@article{SPS_1989__23__186_0, author = {Rogers, L.C.G.}, title = {Multiple points of {Markov} processes in a complete metric space}, journal = {S\'eminaire de probabilit\'es de Strasbourg}, pages = {186--197}, publisher = {Springer - Lecture Notes in Mathematics}, volume = {23}, year = {1989}, mrnumber = {1022911}, zbl = {0746.60074}, language = {fr}, url = {http://www.numdam.org/item/SPS_1989__23__186_0/} }
TY - JOUR AU - Rogers, L.C.G. TI - Multiple points of Markov processes in a complete metric space JO - Séminaire de probabilités de Strasbourg PY - 1989 SP - 186 EP - 197 VL - 23 PB - Springer - Lecture Notes in Mathematics UR - http://www.numdam.org/item/SPS_1989__23__186_0/ LA - fr ID - SPS_1989__23__186_0 ER -
Rogers, L.C.G. Multiple points of Markov processes in a complete metric space. Séminaire de probabilités de Strasbourg, Tome 23 (1989), pp. 186-197. http://www.numdam.org/item/SPS_1989__23__186_0/
[1] Multiple path integrals. Adv. Appl. Math. 7,205-219,1986. | MR | Zbl
.[2] Potential theory for a family of several Markov processes. Ann. Inst. Henri Poincaré 23, 499-530, 1987. | Numdam | MR | Zbl
[3] Multiple points in the sample paths of a Lévy process. Preprint, 1987. | MR
[4] A local time analysis of intersections of Brownian paths in the plane. Ann. Prob. 12, 86-107, 1984. | MR | Zbl
, , and .[5] Potential theory of Lévy processes. Proc. London Math. Soc. 38, 335-352,1979. | MR | Zbl
[6] Multiple points of Lévy processes. Preprint, 1987.
, and[7] Diffusions, Markov Processes, and Martingales, Vol.2. Wiley, Chichester, 1987. | MR | Zbl
and[8] A local time approach to the self-intersections of Brownian paths in space. Comm. Math. Physics 88, 327-338, 1983. | MR | Zbl
[9] Joint continuity of the intersection local times of Markov processes. Ann. Prob. 15, 659-675, 1987. | MR | Zbl