SÉminaire de probabilités (Strasbourg)

LesZek Slominski
 Approximation of predictable characteristics of processes with filtrations

Séminaire de probabilités (Strasbourg), tome 21 (1987), p. 447-478
http://www.numdam.org/item?id=SPS_1987__21_447_0
© Springer-Verlag, Berlin Heidelberg New York, 1987, tous droits réservés.
L'accès aux archives du séminaire de probabilités (Strasbourg) (http://portail. mathdoc.fr/SemProba/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

Article numérisé dans le cadre du programme

APPROXIMATION OF PREDICTABLE CHARACTERISTICS

OF PROCESSES WITH FILTRATIONS

Leszek Słomiński

1. Introduction.

Let (Ω, F, P) be a complete probability space and let S be a Polish space. Let $\mathcal{F}^{\prime}=\{\mathscr{F}(t)\}_{t \in \mathbb{R}^{+}}$be a filtration on
(Ω, F, P) i.e. a nondecreasing family of sub-G-algebras of F. In the sequel we will consider \mathcal{F} adapted processes X such that :
(1) $\quad x(t)$ is a random s element on $(\Omega, F, P), t \in \mathbb{R}^{+}$.
(2) almost all trajectories $\Omega \geqslant \omega \longmapsto\left(x(\omega): \mathbb{R}^{+} \longrightarrow S\right)$ are right-continuous and admit left hand limits, ie. belong to $D(S)$,
(3) the filtration \mathcal{F} is right-continuous and complete. We will denote by $\beta(s)$ and $\mathcal{P}(s)$ the σ-algebra of Bored subsets of S and the space of probability measures on $\mathcal{B}(S)$. respectively. It is well known that if $\wp(s)$ is equipped with the topology of weak convergence and $D(S)$ is endowed with the Skorokhod topology J_{1} then both spaces are metrisable as Polish spaces (see e.g. [2], [14]).

Let $T=\left\{T_{n}\right\}_{n \in \mathbb{N}} \quad, T_{n}=\left\{t_{n k}\right\}_{k \in \mathbb{N} \cup\{0\}}, 0=t_{n 0}<t_{n 1}<\ldots$,
$\lim _{k \rightarrow \infty}{ }_{n k}=+\infty, n \in \mathbb{N}$ be a sequence of partitions of \mathbb{R}^{+}such that:
(4) $T_{n} \subset T_{n+1} \quad, n \in \mathbb{N}$,
(5) $k \leqslant \max _{n}(t)\left(t_{n k}-t_{n, k-1}\right) \downarrow 0 \quad, t \in \mathbb{R}^{+}$.
where $\quad r_{n}(t)$ d if $\max \left[k: t_{n k} \leqslant t\right], t \in \mathbb{R}^{+}, n \in \mathbb{N}$. For the array $\left\{t_{n k}\right\}$ we define the sequence of summation rules $\left\{\rho_{n}\right\} n \in \mathbb{N}$ by the equality $\rho_{n}(t) \stackrel{d}{=} \max \left[t_{n k}: t_{n k} \leqslant t\right], \quad t \in \mathbb{R}^{+}, n \in \mathbb{N}$. Notice that $\left\{r_{n}\right\}_{n \in \mathbb{N}} \subset D(\mathbb{R})$ and $\left\{\rho_{n}\right\}_{n \in \mathbb{N}} \subset D(\mathbb{R})$.

Let x be an element of $D(S)$. Having the sequence of summation rules $\left\{\rho_{n}\right\}_{n \in \mathbb{N}}$ we may introduce a sequence $\left\{x_{0} \rho_{n}\right\} n \in \mathbb{N}$ of elements from $D(s)$ by the equality $\times \circ \rho_{n}(t) \stackrel{d t}{=} \times\left(\rho_{n}(t)\right), t \in \mathbb{R}^{+}$. $n \in \mathbb{N}$. The Skorokhod convergence is such that :

$$
\begin{equation*}
x \circ \rho_{n} \rightarrow x \quad \text { in } D(s) \tag{6}
\end{equation*}
$$

Let $S=\mathbb{R}$ and let X be an \mathcal{F} adapted real semimartingale, $x(0)=0$, with the triplet of local predictable characteristics ($B^{h}, 6^{2}, \mathcal{V}$) (see Section 3). Let us fix $\omega \in \Omega$. By Theorem 1 of Grigelionis [5] there exists a semimatingale with independent increments x^{ω} such that its law $\mathcal{L}\left(x^{* v}\right)$ is uniquely determined by the triplet $\left(B^{h}(w), \sigma^{2}(w), \nu(w)\right)$ (see Section 3).

Let us denote by $\Lambda^{X}(\omega)$ the distribution of X^{ω} considered as a random element with values in $\mathcal{P}(D(\mathbb{R}))$:

$$
\begin{equation*}
\mu^{X}(w) \stackrel{d f}{=} \mathcal{L}\left(x^{w}\right) \tag{7}
\end{equation*}
$$

Hence Λ^{X} is a random measure with values in the set (denoted by PII) of distributions of processes with independent increments and with trajectories in $D(\mathbb{R})$. The set PII is a closed subset of $P(D(\mathbb{R}))$.

Now, let X be an \mathcal{F} adapted real process, $X(0)=0$. We will consider a sequence $\left\{x \cdot \rho_{n}\right\}_{n \in \mathbb{N}}$ of $\mathcal{F}_{0} \rho_{n}$ adapted processes, which is in fact a sequence of discretization of x according to $\left\{\rho_{n}\right\}_{n \in \mathbb{N}}$:

$$
\begin{align*}
& x \circ \rho_{n}(t) \stackrel{d f}{=} x\left(\rho_{n}(t)\right)=\sum_{k=1}^{r(t)} \Delta_{k}^{n} x \tag{8}\\
& \mathcal{F} \cdot \rho_{n}(t) \stackrel{d f}{=} \mathcal{F}\left(\rho_{n}(t)\right) \tag{9}
\end{align*}
$$

$t \in \mathbb{R}^{+}, n \in \mathbb{N}$ where $\Delta_{k}^{n} x \stackrel{d f}{=} x\left(t_{n k}\right)-x\left(t_{n, k-1}\right) \quad k, n \in \mathbb{N} \quad$.
By (1) and (6) we may trivially obtain

$$
\begin{equation*}
x \circ g_{n} \rightarrow x \quad \text { in } \quad D(\mathbb{R}) \tag{10}
\end{equation*}
$$

almost surely.
Since for every $n \in \mathbb{N} \quad x \circ \rho_{n} \quad$ is a process with bounded variation, $X \cdot \rho_{n}$ is a semimartingale. Therefore there exists a random measure $\Lambda^{x} \cdot \rho_{n}$ defined by (7). Moreover the special form of $x \cdot \rho_{n}$ and $\mathcal{J} \circ \rho_{n}$ implies that :
(11)

$$
\Lambda^{x \circ \rho_{n}}(t)=\prod_{k=1}^{r_{n}(t)} \lambda\left(t_{n k}, t_{n, k-1}\right) \quad t \in \mathbb{R}^{t}, n \in \mathbb{N}
$$

where "*" denotes the convolution taken pointwise for the random measures $\quad \lambda\left(t_{n k}, t_{n, k-1}\right) \quad n, k \in \mathbb{N}$ and $\lambda\left(t_{n k}, t_{n, k-1}\right)$ is a regular version of the conditional distribution of the increment $\Delta_{k}^{n} \mathrm{X}$ given $\mathcal{F}\left(t_{n, k-1}\right) \quad n, k \in \mathbb{N}$.

Now, we are ready to introduce our main notion.
Definition 1. Let X be an \mathcal{F} adapted real process, $x(0)=0$, and let $T=\left\{T_{n}\right\} \quad n \in \mathbb{N}$ be a sequence of discretizations satisfying. (4). (5). We will say that X is T tangent to the family of processes with independent increments or for simplicity X is T tangent to PII ff there exists a random measure
$\Lambda_{\mathrm{g}}^{\mathrm{X}}: \Omega \rightarrow \mathrm{PII} \subset \rho(\mathrm{D}(\mathbb{R}))$ such that
(12)

In the sequel we will denote the class of processes T tangent to PII by $S_{g}(T, D)$.

In our paper we characterise the class of processes T tangent to PII and we formulate limit theorems for processes from $S_{g}(T, D)$. Main theorems are contained in Section 2 . We defer the proofs to Section 5 .

It is clear by using the counter example from Dellacherie,
Doleans-Dade [4] that it is possible to construct a process X (even a semimartingale) and two sequences of discretizations
$T=\left\{T_{n}\right\}_{n \in \mathbb{N}}, T^{1}=\left\{T_{n}^{1}\right\}_{n \in 1} \mathbb{N}$ for which X is T tangent to PII but X is not T^{1} tangent to PII. Hence in this case $S_{g}(T, D) \neq S_{g}\left(T^{1}, D\right)$ and the property" X is T tangent to PII " should be checked for fixed $T=\left\{T_{n}\right\}_{n \in \mathbb{N}}$. Since the random measures Λ^{X} and $\mu_{g}^{x}{ }_{n}$ associated to the semimartingale X and to the element of $S_{g}(T, D)$, respectvely, have some different properties (for more detail see Section 3) we reserve the notion Λ^{X} only for semimartingales.

Recently Jacod [9] examined a particular case of the theorems considered in our paper. Jacod characterised in detail the class of processes T tangent to PII such that for every we $\Omega \Lambda_{g}^{X}(w)$ is additionally the law of continuous in probability process with
independent increments.
Below we give Jacod's results. In fact we change slightly the form and notation in those theorems. Let $S_{g}(T, C)$ denote the subspace of $S_{g}(T, D)$ examined in [9].

Theorem J1 ([9]). (i) Every continuous in probability process with independent increments $x, X(0)=0$ belongs to $S_{g}(T, C)$. Then $\Lambda_{g}^{x}=\delta(x)$.
(ii) Every quasileft-continuous semimartingale $x, X(0)=0$ belongs to $S_{g}(T, C)$. In this case $\Lambda_{g}^{X}=\Lambda^{X}$.

In order to give a characterisation of processes from $S_{g}(T, C)$ it is necessary to define the following family of processes.

