@article{SPS_1992__26__189_0, author = {Norris, James R.}, title = {A complete differential formalism for stochastic calculus in manifolds}, journal = {S\'eminaire de probabilit\'es de Strasbourg}, pages = {189--209}, publisher = {Springer - Lecture Notes in Mathematics}, volume = {26}, year = {1992}, mrnumber = {1231995}, zbl = {0791.58111}, language = {en}, url = {http://www.numdam.org/item/SPS_1992__26__189_0/} }
TY - JOUR AU - Norris, James R. TI - A complete differential formalism for stochastic calculus in manifolds JO - Séminaire de probabilités de Strasbourg PY - 1992 SP - 189 EP - 209 VL - 26 PB - Springer - Lecture Notes in Mathematics UR - http://www.numdam.org/item/SPS_1992__26__189_0/ LA - en ID - SPS_1992__26__189_0 ER -
%0 Journal Article %A Norris, James R. %T A complete differential formalism for stochastic calculus in manifolds %J Séminaire de probabilités de Strasbourg %D 1992 %P 189-209 %V 26 %I Springer - Lecture Notes in Mathematics %U http://www.numdam.org/item/SPS_1992__26__189_0/ %G en %F SPS_1992__26__189_0
Norris, James R. A complete differential formalism for stochastic calculus in manifolds. Séminaire de probabilités de Strasbourg, Tome 26 (1992), pp. 189-209. http://www.numdam.org/item/SPS_1992__26__189_0/
[DFN] Modern Geometry - Methods and Applications, Part II, Springer, Berlin, 1985. | MR | Zbl
, and ,[El] Stochastic Differential Equations on Manifolds : London Mathematical Society Lecture Note Series 70, Cambridge University Press, Cambridge, 1982. | MR | Zbl
,[EK] Factorization of Brownian motion and harmonic maps. In From local times to global geometry, control and physics: Pitman Research Notes in Mathematics 150, 75-83, Longman, Harlow, 1986. | MR | Zbl
and ,[Em] Stochastic Calculus in Manifolds, Springer, Berlin, 1989. | MR | Zbl
,[L] Factorization of diffusions on fibre bundles, Transactions of the American Mathematical Society 311, 813-827, 1989. | MR | Zbl
,[N] Path integral formulae for heat kernels and their derivatives, Preprint. | MR
,[V] Totally geodesic maps, Journal of Differential Geometry 4, 73-79, 1970. | MR | Zbl
,