@article{SPS_1988__22__166_0, author = {Fitzsimmons, Patrick J.}, title = {Penetration times and {Skorohod} stopping}, journal = {S\'eminaire de probabilit\'es de Strasbourg}, pages = {166--174}, publisher = {Springer - Lecture Notes in Mathematics}, volume = {22}, year = {1988}, mrnumber = {960524}, zbl = {0644.60076}, language = {en}, url = {http://www.numdam.org/item/SPS_1988__22__166_0/} }
TY - JOUR AU - Fitzsimmons, Patrick J. TI - Penetration times and Skorohod stopping JO - Séminaire de probabilités de Strasbourg PY - 1988 SP - 166 EP - 174 VL - 22 PB - Springer - Lecture Notes in Mathematics UR - http://www.numdam.org/item/SPS_1988__22__166_0/ LA - en ID - SPS_1988__22__166_0 ER -
Fitzsimmons, Patrick J. Penetration times and Skorohod stopping. Séminaire de probabilités de Strasbourg, Tome 22 (1988), pp. 166-174. http://www.numdam.org/item/SPS_1988__22__166_0/
1. Order and Convexity in Potential Theory: H-cones. Lecture Notes in Math. 853. Springer, Berlin-Heidelberg-New York, 1981. | MR | Zbl
, , .2. Semiclassical potential theory. In Markov Processes and Potential Theory (J. Chover) pp. 33-59, Wiley, New York, 1967. | MR | Zbl
.3. Probabilités et Potentiel, III, Chap. IX á XI, Théorie discréte du potentiel. Hermann, Paris, 1983. | MR | Zbl
, .4. Excessive measures and Markov processes with random birth and death. Prob. Th. Rel. Fields, 72 (1986) 319-336. | MR | Zbl
, .5. Markov processes with identical hitting probabilities. Math. Zeit. 194 (1986) 547-554. | MR | Zbl
.6. Homogeneous random measures and a weak order for the excessive measures of a Markov process. To appear in Trans. Amer. Math. Soc. | MR | Zbl
.7. Constructing Markov processes with random times of birth and death. Seminar on Stochastic Process, 1986, pp. 35-69, Birkhäuser, Boston-Basel-Stuttgart, 1987. | MR | Zbl
, .8. Capacity theory without duality Prob. Th. Rel. Fields 73 (1986) 415-445. | MR | Zbl
, .9. The energy functional, balayage, and capacity. To appear in Ann. de L'Inst. Henri Poincaré. | Numdam | MR | Zbl
, .10. Skorohod stopping via potential theory. Lecture Notes in Math. 381, pp. 150-154. Springer, Berlin-Heidelberg-New York, 1974. | Numdam | MR | Zbl
.11. Markov processes and potentials, I. Ill. J. Math. 1 (1957) 44-93. | Zbl
.12. On some connections between probability theory and differential and integral equations. Proc. Second Berkeley Symp. Math. Statist. Prob. (J. Neyman) 189-215 (1951). | MR | Zbl
.13. Random time change for Markov processes with random birth and death. Preprint, 1986.
.14. Construction of Markov processes with random times of birth and death. Th. Prob. App. 18 (1974) 571-574. | Zbl
.15. The Kac approach to potential theory, I. J. Math. Mech. 16 (1967) 829-852. | MR | Zbl
.16. Penetration times and passage times. In Markov Processes and Potential Theory (J. Chover) pp. 193-204, Wiley, New York, 1967. | MR | Zbl
.17. Some topologies connected with Lebesgue measure. Lecture Notes in Math. 191, pp. 290-310. Springer, Berlin-Heidelberg-New York, 1971. | Numdam | MR
.