Definition $\mathrm{J2}$ ([9]). (i) We say that the bounded and predictable process $B, B(0)=0$ with continuous trajectories belongs to the class $B(T, C)$ if $r_{n}(t)$

$$
\begin{align*}
& \sup _{t \leqslant g_{n}(t)} \sum_{k=1}^{n} E_{k-1}^{n} \Delta_{k}^{n} B-B(t) \mid \rightarrow p, q \in \mathbb{R}^{+} \tag{13}\\
& \sum_{k=1}^{n}\left[E_{k-1}^{n}\left(\Delta_{k}^{n} B\right)^{2}-\left(E_{k-1}^{n} \Delta_{k}^{n} B\right)^{2}\right] \rightarrow \underset{p}{ } 0, t \in \mathbb{R}^{+}
\end{align*}
$$

where $E_{k-1}^{n}(\cdot)=E(\cdot) \mid \mathcal{F}\left(t_{n, k-1}\right) \quad n, k \in \mathbb{N}$.
(ii) We say that the process B belongs to $B_{l o c}{ }^{(T, C)}$ eff there exists a localizing sequence $\tau^{\{ }\left\{\tau_{k}\right\}_{k \in \mathbb{N}}, \tau_{k} \uparrow+\infty$ ass. of $\mathcal{F}^{\text {stopping times for which }} B_{k} \in B(T, C), k \in \mathbb{N}$.

We will also use the characteristics σ^{2}, ν such that
(15) σ^{2} is a process with continuous and nondecreasing trajectories, $\sigma^{2}(0)=0$
(16) \mathcal{V} is a random measure on $\Omega\left(\mathbb{R}^{+} \times \mathbb{R}\right), \mathcal{V}(\{t\} \times \mathbb{R})=0, t \in \mathbb{R}^{\dagger}$ $\left.\mathcal{\mathcal { V }} \mathbb{R}^{+} \times\{0\}\right)=0, \quad \int_{\mathbb{R}} x^{2} \wedge 1 \mathcal{\nu}((0, t] x d x)<+\infty, t \in \mathbb{R}^{+}$.
Theorem J3 $([9])$. (i) $B_{l o c}(T, C)$ and $S_{g}(T, C)$ are two vector spaces.
(ii) The sum of a quasileft-continuous semimartingale and a process from ${ }^{B_{l o c}}(T, C)$ belongs to $S_{g}(T, C)$.
(iii) The process x belongs to $S_{g}(T, C) \frac{\text { iffy there exists }}{\sigma^{2}}$ the triplet $\left(B, \sigma^{2}, \nu\right)$ with $B \in B_{l o c}(T, C)$ and σ^{2}, ν satisfying (15) and (16) respectively such that X - B is a quasileft-continuous semimartingale with triplet of predictable characteristics $\left(0, \sigma^{2}, \nu\right)$. In this case the triplet $\left(B, \sigma^{2}, \nu\right)$
is uniquely determined.
(iv) The space $B_{l o c}(T, C)$ contains: all the processes B, $B(O)=0$ with continuous trajectories and bounded variation, all
the continuous elements from $D(\mathbb{R})$ equal null in 0 .
It can be observed (see [9] , Remark 1.16) that the technique used for the characterisation of the class $S_{g}(T, C)$ can not to be extended to the class $S_{g}(T, D)$. Our method is more general and we hope that it is slightly simpler to the one mentioned above.

We end this section with a simple example of a family of processes from $S_{g}(T, D)$ not necessary belonging to $S_{g}(T, C)$.

Example. Every process with independent increments $x, x(0)=0$ is T tangent to PII.

In order to explain this fact let us note that for each $n \in \mathbb{N}$ $X \circ \rho_{n}$ is a semimartingale with independent increments for which :

$$
\Lambda^{x \circ} \rho_{n}=\delta\left(x \circ \rho_{n}\right)
$$

By (10) the conclusion follows and $\iota_{\mathrm{g}}^{x}=\mathcal{L}(x)$.
In the following sections we restrict our attention to the real \mathcal{N} adapted processes X satisfying the assumption

$$
\begin{equation*}
x(0)=0 \tag{17}
\end{equation*}
$$

2. Main results.

2.1 The semimartingales T tangent to PII.

Let $T=\left\{T_{n}\right\} n \in \mathbb{N}$ be a sequence of discretizations satisfying (4) , (5) with the accompanying sequence of summation rules $\left\{\rho_{n}\right\} n \in \mathbb{N}$. Let us fix $t \in \mathbb{R}^{+}, n \in \mathbb{N}$ and let σ be a Jog stopping time. Since for $k \leqslant r_{n}(t) \quad,\left[t_{n k} \leqslant \sigma<t_{n, k+1}\right] \in \mathscr{F} \circ \rho_{n}\left(t_{n, k+1}-\right)=\boldsymbol{J}\left(t_{n k}\right)$ $\subset \mathscr{J} \rho_{n}(t)$ so by simple calculations we have

$$
\begin{aligned}
{\left[\rho_{n}(\sigma) \leqslant t\right] } & =\sum_{k=0}^{r_{n}(t)}\left[\rho_{n}(\sigma)=t_{n k}\right] \\
& =\int_{k=0}^{r_{n}(t)}\left[t_{n k} \leqslant \sigma<t_{n, k+1}\right] \in \mathcal{J}_{0} \rho_{n}(t)
\end{aligned}
$$

But if σ is an \mathcal{J} stopping time only we do not know whether $\rho_{n}(\sigma)$ is an $\mathcal{F}_{0} \rho_{n}$ stopping time or not. This implies the
existence of examples of semimartingales which are not T tangent to PII .

Theorem 1. Let X be a semimartingale with the predictable characteristics Λ^{X} defined by (7). The semimartingale X is T tangent to PII i.e. $x \in S_{g}(T, D)$ iffy the following. condition (T) is satisfied :

$$
\text { for every predictable } \mathcal{J} \text { stopping time } \sigma \text { there }
$$ exists a sequence $\left\{\sigma_{n}\right\}_{n \in \mathbb{N}}$ of $\mathcal{J}_{0} \rho_{n}$ stopping times such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} P\left[\rho_{n}(\sigma) \neq \sigma_{n}, A \sigma\right]=0 \tag{T}
\end{equation*}
$$

$$
\frac{\text { where }}{\Lambda x} A_{\wedge x}^{A_{\sigma}} \quad \operatorname{dr}[\nu(\{\sigma\}, \mathbb{R})>0, \sigma<+\infty] \text {. }
$$

In this case $\Lambda_{\mathrm{g}}^{\mathrm{X}}=\iota^{X}$.
Due to Theorem 1 it is possible to give a nontrivial example of a semimartingale from $S_{g}(T, D)$.

Corollary 1; Let x be a semimartingale of which every predictable jump σ has one of the two following forms :
(18) $\sigma=\sum_{k=1}^{\infty} s_{k} I\left(\sigma=s_{k}\right)$ on the set ${ }^{A} \sigma$ for some sequence of positive constants $\left\{s_{k}\right\}_{k \in \mathbb{N}}$
(19) $\sigma=\tau+c$ on the set ${ }^{A} \sigma$ for some \mathcal{F} stopping time. \widetilde{v} and for some positive constant c.
Then $x \in S_{g}(T, D)$.
2.2 The characterisation of processes from $S_{g}(T, D)$.

First we introduce a new class of processes appropriate to $B_{l o c}(T, C)$.

Definition 2. (i) We say that a bounded and predictable process $B, B(0)=0$ belongs to the class $B(T, D)$ if
(20)

$$
\sup _{t \leqslant q}
$$

$$
\sum_{k=1}^{r n(t)}
$$

$$
E_{k-1}^{n} \Delta_{k}^{n} B
$$

$$
\sum_{n}^{r_{n}(t)}
$$

(ii) We say that the process B belongs to
there exists a localizing sequence $\left\{\tilde{\tau}_{k}\right\}_{k \in \mathbb{N}},{ }^{B}{\underset{\tau}{10 c}}(T, D) \frac{\text { if }}{} \uparrow_{k}+\infty \quad$ ass. of \tilde{J} stopping times and $\quad \mathcal{C}_{k} \in B(T, D), k \in \mathbb{N}$.

Let us assume that $B \in B(T, D)$. Since an $\mathcal{F}_{\circ} \rho_{n}$ adapted process
$\left\{\sum_{k=1}^{r_{n}(t)}\left[E_{k-1}^{n} \Delta_{k}^{n} B-\Delta_{k}^{n} B\right]\right\}_{t \in \mathbb{R}^{+}}$is for fixed $n \in \mathbb{N}$ a local martingale it follows by the Davis-Burkholder-Gundy inequality (see [7]) that (20) implies (14) . Therefore :

$$
B(T, C)=B(T, D) \cap\{B \text { with continuous trajectories }\} .
$$

We can easily extend the above equality to the classes $\mathrm{B}_{10 \mathrm{c}}(\mathrm{T}, \mathrm{C})$ and $B_{l o c}(T, D)$. It is clear that $t^{\text {in }} / \mathrm{general} \mathrm{B}_{\mathrm{loc}}(\mathrm{T}, \mathrm{D}) \neq \mathrm{B}_{\mathrm{loc}}\left(\mathrm{T}^{1}, \mathrm{D}\right)$ for two different sequences of discretizations T, T^{10}.

