtain //t : : Rm ~ Rm , t a o. °

For # 
t 

defined by (8), set § 
t 
= x(x o )°u o § t° Consider the T xo M valuedFor Ht defined by (8), set 8t = Consider the T 

o 
Ml valued

process ; t t 0} defined by :

03B2t = t //=1 Y(xs)dB= (21)

0

and set Bt = Bt + ~t 0).

The following generalizes a result of Price and Williams [PW] on S2.
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Proposition : : The process {Ht ; t z 0} is Brownian motion on Rm, with :

t 
_

B - // d8 
T22;

In particular, {03B2t ; t z 0} is a Brownian motion independent of

~xt ~ t. ~ 0}.

Proof : That (22) holds is clear by definition and (8), using the fact

that u = // = u o and /% t 
1 
X(x t)*//t = X(xo)*. However, (22) gives :

Bt = t0 //-1s dBs ,

showing that E, is a BM (R’"), since each // is orthogonal.

The f inal result follows since t z 0} = o~{8t ; t ~ 0}, o

For the standard embedding of the sphere Sn in with correspon-

ding gradient Brownian system, we can now identify the conditional distribu-

tion of vt given 0}. Indeed, in this case, (19) reduces to

t

Dv = -v (n-1)v dt, where : 03B21t = 0 x ,dB >

- 

giving : vt = e 
t 2 

//t vo . ,

This is because OX is essentially the shape operator for the submanifold and

so, for S~ in R"+1 :

OX(v)e = -x,e>v, v E T M, e E R~
x

e.g. see [E3).

Now, {~~ ; t >- 0} is a 1-dimensional Brownian motion and. as for St
x

above, we see that it is independent of ~~ . Thus, vt is independent

o
00
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Comment : : So, this turns out to be rather uninteresting. However, the more

general case for a gradient Brownian system : :

A x (v t ,// t ds ) - t 2 1 
t t

where A : : T M x (T M)J. --~ T M looks difficult to treat.
x x 

" x x

Here, A is the shape operator :

f or « the second f undamental form, and

VX(v)(e) = A(v,Y(x)e) v e T M,
x

so : : VX(v )dB = A(v ,// d~ )
 *  e z
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