Now, let us observe that it is possible to express (20) in terms of convergence in $D(\mathbb{R})$. By (71) $B, B(0)=0$ belongs to $B(T, D)$ if
(21)

where above and in the next sections for every special semimartingale
x, \widetilde{x} denotes its predictable compensator , $\widetilde{x}(0)=0$.
Let $\left(B_{g}^{h}, \sigma_{g}^{2}, \nu_{g}\right)$ be a triplet of characteristics such that:
(22) $\quad B_{g}^{h}$ is a predictable process, $\sup _{t}\left|\Delta B_{g}^{h}(t)\right| \leqslant 1, B_{g}^{h}(0)=0$,
(23) σ_{g}^{2} is a process with continuous and nondecreasing trajectories $\quad \sigma_{g}^{2}(0)=0$.
(24) $\quad \mathcal{V}_{g}$ is a random measure on $\mathcal{S}\left(\mathbb{R}^{+} \times \mathbb{R}\right)$ for which

$$
\left.\mathcal{\nu}_{g}(\{0\} \times \mathbb{R})=0, \quad \mathcal{\gamma}_{g}\left(\mathbb{R}^{+} \times\{0\}\right)=0, \quad \mathcal{\nu}_{g}(0, t] \times[|x|>\varepsilon]\right)<+\infty
$$

$$
\nu_{g}(\{t\} \times \mathbb{R}) \leqslant 1
$$

$$
\int_{0}^{t} \int_{\mathbb{R}}\left(h(x)-\Delta B_{g}^{h}(s)\right)^{2} \nu_{g}(d s x d x)+\sum_{s \leqslant t}\left(1-\mathcal{V}_{g}(\{s\} \times \mathbb{R})\right)\left(\Delta B_{g}^{h}(s)\right)^{2}<+\infty
$$

$$
\Delta B_{g}^{h}(t)=\int_{\mathbb{R}} h(x) \mathcal{V}_{g}(\{t\} x d x), \text { for every } t \in \mathbb{R}^{+}, \varepsilon>0
$$

Theorem 2. (i) $B_{l o c}(T, D)$ and $S_{g}(T, D)$ are two

vector spaces.

(ii) The sum of a T tangent to PII semimartingale and a process from ${ }^{B}{ }_{\text {doc }}(T, D)$ belongs to $S_{g}(T, D)$.
(iii) The process X belongs to $S_{g}(T, D)$ iffy there exists a system of characteristics $\left(B_{g}^{h}, \sigma_{g}^{2}, \nu_{g}^{9}\right)$ satisfying (22)-(24)


```
from S S (T,D) with the triplet of predictable characteristics.
given by :
\sigma
\mp@subsup{\mathcal{V}}{}{h}}(A)\stackrel{d}{=}|\mp@subsup{\int}{\mathbb{R}}{
        + < < <s
                                A\inS(\mathbb{R}+\mathbb{R}).
B}\mp@subsup{B}{}{h}(t)d|=\mp@subsup{\sum}{s\leqslant\mp@subsup{t}{\mathbb{R}}{\prime}}{}\mp@subsup{\int}{n}{}n(x)\mp@subsup{\mathcal{V}}{}{h}({s}\timesdx),t\in\mp@subsup{\mathbb{R}}{}{t}
In this case the triplet (T,O)
B, B(0)=0 with bounded variation, satisfying the condition
(T), and all F(0) measurable processes equal null in 0..
Corollary 2. Let \(X\) be a process with conditionally independent increments. Then \(x \in S_{g}(T, D)\).
```


2.3 Functional limit theorems for processes tangent to PII

It is interesting that limit theorems for the processes tangent to PII can be formulated in the same way as for semimartingales (functional limit theorems for semimartingales can be found in [6] . [10]). In order to study those theorems we will use an approach of Aldous [1].

Let X be an \mathcal{Y} adapted real process. Aldous has shown that there exists a unique $\mathscr{F}_{\tilde{J}}$ adapted process Z with trajectofries in the space $D\left(P(D(\mathbb{R}))\right.$ such that for every $t \in \mathbb{R}^{+}$ and $A \in B(D(\mathbb{R}))$ we have :

$$
z(t, A)=P(x \in A \mid \tilde{F}(t))
$$

i.e. $z(t): \Omega \times \beta(D(\mathbb{R})) \rightarrow[0,1]$ is a regular version of the conditional distribution of x given $\tilde{\mathcal{F}}(\mathrm{t})$.

For every $w \in \Omega$ the trajectory

$$
\mathbb{R}^{+} \ni t \longmapsto(x(t, w), z(t, w)) \in \mathbb{R}^{+} \times P(O(\mathbb{R}))
$$

is an element of the space $D(\mathbb{R} \times \mathcal{P}(D(\mathbb{R}))$) so we can define the extended distribution of the process X as the distribution of the random element

Let $\left\{x^{n}\right\}_{n \in \mathbb{N}}\{\infty\}$ be a sequence of \mathcal{F}^{n} adapted processes. We say that the sequence $\left\{x^{n}\right\} \quad n \in \mathbb{N} \quad$ converges extendedly to x^{∞} and write $\quad x^{n} \longrightarrow x^{n}$ of the extended distributions of $\left\{x^{n}\right\}_{n \in \mathbb{N}}$ are weakly convergent to the extended distributron of x^{∞}.

Some necessary and sufficient conditions for extended convergence of semimartingales have been given in [11] and [17] . It is proved by Kubilius [12] that the theorems from [11] and [17] can be extended to the case where the limit process is a semimartingale but not necessarily with independent increments.

In the present paper we propose another way of generalization. We apply the method from [11] and [17] to the processes tangent to PII .
 be a continuous in probability process with independent increments. Under the condition

the following two conditions are equivalent :
(i)

$$
\Lambda_{g}^{x^{n}} \xrightarrow[p]{ } \mathcal{L}\left(x^{\infty}\right)
$$

$$
\begin{equation*}
x^{n} \xrightarrow[E]{ } \quad x^{\infty} \tag{ii}
\end{equation*}
$$

Similarly we could formulate a version of Theorem 3 from [11] where the condition (Sup B_{g}) is also necessary in some special sense.
3. Preliminary remarks.
3.1 Convergence in the Skorokhod topology.

The space $D(S)$ with the Skorokhod topology J_{1} has been discussed in detail by several authors : Lindvall [14]. Billingsley $[2]$ and Aldous [1]. In the present paper we will use frequently the results from $[1]$.

Let x be an element of $D(S)$. Let us denote by s_{x} the element x stopped at $s, s \in \mathbb{R}^{\dagger}$, ie.

$$
s_{x}(t) \stackrel{d f}{=} \begin{cases}x(t) & t \leqslant s \\ x(s) & t>s\end{cases}
$$

$\xrightarrow[\text { such that }]{\text { Remark 1. Let }}\left\{x_{n}\right\}_{n \in \mathbb{N} \cup\{\infty\} \text { be a sequence of elements from }}^{\text {Then by }}$
 is a sequence satisfying $\quad u_{n} \geqslant s_{n}, n \in \mathbb{N}$ and $u_{n} \longrightarrow s$ then also ${ }^{u_{n^{\prime}}}{ }_{n} \longrightarrow{ }^{s}{ }_{x_{\infty}}$.

Suppose that S, S^{1} are two Polish spaces. In Section 2.3 and in other sections of our paper we often use the convergence in the Skorokhod topology in $D\left(S x S^{1}\right)$. By Proposition 29.2 from [1] we obtain following simple characterisation of the converfence in $D\left(S \times S^{1}\right)$.
 elements from $D(S)$ and $D\left(S^{1}\right)$ respectively. Then $\left(x_{n}, y_{n}\right) \rightarrow\left(x_{\infty}, y_{\infty}\right)$ in $D\left(s x s^{1}\right)$ if $x_{n} \longrightarrow x_{\infty}$ in $D(s)$ $y_{n} \rightarrow y_{\infty}$ in $D\left(s^{1}\right)$ and for every $t^{n} \in \mathbb{R}^{t}$ there exists a sequence $\left\{t_{n}\right\}_{n \in \mathbb{N}}, t_{n} \longrightarrow t$ such that $x_{n}\left(t_{n}\right) \longrightarrow x_{\infty}(t)$ $x_{n}\left(t_{n}-\right) \longrightarrow x_{\infty}(t-), y_{n}\left(t_{n}\right) \longrightarrow y_{\infty}(t), y_{n}\left(t_{n}-\right) \xrightarrow{n} y_{\infty}(t-)$.

Remark 2. The above result is simpler in the case $S=\mathbb{R}$.

$\Delta x_{\infty}(t) \neq 0 \quad$ and $\left.\Delta y_{\infty}(t) \neq 0\right\}$ there exists a sequence $\left\{t_{n}\right\} \quad n \in \mathbb{N}, t_{n} \longrightarrow t$, such that $\Delta x_{n}\left(t_{n}\right) \longrightarrow \Delta x_{\infty}(t)$ and $\Delta y_{n}\left(t_{n}\right) \rightarrow \Delta y_{\infty}(t)$. Consequently $\left(x_{n}, y_{n}\right) \rightarrow\left(x_{\infty}, y_{\infty}\right)$ in $\xrightarrow[D\left(\mathbb{R}^{2}\right)]{ }$ $\underset{\text { in } f}{\text { if }}{ }_{0}(\mathbb{R})$. $x_{\infty}, y_{n} \longrightarrow y_{\infty} \xrightarrow{\text { and }} x_{n}-y_{n} \rightarrow x_{\infty}-y_{\infty}$

Now, assume that $x \in D(\mathbb{R}), x(0)=0$ and x has quadratic variation $[x]$, i.e. for each $t \in \mathbb{R}^{+}$there exists a finite limit
$[x](t) \frac{d f}{=f} \lim _{n \rightarrow \infty} \sum_{k=1}^{r_{n}(t)}\left(x\left(t^{\prime} \wedge t_{n, k+1}\right)-x\left(t \wedge t_{n k}\right)\right)^{2}$
for some fixed sequence of discretizations $T=\left\{T_{n}\right\}_{n \in \mathbb{N}}$. Therefore $[x] \in D(\mathbb{R})$ and $[x)(0)=0$. It is clear by using eeg.
3.2. in $[8]$ that $\left[x \cdot \rho_{n}\right] \rightarrow[x]$ in $D(\mathbb{R})$.

Moreover by Remark 2 and (6)

$$
\left([x] \cdot \rho_{n},\left[x \cdot \rho_{n}\right]\right) \rightarrow([x],[x]) \text { in } D\left(\mathbb{R}^{2}\right) .
$$

Using Remark 2 once more
(25) $\quad \sup _{t \leqslant q}\left|[x] \cdot \rho_{n}(t)-\left[x \circ \rho_{n}\right](t)\right| \longrightarrow 0, \quad q \in \mathbb{R}^{+}$. The following lemma is an easy corollary of (25).

Lemma 1. Let x be a local martingale. Then

$$
\sup _{t \leqslant q}\left|[x] \log _{n}(t)-\left[x \circ \rho_{n}\right](t)\right| \underset{p}{ } 0, \quad q \in \mathbb{R}^{+}
$$

3.2 The Lenglart type inequality.

The following lemma follows readily from the concept of dominatimon introduced by Lenglart [13].
$\begin{array}{ll}\text { Lemma 2. } & \text { Let } x \quad \text { be a process with bounded variation. Then } \\ \text { all } \mathcal{E} \cdot \eta>0 \quad \text { and for every } \tilde{\sigma} \text { stopping time } \tau \text { : }\end{array}$

$$
P[\operatorname{var} \tilde{x}(\tau)>\varepsilon] \leqslant 4 \varepsilon^{-1} E \operatorname{var} x(\tau) \wedge\left(\eta+\sup _{t \leqslant \tau}|\Delta x(t)|\right)
$$

$$
+2 P[\operatorname{Var} x(\tau)>\eta]^{t \leqslant \tau}
$$

Proof. Let x^{+}and x^{-}be two increasing processes such that $x=x^{+}-x^{-}$and $\operatorname{Var} x=x^{+}+x^{-}$. Therefore

$$
P[\operatorname{Var} \tilde{x}(\tau)>\varepsilon] \leqslant P\left[\tilde{x}^{7}(\tau)>\frac{\varepsilon}{2}\right]+P\left[\tilde{x}^{-}(\tau)>\frac{\varepsilon}{2}\right] .
$$

Using the inequality of Rebolledo [16] to the first component on the right-hand side in the above inequality we obtain :

$$
\begin{gathered}
P\left[\tilde{x}^{+}(\tau)>\frac{\varepsilon}{2}\right] \leqslant 2 \varepsilon^{-1} E x^{+}(\tau) \wedge\left(\eta+\sup \left|\Delta x^{+}(t)\right|\right) \\
+P\left[x^{+}(\tau)>\eta\right]
\end{gathered}
$$

The same estimation is also true in the case of the process x^{-} Therefore the proof is complete.

Corollary 3. Let $\left\{x^{n}\right\}_{n \in \mathbb{N}}$ be a sequence of \mathcal{F}^{n} adapted processes with bounded variation such that $\left\{\sup _{t \leqslant \mathcal{V}_{n}} \|^{n}(t) \mid\right\}_{n \in \mathbb{N}}$ is uniformly integrable for some sequence $\left\{\tau_{n}\right\}_{n \in \mathbb{N}}^{n}$ of \mathcal{F}^{n} stopping times. If $\operatorname{Var} x^{n}\left(\tau_{n}\right) \longrightarrow p \quad 0 \quad$ then

$$
\operatorname{var} \tilde{x}^{n}\left(\tau_{n}\right) \rightarrow p \quad 0
$$

Let X be a semimartingale. Let h be a continuous
function $h: \mathbb{R} \rightarrow[-1,1]$ such that $h(x)=x$ for $|x| \leqslant 1 / 2$ and $h(x)=0$ for $|x|>1$. By x^{h} we denote the process given by the formula

$$
\begin{equation*}
x^{h}(t) \stackrel{d f}{=} x(t)-\sum_{s \leqslant t}(\Delta x(s)-h(\Delta x(s))) \quad, t \in \mathbb{R} t \tag{26}
\end{equation*}
$$

The process x^{h} is a semimartingale with bounded jumps,
$\sup \left|\Delta x^{h}(t)\right| \leqslant 1$, hence it is also a special semimatingale and c an be uniquely decomposed into the sum :

$$
\begin{equation*}
x^{h}(t)=B^{h}(t)+M^{h}(t) \quad, \quad t \in \mathbb{R} t . \tag{27}
\end{equation*}
$$

Where B^{h} is a predictable process with bounded variation , $B^{h}(0)=0$, $\sup \left|\Delta B^{h}(t)\right| \leqslant 1$ and M^{h} is a local martingale. $M^{h}(0)=0$, $\operatorname{stap}_{p}\left|\Delta M^{h}(t)\right| \leqslant 2$.

Let $X^{c^{t}}$ be the unique continuous martingale part of the semimartingale X. We define

$$
\begin{equation*}
\sigma^{2}(t) \stackrel{d f}{=}\left\langle x^{c}\right\rangle(t) \quad, t \in \mathbb{R}^{\dagger} \tag{28}
\end{equation*}
$$

where $\left\langle x^{c}\right\rangle=\left[x^{c}\right]$ is the quadratic variation process of x^{c}.
Let $\mathcal{\nu}=\nu(d t \times d x)$ be the dual predictable projection of the jump-measure $N(d t x d x)$ of the process x

$$
\begin{equation*}
N((0, t] \times A) d f \sum_{s \leqslant t} I(\Delta x(s) \in A, \Delta x(s) \neq 0) \quad t \in \mathbb{R}^{t}, A \in S(\mathbb{R}) \text {. } \tag{29}
\end{equation*}
$$

The triple $\left(B^{h}, \sigma^{2}, \nu\right)$ is called a system of local predictable characteristics of the semimartingale X. It can be observed that this system satisfies the following properties :
(30) B^{h} is a predictable process with bounded variation. $B^{h}(0)=0, \sup _{t}\left|\Delta B^{h}(t)\right| \leqslant 1$,
(31) σ^{2} is a process with continuous and nondecreasing tramjectories, $\sigma^{2}(0)=0$,
(32) $\quad \mathcal{V}$ is a random measure on $\mathcal{B}\left(\mathbb{R}^{+} \times \mathbb{R}\right)$ such that :

$$
\mathcal{V}(\{0\} \times \mathbb{R})=0, \quad \mathcal{V}\left(\mathbb{R}^{t} \times\{0\}\right)=0,
$$

$$
\int_{\mathbb{R}} x^{2} \wedge 1 \mathcal{Y}((0, t] x d x)<+\infty \quad t \in \mathbb{R}^{+} \text {. }
$$

It is clear that in general, it is not true that $\quad B^{h}$ belongs
to $B_{10 c}(T, D)$. However comparing (30) - (32) with the properties of predictable characteristics of processes tangent to PII we can conclude that the system $\left(B^{h}, \sigma^{2}, \gamma\right)$ fulfills the conditions

$$
(22)-(24), \text { too. }
$$

3.4 The processes with independent increments.

Let X be a process with independent increments. As it is proved in Jacod [8] and in Grigelionis [5] there exists a nonrandom system of characteristics $\left(B_{g}^{h}, \sigma_{g}^{2}, \nu_{g}\right)$ satisfying (22) (24) . Moreover if we denote $D_{0}=\left\{\begin{array}{l}\left.g \in \mathbb{R} t: \mathcal{V}_{g}(\{t\} x \mathbb{R})=0\right\}\end{array}\right.$ then for every $s, t \in \mathbb{R}^{t}, \mathrm{~s} \leqslant t$

$$
E \exp i \forall(x(t)-x(s))=\prod_{s \in r}\left\{\int_{T} 1+\int_{\mathbb{R}}\left(e^{i \theta x}-1\right) \gamma_{g}(\{r\} x d x)\right] e^{\left.-i \theta \Delta B_{g}^{h}(r)\right\}}
$$

$$
\begin{align*}
& \exp \left\{i \forall\left(B_{g}^{h}(t)-B_{g}^{h}(s)\right)-\frac{1}{2} \theta^{2}\left(\sigma_{g}^{2}(t)-\sigma_{g}^{2}(s)\right)\right. \tag{33}\\
& \left.+\int_{s}^{t} \int_{\mathbb{R}}\left(e^{i \theta x}-1-i \theta h(x)\right) I\left(r \in D_{0}\right) \mathcal{V}_{g}(d r \times d x)\right\}
\end{align*}
$$

Conversely if $\left(B_{g}^{h}, \sigma_{g}^{2}, \nu_{g}\right)^{\mathbb{R}}$ is a nonrandom system of characteristics with properties (22) - (24) then there exists a process with ingependent increments X for which the condition (33) holds. Therefore the law of $x \quad \mathcal{L}(x)$ is uniquely determined by the triple $\left(B_{g}^{h}, \sigma_{g}^{2}, \nu_{g}\right)$. In the sequel we will use the notation $\mathcal{L}\left(B_{g}^{h}, \sigma_{g}^{2} \cdot \nu_{g}\right) \stackrel{d f}{=} \mathcal{L}(x)$.

In [8] Jacod has gived also necessary and sufficient conditions for the weak convergence of sequence of processes with independent increments. Let $\left\{x^{n}\right\}_{n \in \mathbb{N} \cup\{\infty\}}$ be a sequence of processes with index. pendent increments with the sequence of their characteristics $\left\{\left(B_{g}^{h, n}, \sigma_{g}^{2, n}, \nu_{g}^{n}\right)\right\}_{n \in \mathbb{N} \cup\{\infty\}}$ •

Theorem $34([8]) \cdot \mathcal{L}\left(x^{n}\right) \rightarrow \mathcal{L}\left(x^{\infty}\right)$ in $\mathcal{P}(D(\mathbb{R}))$ if the following conditions are satisfied:
(34)

$$
\text { in } D(\mathbb{R})
$$

$$
B_{g}^{h, n} \rightarrow B_{g}^{h, \infty}
$$

$$
\begin{equation*}
c_{g}^{h, n} \rightarrow c_{g}^{h, \infty} \tag{35}
\end{equation*}
$$

$$
\text { in } D(\mathbb{R})
$$

$$
\begin{equation*}
\int_{\mathbb{R}} f(x) \nu_{g}^{n}(d x) \rightarrow \int_{\mathbb{R}} f(x) \mathcal{\nu}_{g}^{\infty}(d x) \text { in } D(\mathbb{R}), f \in C_{v(0)} \tag{36}
\end{equation*}
$$

$$
\text { where } c_{g}^{h, n}(t) \stackrel{d f}{=} G_{g}^{2, n}(t)+\sum_{s \leq t} \int_{\mathbb{R}}\left(h(x)-\Delta B_{g}^{h, n}(s)\right)^{2} \mathcal{V}_{g}^{n}(\{s\} x d x)+
$$

and $C_{v(0)}$ is a family of positive and bounded, continuous functions vanishing in some open neighbourhood of 0 .
4. Fundamental properties of processes tangent to PII.
4.1 Necessary and sufficient conditions for the processes
$\stackrel{\text { from }}{ } S_{g}(T, D)$.
It is possible to characterise a process $X \in S_{g}(T, D)$ in terms of convergence in probability of the predictable characteristics of their discretizations $\left\{x \circ \rho_{n}\right\}_{n}$

Proposition 1. A process X is T tangent to PII jiff
the following conditions are fulfilled :
(37)

(38)

$+\sum_{s \leq}^{1}\left[1-\mathcal{V}_{g}(\{s\} \times \mathbb{R})\right]\left(\Delta B_{g}^{h}(s)\right)^{2}$
(39)

where the triple $\left(B_{g}^{h}, \sigma_{g}^{2}, \nu_{g}\right) \xrightarrow{R}$ possesses the properties (22) - (24) In this case
(40) $\quad x^{h}-B_{g}^{h} \quad$ is a local martingale .
(41) $\quad \sigma_{g}^{2}=\left\langle\left(x^{h}-B_{g}^{h}\right)^{c}\right\rangle$.
(42) $\int_{\mathbb{R} \text { for every }} f(x) N(d x)-\int_{\mathbb{R}} f(x) \mathcal{V}_{g}(d x) \quad$ is a local martingale

Proof. Let us assume that the process X is T tangent to PII. By a routine technique of subsequences and by Theorem 34 used for fixed $w \in \delta$ we can readily see that the triplet $\left(B_{g}^{h}(\omega), \sigma_{g}^{2}(\omega), \nu_{g}(\omega)\right)$ is well defined.

First we check the properties (22) and (40) for the process

Therefore we have to verify that $\quad \mathrm{B}_{\mathrm{g}}^{\mathrm{h}}(\sigma) \quad$ is $\underset{\sim}{\mathbb{S}(6-)} \quad$ measurable
for every predictable $\quad \sigma$ stopping time $\quad \sigma \quad$ and $\quad \Delta B_{g}^{\mathrm{h}}(\sigma)=0$ for every totally inaccessible \mathcal{F} stopping time.

Let $\left\{\sigma^{i k}\right\}$ be the array of \mathscr{F} stopping time defined by the equalities :

$$
\begin{equation*}
\sigma^{i 0}=0, \quad \sigma^{i k}=\inf \left[t>\sigma^{i, k-1},\left|\Delta_{g}^{B_{g}^{h}}(t)\right|>\varepsilon_{i}\right] \tag{43}
\end{equation*}
$$

$i, k \in \mathbb{N}$, where $\left\{\varepsilon_{i}\right\}_{i \in \mathbb{N}}$ is a sequence of positive constants such that $\varepsilon_{i} \downarrow 0 \quad, P\left(\left|\Delta B_{g}^{h}(t)\right|=\varepsilon_{i}, t \in \mathbb{R}^{+}\right)=0$ and inf \varnothing dr $+\infty \quad$. Let $\left\{\tau_{n}^{i k}\right\}$ be defined analogously for fixed $n \in \mathbb{N}$ as the following array of predictable $\mathcal{F} \circ \rho_{n}$ stopping times :

$$
\begin{equation*}
\tau_{n}^{i 0}=0, \quad \tau_{n}^{i k}=\inf \left[t>\tau_{n}^{i, k-1},\left|\widetilde{\left(x_{0 \rho_{n}}\right)^{h}}(t)\right|>\varepsilon_{i}\right] \tag{44}
\end{equation*}
$$

$i, k \in \mathbb{N}$. Let us fix $i, k \in \mathbb{N}$. For simplicity we will write τ_{n}, σ instead of $\tau_{n}^{j k}, \sigma^{i k}$. By elementary computations : $\tau_{n} I\left(\tau_{n}<+\infty\right) \longrightarrow \sigma_{p}$ and $\Delta\left(\text { X of }_{n}\right)^{h}\left(\tau_{n}\right) I\left(\tau_{n}<+\infty\right)$
Let us put for every $n \in \mathbb{N}):$

$$
\delta_{n} \stackrel{d f}{=}\left\{\begin{array}{lll}
\tau_{n} & \text { if } & \tau_{n} \leqslant \rho_{n}^{*}(\sigma) \\
+\infty & \text { if } & \tau_{n}>\rho_{n}^{*}(\sigma)
\end{array}\right.
$$

 stopping time !). According to (10) $\Delta\left(x \cdot \rho_{n}\right){ }^{h}\left(\rho_{n}^{*}(\sigma)\right) \rightarrow p x^{h}(\sigma)$ on the set $[\sigma<+\infty]$. Therefore $\Delta\left(x \rho_{n}\right)^{n}\left(\tau_{n}\right) I\left(\rho_{n}^{*}(6) \neq \tau_{n}, \tau_{n}<+\infty\right)$
$0 \quad$ on the set $\rightarrow 0$ on the set $[\sigma<+\infty]$ and as a consequence :
(45) $\delta_{n} I\left(\delta_{n}<+\infty\right) \rightarrow \sigma \quad$ on the set $[\sigma<+\infty]$. (46) $\Delta\left(\widetilde{x \circ \rho}_{n}\right) h\left(\delta_{n}\right) I\left(\delta_{n}<+\infty\right) \xrightarrow[p]{p} B_{g}^{h}(\sigma)$ on the set $[\sigma<+\infty]$, (47) $\quad \delta_{n} \leqslant \rho_{n}^{*}(\sigma)$ on the set $\left[\delta_{n}<+\infty\right], n \in \mathbb{N}$.

Now we will show that σ is a predictable \mathcal{F} stopping time. Let $\left\{k_{n}\right\} \subset\{n\}$ be positive constant and $\left\{k_{n}\right\} n \in \mathbb{N}$ b \quad be subsequence

$$
\begin{aligned}
{\left[\delta_{k_{n}}=+\infty, \sigma<+\infty\right]^{c} } & =\left[\delta_{k_{n}} \leqslant \rho_{k_{n}^{*}}^{*}(6), \delta_{k_{n}}<+\infty\right] \\
& \cup\left[\rho_{k_{n}^{*}}^{*}(\sigma)=+\infty\right]
\end{aligned}
$$

we have $\left[\delta_{k_{n}}=+\infty, \sigma<+\infty\right] \in \mathcal{J}_{\rho_{k_{n}}}\left(\rho_{k_{n}}^{*}(\sigma)-\right)$. By the following simple lemma

Lemma 3. Let σ be a \mathcal{F} stopping time. Then for every $n \in \mathbb{N} \quad \mathcal{F}_{0} \rho_{n}\left(\rho_{n}^{*}(\sigma)-\right) c F(\sigma-) \quad$ and moreover

$$
\mathcal{F o g}_{n}\left(\rho_{n}^{*}(\sigma)-\right) \uparrow \mathcal{F}(\sigma-)
$$

we obtain that
 stopping time $\sigma_{\gamma}:$

$$
\sigma_{\gamma} \xrightarrow{d f} \begin{cases}\sigma & \text { on the set } \\ +\infty & \text { on the set } \\ \left.s_{\gamma}\right)^{c} \\ s_{\gamma}\end{cases}
$$

For every $n \in \mathbb{N}$ we also define :

$$
\sigma_{k_{n}} \quad \text { dp }\left\{\begin{array}{lll}
t_{k_{n}, j-1} & \text { if } & \delta_{k_{n}}=t_{k_{n}, j} \\
+\infty & \text { if } & \delta_{k_{n}}=+\infty
\end{array}, j \in \mathbb{N}\right.
$$

If we put $\quad \sigma_{k_{n}, \gamma^{\mu}} \stackrel{d f}{=} \max _{i \leqslant n}\left(\sigma_{k_{i}} \wedge n\right)$ then $\sigma_{k_{n}, \gamma}<\sigma_{\gamma} \quad n \in \mathbb{N}$ and $\sigma_{k_{n}, \gamma} \uparrow \stackrel{n}{n}_{\gamma}$.

Therefore G_{γ} is a predictable \mathcal{F} stopping time. Taking a sequence $\left\{\gamma_{i}\right\}_{i \in \mathbb{N}} \quad{ }^{0} \gamma_{i} \downarrow 0 \quad$ we define a stationary decreasing sequence $\left\{\sigma_{\gamma_{i}}\right\}$ of predictable \mathcal{F} stopping times ${ }_{\text {time }} \sigma_{\gamma_{i}} \downarrow 6$. Thds 6 is a predictable \mathcal{F} stopping

As a consequence $\quad \Delta B_{g}^{h}(\sigma)=0 \quad$ for every totally inaccessible \mathcal{F} stopping time 6 .

Finally we have to verify that $B_{g}^{h}(\sigma)$ is $\mathcal{J}(6-)$ measrable for every predictable \mathcal{F} stopping time 6 . This is clear if $\Delta \mathrm{B}_{\mathrm{g}}^{\mathrm{h}}(\sigma)=0$. In this case for stopped processes
(48)

$$
\overbrace{\left(x \circ \rho_{n}\right)^{h}}, \rho_{n}^{k}(\sigma) \rightarrow B_{g}^{h, \sigma}
$$

On the other hand let σ be of the form $\sigma=\sigma^{i k}$. Then by (45) and (46) we have

$$
\overbrace{\left(x \circ \rho_{n}\right)^{h}, \delta_{n}}^{\text {and }} \xrightarrow[p]{\text { (46) }}{ }_{p}^{\text {we have }} B_{g}^{h, \sigma}
$$

And the property (47) together with Remark 2 implies that the conclusion (48) follows, too. Thus (48) holds for every \mathcal{F} stopping time σ. Since the left-hand side of (48) is $\mathcal{F}^{\circ} \rho_{n}\left(\rho_{n}^{*}(\sigma)-\right)$
measurable so it follows by Lemma 3 that $B_{g}^{h, \sigma}$ and in particu-

In the next step we will show that $x^{h}-B_{g}^{h}$ is a local martingle. Let σ be a fixed \mathcal{F} stopping time. First let us note that the property
(49) $\quad \operatorname{Var}\left(\left(x \circ \rho_{n}\right)^{h}, \rho_{n}^{*}(6)-\left(x^{\sigma} \cdot \rho_{n}\right)^{h}\right)(q) \rightarrow \underset{p}{ } 0 \quad, q \in \mathbb{R}^{\dagger}$ together with Corollary 3 implies the convergence

$$
\begin{equation*}
\sup _{t \leqslant q}\left|\left(x \circ \rho_{n}\right)^{h}, \rho_{n}^{*(\sigma)}(t)-\left(x^{\sigma_{0}} \rho_{n}\right)^{h}(t)\right| \rightarrow \quad 0 \quad, q \in \mathbb{R}^{t} \tag{50}
\end{equation*}
$$

For proving (49) the following simple lemma will be used.
Lemma 4.

$$
\operatorname{var}\left(x^{h} \cdot \rho_{n}-\left(x \circ \rho_{n}\right)^{h}\right)(q) \rightarrow 0 \quad, \quad q \in \mathbb{R}^{+}
$$

Proof of lemma. By the definition

$$
\begin{aligned}
\left(x \circ \rho_{n}\right)^{h}(t) & =x \circ \rho_{n}(t)-\sum_{i=1}^{\infty}\left(\Delta\left(x \circ \rho_{n}\right)\left(\sigma_{n}^{i}\right)-h\left(\Delta\left(x \circ \rho_{n}\right)\left(\sigma_{n}^{i}\right)\right)\right) \Psi\left(t \geqslant \sigma_{n}^{i}\right) \\
& =x \circ \rho_{n}(t)-J_{n}(t)
\end{aligned}
$$

where $\quad \sigma_{n}^{0}=0, \quad \sigma_{n}^{i}=\inf \left[t>\sigma_{n}^{i-1},\left|\Delta\left(x \circ \rho_{n}\right)(t)\right|>\varepsilon\right]$ and and $0<\varepsilon<1 / 2, P\left(|\Delta x(t)|=\varepsilon, t \in \mathbb{R}^{+}\right)=0$.

We denote

$$
J_{n}^{1}(t)=\sum_{i=1}^{\infty}\left(\Delta\left(x \circ \rho_{n}\right)\left(\rho_{n}^{*}\left(\sigma^{i}\right)\right)-h\left(\Delta\left(x \circ \rho_{n}\right)\left(\rho_{n}^{*}\left(\sigma^{i}\right)\right)\right) I\left(t \geqslant \rho_{n}^{*}\left(\sigma^{i}\right)\right)\right.
$$

$t \in \mathbb{R} t$, where $\quad \sigma^{0}=0, \quad \sigma^{i}=\inf \left[t>\sigma^{i-1},|\Delta x(t)|>\varepsilon\right]$. Since $\max \left[i: q \geqslant \sigma^{i}\right]<+\infty \quad, q \in \mathbb{R}^{i}$ it follows by the $\begin{array}{ll}\text { convergence } & \lim _{n \rightarrow \infty} P^{1}\left[\rho_{n}^{*}\left(\sigma^{i}\right) \neq \sigma_{n}^{i}, \sigma^{i}<+\infty\right]=0\end{array}$

$$
\lim _{n \rightarrow \infty} p\left[J_{n}^{1}(t) \neq J_{n}(t), t \leqslant q\right]=0 \quad q \in \mathbb{R} t
$$

Hence $\operatorname{Var}\left(J_{n}^{1}-J_{n}\right)(q) \longrightarrow P^{n} 0, q \in \mathbb{R}^{+}$and thus the estimation of $\quad \operatorname{Var}\left(x^{h_{0}} \rho_{n}-\left(x_{0} \rho_{n}-J_{n}^{1}\right)\right)(q), q \in \mathbb{R}^{+}$finishes the proof. Let us observe that

$$
\begin{aligned}
& \operatorname{Var}\left(x^{h} \cdot \rho_{n}-\left(x \cdot \rho_{n}-J_{n}^{1}\right)\right)(q)= \\
& =\sum_{k=1}^{\tau_{n}\left(\psi_{n}\right.} \mid \Delta_{k}^{n}\left(x^{h}-x\right)+\sum_{i=1}^{\infty}\left(\left(x \cdot \rho_{n}\right)\left(\rho_{n}^{*}\left(\sigma^{i}\right)\right)-h\left(\Delta\left(x \cdot \rho_{n}\right)\left(\rho_{n}^{*}\left(\sigma^{i}\right)\right)\right) \equiv\left(t_{n k}=\rho_{n}^{*}\left(\sigma^{i}\right)\right) \mid\right.
\end{aligned}
$$

$$
\begin{aligned}
& =\left.\sum_{k=1}^{r n(g)}\right|_{i=1} ^{\infty}\left[\left(\Delta x\left(\sigma^{i}\right)-h\left(\Delta x\left(\sigma^{i}\right)\right)-\left(\Delta x \circ \rho_{n}\left(\rho_{n}^{*}\left(\sigma^{i}\right)\right)-h\left(\Delta^{x \circ} \rho_{n}\left(\rho_{n}^{*}\left(\sigma^{i}\right)\right)\right)\right)\right] \mid\right. \\
& I\left(t_{n k}=\int_{n}^{*}\left(6^{i}\right)\right) \\
& \leqslant \sum_{k=1}^{r_{n}(q)} \sum_{i=1}^{\infty} \mid\left(\Delta x\left(\sigma^{i}\right)-h\left(\Delta^{x}\left(\sigma^{i}\right)\right)\right)-\left(\Delta^{x \circ \rho_{n}}\left(\rho_{n}^{*}\left(\sigma^{i}\right)\right)-h\left(\Delta^{x} \circ \rho_{n}\left(\rho_{n}^{*}\left(\sigma^{i}\right)\right)\right)\right) \\
& =\sum_{i=1}^{\infty}\left(\Delta x\left(\sigma^{i}\right)-h\left(\Delta x\left(\sigma^{i}\right)\right)-\left(\Delta x^{\circ} \rho_{n}\left(\rho_{n}^{*}\left(\sigma^{i}\right)\right)-h\left(\Delta_{n k} \log _{n}\left(\rho_{n}^{*}\left(\sigma^{j}\right)\right) \mu\left(q \geqslant \rho_{n}^{*}\left(\sigma^{i}\right)\right) .\right.\right.\right.
\end{aligned}
$$

Then (10) implies that the last sum converges almost surely to 0 for every $\quad q \in \mathbb{R}^{+}$.

By Lemma 4 the estimation of (49) reduces to convergence

But the equality

$$
\left(\left(x^{h} \circ \rho_{n}\right) \rho_{n}^{*}(\sigma)-x^{h, \sigma_{\circ}} \circ \rho_{n}\right)(t)=\left(x^{h}\left(\rho_{n}^{*}(\sigma)\right)-x^{h}(\sigma)\right) I\left(t \geqslant \rho_{n}^{*}(\sigma)\right)
$$

assures that convergence due to the right continuity of x^{h}.
Comparing (50) and (48) we obtain :
(51)

$$
\overbrace{\left(x^{\sigma} \circ \rho_{n}\right)^{h}}^{p} B_{g}^{h, \sigma}
$$

Let us denote $M_{g}^{h}=x^{h}-B_{g}^{h}$. Since the process M_{g}^{h} has bounded jumps $\sup \left|\Delta M_{g}^{h}(t)\right| \leqslant 2$ we can choose a localizing sequence $\left\{\sigma_{k}\right\}$
 $\sup _{t \leq \sigma_{k}}(t) \mid \leqslant k \quad, k \in \mathbb{N}$. Let us fix $t, s \in \mathbb{R}+, t \geqslant s \quad$ and $t \leqslant \sigma_{k} g$ $\underset{t, s \in \operatorname{cont} M_{g}^{h}=\left\{t \in \mathbb{R}^{+}:\right.}{\left\{\Delta M_{g}^{h}(t)=0\right\} \text {. For fixed }} \begin{aligned} & \left\{\tau_{n}\right\} \text { of } \mathcal{F}_{0} \rho_{n} \text { stopping times }\end{aligned}$ such that
(52)

$$
\begin{aligned}
& M_{n, k}^{h}, \tau_{n}(t) \stackrel{d f}{=}\left(x^{\sigma_{k}} \cdot \rho_{n}\right)^{h}, \tau_{n}(t)-\tau^{\left.\sigma^{k_{o \rho_{n}}}\right)}{ }^{h}, \tau_{n(t)} \\
& \longrightarrow M_{g}^{h, \sigma_{k}(t)}
\end{aligned}
$$

(53) there exists a sequence $\left\{s_{n}\right\}$ of positive numbers for which $\rho_{n}\left(s_{n}\right) \geqslant s, n \in \mathbb{N}, \rho_{n}\left(s_{n}\right) \downarrow s \quad$ and

$$
M_{n, k}^{h}, \tau_{n}\left(s_{n}\right) \rightarrow \quad M_{g}^{h, \sigma_{k}(s)}
$$

(54) $\sup _{t}\left|M_{n, k}^{h}, \tau_{n}(t)\right| \leqslant k+1 \quad, n \in \mathbb{N}$.

It can be easily verified by Tschebyschev inequality and (52), (53)
that $E\left(M_{g}^{h, \sigma_{k}} k(t)-M_{g}^{\left.h, \sigma_{k}(s) \mid F_{0} \rho_{n}\left(s_{n}\right)\right) \rightarrow r} 0\right.$. On the other hand by standard arguments and the property $\mathcal{F}_{0} g_{n}\left(s_{n}\right) \downarrow \mathcal{F}(s)$ $E\left(M_{g}^{h}, \sigma_{k}(t)-M_{g}^{h}, \sigma_{k}(s) \mid F_{\rho_{n}}\left(s_{n}\right)\right) \rightarrow \sigma^{r} E\left(M_{g}^{h}, \sigma_{k}(t)-M_{g}^{h}, \sigma_{k}(s) \mid F(s)\right)$. Therefore $E\left(M_{g}^{h}, \sigma_{k}(t) \mid \mathcal{F}(s)\right)=M_{g}^{h}, \sigma_{k}(s) \quad$ for every $t, s \in$ Cont M_{g}^{h} $t \geqslant s$. Hence M_{G}^{h}, σ_{k} is a uniformly integrable martingale and the proof of (40) is complete.

It is interesting that instead of (37) we can consider a more stringent condition

$$
\text { (55) }(\left(x \circ \rho_{n}\right)^{h} \cdot \overbrace{\left(x \circ \rho_{n}\right)^{h}}^{h}) \underset{\gamma}{ }\left(x^{h}, B_{g}^{h}\right) \quad \text { in } D\left(\mathbb{R}^{2}\right)
$$

The above property is a consequence of Remark 2 and the argument given below. Let σ be of the form $\sigma=\sigma^{i k}$ defined by (43) . Then there exists a sequence $\left\{\delta_{n}\right\} n \in \mathbb{N}$ of predictable Fog_{n} stopping times such that
(56) $\quad \lim _{n \rightarrow \infty} p\left[\rho_{n}^{*}(\sigma) \neq \delta_{n}, \sigma<+\infty\right]=0$.

To prove (56) let us take a sequence $\left\{\delta_{n}\right\}_{n \in \mathbb{N}}$ satisfying (45) - (47). Therefore by (46) we have

$$
E\left(\Delta\left(x \circ \rho_{n}\right)^{h}\left(\delta_{n}\right) I\left(\rho_{n}^{*}(\sigma)=\delta_{n}\right) \mid J_{n}\left(\delta_{n}-\right)\right) I\left(\delta_{n}<+\infty\right) \rightarrow \Delta B_{g}^{h}(\sigma)
$$

on the set $[\sigma<+\infty]$. Using (47) one can see that

$$
\begin{aligned}
& E\left(\Delta\left(x \circ \rho_{n}\right)^{h}\left(\delta_{n}\right) I\left(\rho_{n}^{*}(\sigma)=\delta_{n}\right) \mid F_{\circ}\left(\delta_{n}-\right)\right) I\left(\delta_{n}<+\infty\right) \\
(57)= & E\left(E\left(\Delta\left(x \circ \rho_{n}\right)^{h} \rho_{n}^{*}(\sigma) \mid J_{\rho_{n}}\left(\rho_{n}^{*}(\sigma)-\right)\right) I\left(\rho_{n}^{*}(\sigma)=\delta_{n}\right) \mid F_{\rho_{n}}\left(\delta_{n}-\right)\right) \\
& I\left(\delta_{n}<+\infty\right)
\end{aligned}
$$

Since by Lemma 3

$$
\text { (58) } E\left(\Delta\left(x \circ \rho_{n}\right)^{h}\left(\rho_{n}^{*}(\sigma)\right) \mid \mathcal{F}_{\rho} \rho_{n}\left(\rho_{n}^{*}(\sigma)-\right)\right) \underset{\gamma^{*}}{\rightarrow} E\left(\Delta x^{h}(\sigma) \mid \mathcal{F}(\sigma-)\right)=\Delta B_{g}^{h}(\sigma)
$$

on the set $[\sigma<+\infty]$ imply
imo (57) and the convergence $\delta_{n} \rightarrow 6$

$$
E\left(\Delta B_{g}^{h}(\sigma) I\left(\rho_{n}^{*}(\sigma)=\delta_{n}, \sigma<+\infty\right) \mid \mathcal{F}_{n}\left(\delta_{n}-\right)\right) \rightarrow \underset{\infty}{\rightarrow} \Delta B_{g}^{h}(\sigma) I(\sigma<+\infty)
$$

Hence

$$
\begin{aligned}
E\left|\Delta B_{g}^{h}(\sigma)\right| I(\sigma<+\infty)= & \lim _{n \rightarrow \infty} E\left|E\left(\Delta B_{g}^{h}(\sigma) I\left(\rho_{n}^{*}(\sigma)=\delta_{n}, \sigma<+\infty\right) \mid F_{p_{n}}\left(\delta_{n}-\right)\right)\right| \\
& \leqslant \lim _{n \rightarrow \infty} E\left|\Delta B_{g}^{h}(\sigma) I\left(\rho_{n}^{*}(\sigma)=\delta_{n}, \sigma<+\infty\right)\right| \\
& \leqslant E\left|\Delta B_{g}^{h}(\sigma)\right| I(\sigma<+\infty)
\end{aligned}
$$

and we have $\lim _{n \rightarrow \infty} E\left|\Delta B_{g}^{h}(\sigma) I\left(\rho_{n}^{*}(\sigma) \neq \delta_{n}, \sigma<+\infty\right)\right|=0$. Finally to end the pro ß $\vec{f}^{\infty}{ }_{\circ}(56)$ it remains to observe that $\left|\Delta B_{g}^{h}(\sigma)\right|>\mathcal{E}_{i}$ on the set $[\sigma<+\infty]$.

Now let us note that Remark 2 and (56) guarantee more stringent convergence in (37). It is clear that in fact we have the following convergence

We can prove (39) and (42) using the following Lemma 5 instead of Lemma 4 .

Lemma 5. For every $f \in C_{v(0)}$
$\operatorname{Var}\left(\int_{\mathbb{R}} f(x)\left(N \circ \rho_{n}\right)(d x)-\left(\int_{\mathbb{R}} f(x) N(d x)\right) \circ \rho_{n}\right)(q) \rightarrow \vec{\gamma} 0, q \in \mathbb{R}^{+}$.
The poof of (38) and (41) is essentially the same as in previous cases. In both Lemma 1 and Corollary 3 are basic and the condition (59) is very useful.

To prove the converse implication let us assume that the conditions (37) - (39) are satisfied. Using Theorem 34 for fixed we Ω once more we obtain $X \in S_{g}(T, D)$ and this completes the proof.

Using Proposition 1 we can conclude that every process x T tangent to PII has triplet of predictable characteristics $\left(B_{g}^{h}, \sigma_{g}^{2}, \nu_{g}\right)$ or equivalently a random measure Λ_{g}^{X} with values in PII such that

$$
\Lambda_{h}^{x}(w)=\delta\left(B_{g}^{h}(w), \sigma_{g}^{2}(w), \nu_{g}(w)\right) \quad, \quad w \in \Omega
$$

Let $\mathcal{\tau}$ be some \mathcal{F} stopping time. By the stopped random measure $\left(\Lambda_{\mathrm{g}}^{\mathrm{x}}\right)^{\tau}$ we will mean the random measure with values in PII defined by the formulas :

$$
\left(\Omega_{g}^{x}\right)(\omega)=\mathcal{L}\left(B_{g}^{h}, \tau_{(\omega)}(\omega) \cdot \sigma_{g}^{2}, \tau(\omega) \cdot \nu_{g}^{\tau(\omega)}{ }_{(\omega)}^{\tau(w)}\right), w \in \delta
$$

By the arguments from the proof of Proposition 1 we obtain :
Corollary 5. The process x belongs to $S_{g}(T, D)$ iffy there exists a localizing sequence $\left\{\tau_{k}\right\}_{k \in \mathbb{N}}^{x \tau_{k} \in \tau_{k} \uparrow+\infty}$ ass. for which $\quad{ }^{\sim} \widetilde{v}_{k} \mathcal{V}_{k} S_{g}(T, D), k \in \mathbb{N}$. In this case
$\left(\Lambda_{g}^{x}\right) \tau_{k}=\Lambda_{g} x_{k} \tau_{g}, k \in \mathbb{N} \cdot$
4.2 Approximation in probability for predictable compensators of special semimartingale.

The following result forms the essential part of Theorem 1. Proposition 2. Let X be a special semimartingale such that $\sup |x(t)|<c, \sup \operatorname{Var} \tilde{x}(t)<c \quad$ for some constant $c>0$. Then the two conditions given below are equivalent :

(ii)
the property (T) is satisfied.
Proof. (ii) \Rightarrow (i) First let us observe that it is very convenient to have the following property (T^{*}) instead of (T) :
(T^{*} for every predictable \mathcal{F} stopping time σ there
 exists a sequence $\left\{\delta_{n}\right\} n \in \mathbb{N}$ of predictable $F \rho_{n}$ stopping times such that

$$
\lim _{n \rightarrow \infty} P\left[\rho_{n}^{*}(\sigma) \neq \delta_{n}, A \sigma\right]=0
$$

The equivalence $(T) \Leftrightarrow\left(T^{*}\right)$ is evident if the stopping time satisfies $P\left[\sigma \in T_{n}\right]=0, n \in \mathbb{N}$. To obtain the general case we use the following lemma.

Lemma 6. Let us suppose that the predictable \mathcal{F} stopping time σ is of the form $\sum_{k=1}^{\infty} s_{k} I\left(\sigma=s_{k}\right)$ on the set ${ }^{A} \sigma$ for some sequence of positive constants $\left\{s_{k}\right\} k \in \mathbb{N}$ Then for the stopping time σ the conditions (T) and (T^{*}) hold.

Proof of lemma. Let us note that without loss of generality we may assume that the stopping time σ is of the form

$$
\begin{equation*}
\sigma=\sum_{k=1}^{\infty} s_{k} I\left(\sigma=s_{k}\right)+\{+\infty\} I\left(\sigma \neq s_{k}, k \in \mathbb{N}\right) \tag{60}
\end{equation*}
$$

We begin with a simpler case where σ satisfies
(61) $\quad \sigma=\sum_{k=1}^{j} s_{k} I\left(\sigma=s_{k}\right)+\{+\infty\} I\left(\sigma \neq s_{k}, 1 \leqslant k \leqslant j\right)$, for some fixed $j \in \mathbb{N}$. Observe that for every $k, 1 \leqslant k \leqslant j$ there exists a sequence $\left\{s_{k n}\right\}_{n \in \mathbb{N}}, s_{k n} \in T_{n}, s_{k n}<s_{k}, s_{k n} \uparrow s_{k}$ and a sequence of positive constants $\left\{c_{n}\right\}_{n \in \mathbb{N}}, c_{n} \uparrow+\infty$ for which :

$$
I\left(A_{n k}\right) d_{I}\left(E\left(I\left(\sigma=s_{k}\right) \mid \mathcal{F}\left(s_{k n}\right)\right)>1-c_{n}^{-1}\right) \longrightarrow \quad I\left(\sigma=s_{k}\right)
$$ for every $k, 1 \leqslant k \leqslant j$. Finally if we define the sequence $\left\{\delta_{n}\right\}$ by the equalities

$$
\delta_{n} \text { di } \begin{cases}\int_{n}^{*}\left(s_{1}\right) & \text { on the set } \quad A_{n 1} \\ \rho_{n}^{*}\left(s_{k}\right) & \text { on the set } \quad A_{n k} \backslash \bigcup_{i=1}^{k-1} A_{n i} \\ \{+\infty\} & \text { for every } k, \text { on the set }_{A_{j} \leqslant k \leqslant j}\left(\bigcup_{k=1}^{A_{n k}}\right)^{c}\end{cases}
$$

then the condition $\left(T^{*}\right)$ is fulfilled by the stopping time 6 defined by (61). If we put $\rho_{n}\left(s_{k}\right)$ instead of $\rho_{n}^{*}\left(s_{k}\right)$ we get a sequence $\left\{\sigma_{n}\right\}$ of Fog n stopping times satisfying
the condition (T).

Now, let us suppose that 6 is of the form (60). We denote for every $j \in \mathbb{N}$ the stopping time of the form (61) by σ^{j}. Therefore for each $j \in \mathbb{N}$ we can define the sequence $\left\{\delta_{n}^{j}\right\}$ of predictable $\mathcal{F}^{\circ} \mathrm{g}_{n}$ stopping times for which $\lim _{n \rightarrow \infty} P\left[\rho_{n}^{*}\left(\sigma^{j}\right) \neq \delta_{n}^{j}\right.$, $\left.\sigma^{j}<+\infty\right]=0$. Since $\lim _{i \rightarrow \infty} P\left[\sigma^{j} \neq G\right]^{n \rightarrow \infty}=0$ we can choose a sufficiently slowly increasing $\underset{\text { sequence }}{\infty}\left\{j_{n}\right\}, j_{n} \uparrow+\infty$ such that :
(62) $\quad \lim _{n \rightarrow \infty} P\left[\rho_{n}^{*}(\sigma) \neq \delta_{n}^{j_{n}}, \sigma<+\infty\right]=0$.

Analogously we show that the condition (T) is satisfied for the stopping time 6 , too.

So we can assume that the condition $\left(T^{*}\right)$ holds.
Now, we will consider the sequence of processes $\left\{Y^{i}\right\}_{i \in \mathbb{N}}$ defined by $r^{i}(t)=\sum_{=1}^{\infty} \Delta^{x}\left(\sigma^{i k}\right) I\left(t \geqslant \sigma^{i k}\right), t \in \mathbb{R}^{+}, i \in \mathbb{N}$ where the array $\left\{\sigma^{i k}\right\}$ of predictable \mathcal{F} stopping time is defined as follows:
(63) $\quad \sigma^{i 0}=0 \quad, \quad \sigma^{i k}=\inf \left[t>\sigma^{i, k-1},|\Delta \widetilde{x}(t)|>\varepsilon_{i}\right]$
$i, k \in \mathbb{N}$ for some sequence of positive constants $\left\{\varepsilon_{i}\right\}_{i \in \mathbb{N}}$.
$\varepsilon_{i} \downarrow 0, P\left(|\Delta \widetilde{x}(t)|=\varepsilon_{i}, t \in \mathbb{R}^{+}\right)=0, i \in \mathbb{N}$.
In the next step of the proof we will show that

$$
\begin{equation*}
\sup _{t \leq q}\left|\overparen{r^{i_{o \rho}}}(t)-\widetilde{r_{n}^{i}}\left(\rho_{n}(t)\right)\right| \underset{p}{ } 0 \quad, q \in \mathbb{R}^{+} . \tag{64}
\end{equation*}
$$

First let us note that by Proposition 1.49 from [8]

$$
\tilde{Y}^{i}(t)=\sum_{k=1}^{\infty} E\left(\Delta x\left(\sigma^{i k}\right) \mid \mathcal{F}\left(\sigma^{i k}-\right)\right) I\left(t \geqslant \sigma^{i k}\right)
$$

 Now let us assume that the following convergence holds :

$$
\begin{equation*}
\sup _{t \leq q}\left|\overparen{\gamma^{i k}} \int_{n}(t)-\widetilde{\gamma^{i k}}\left(\rho_{n}(t)\right)\right| \rightarrow \quad 0 \quad, \quad q \in \mathbb{R}^{+}, \quad i, k \in \mathbb{N} . \tag{65}
\end{equation*}
$$ Hence for every $j \in \mathbb{N}$

$$
\sup _{t \leqslant q}\left|\sum_{k=1}^{j} \overparen{\gamma^{i k} \circ \rho_{n}(t)-} \sum_{k=1}^{j} \widetilde{\gamma^{i k}}\left(\rho_{n}(t)\right)\right| \rightarrow{ }_{\gamma} \quad 0, \quad q \in \mathbb{R} t
$$

$$
\text { Since } \max \left[i=6^{i} \leq q\right]<+\infty \quad \text { we have } \lim _{j \rightarrow \infty} \sup _{n} \operatorname{Var}\left(\sum_{k=1}^{\infty} r_{i}^{i k} \rho_{n}\right)(q)
$$ $=0$ and $\lim _{j \rightarrow \infty} \operatorname{Var}\left(\sum_{k=j}^{\infty}{r^{i k}}^{i}(q)=0\right.$. Then it $\stackrel{j \rightarrow \infty}{ }{ }^{n}$ follows by Corollary 3 that (65) $\mathrm{j}_{\text {implies }}{ }^{\mathrm{jom}}=\mathrm{j}(64)$.

Therefore without loss of generality we will consider a process Y of the form $Y(t)=\Delta x(\sigma) I(t \geqslant \sigma), t \in \mathbb{R}^{+}$for some gredictable \mathcal{F} stopping time σ. It is easy to verify that

$$
\begin{aligned}
& \gamma_{0}(t)=\sum_{k_{n}=1}^{r_{n}(t)} \Delta x(\sigma) I\left(\rho_{n}^{*}(\sigma)=t_{n k}\right) \\
& \widehat{Y}_{0}(t)=\sum_{k=1}^{\sum_{n}(t)} E\left(\Delta x(\sigma) I\left(\rho_{n}^{*}(\sigma)=t_{n k}\right) \mid F\left(t_{n, k-1}\right)\right)
\end{aligned}
$$

$t \in \mathbb{R}^{\dagger}, n \in \mathbb{N}$.
In the next considerations the notations from the proof of Proposition 1 are used.

Let us fix $\gamma>0$ and a subsequence $\left\{k_{n}\right\}_{n \in \mathbb{N}}$. We denote $Y_{\gamma}(t) \stackrel{\text { of }}{=} \Delta x\left(\sigma_{\gamma}\right) I\left(t \geqslant \sigma_{\gamma}\right), t \in \mathbb{R}^{\dagger}$. Since for every

$$
\sup _{t \leqslant q}\left|\overparen{\gamma_{\gamma} \cdot \rho_{n}}(t)-E\left(\Delta^{Y} \gamma \cdot \rho_{n}\left(\delta_{n}\right) \mid j_{p}\left(\delta_{n}-\right)\right) I\left(t \geqslant \delta_{n}\right)\right| \rightarrow \longrightarrow_{\rho} 0
$$

$q \in \mathbb{R}^{t}$. It is clear that $E\left(\Delta Y_{j} j_{k_{n}}\left(\delta_{k_{n}} \| \int_{\rho_{k}}\left(\delta_{k_{n}}-\right)\right)=E\left(\Delta^{Y} j_{j} \rho_{k_{n}}\left(\delta_{k_{n}}\right) p\left(f q_{k_{n}}\right)\right)\right.$
Now, let us observe that by the implication $\quad \delta_{k_{n}}<+\infty \Rightarrow$

$$
\begin{aligned}
& \delta_{k_{n}} \leqslant \rho_{k_{n}}^{*}(\sigma) \text { and the definition of } \sigma_{\gamma} \\
& \qquad \lim _{n \rightarrow \infty} P\left[\sigma_{k_{n}} \neq \sigma_{k_{n}, \gamma}, \sigma_{\gamma}<\infty\right]=0 .
\end{aligned}
$$

$\left[\sigma_{\gamma}<+\infty\right], \lim _{n \rightarrow \infty} p\left[\delta_{k_{n}} \leqslant q, \sigma_{y}=+\infty\right]=0 \quad q \in \mathbb{R}^{+}$(we can assume the convergence $\delta_{k_{n}} \rightarrow \sigma_{\gamma}$) imply that

$$
\sup _{t \leqslant q} \mid E\left(\Delta Y \gamma^{\circ} \rho_{k_{n}}\left(\delta_{k_{n}}\right)\left|F\left(\sigma_{k_{n}}^{n}\right) I\left(t \geqslant \delta_{k_{n}}\right)-E\left(\Delta x\left(\sigma_{\gamma}\right) I\left(\sigma_{\gamma}<+\infty\right) \mid F_{k_{n}}, \gamma\right) T\left(t \geqslant \delta_{k}\right)\right|\right.
$$

$\rightarrow 0 \quad, \quad q \in \mathbb{R}^{\dagger}$.
Since

$$
\sigma_{k_{n}} \cdot \gamma \uparrow \sigma_{\gamma}, E\left(\Delta x\left(\sigma_{\gamma}\right) I\left(\sigma_{\gamma}+\infty\right) \mid \tilde{F}\left(\sigma_{k_{n}}, \gamma\right)\right) \rightarrow \underset{\gamma}{ } E\left(\Delta x\left(\sigma_{\gamma}\right) I\left(\sigma_{\gamma+\infty}\right)\right.
$$

$\left.\mid \mathcal{F}\left(\sigma_{\gamma}^{-}\right)\right)$. Hence
$\sup _{t \leqslant q}\left|\overparen{Y_{\gamma} \rho_{k_{n}}}(t)-E\left(\Delta x\left(\sigma_{\gamma}\right) \mid \mathcal{F}\left(\sigma_{\gamma}\right)\right) I\left(t \geqslant \rho_{k_{n}}^{*}\left(\sigma_{\gamma}\right)\right)\right| \longrightarrow 0$
$q \in \mathbb{R}^{\dagger}$. Therefore there exists a sequence $\left\{\gamma_{n}\right\}_{n \in \mathbb{N}}, \gamma_{n} \downarrow 0$ and one subsequence $\left\{\dot{1}_{k_{n}}\right\},\left\{\underline{l}_{k_{n}}\right\} \subset\left\{k_{n}\right\} \quad \begin{array}{r}n \\ \text { such that }\end{array}$

$$
\sup _{t \leqslant q}\left|\overparen{Y} H^{\circ} \rho \rho_{{D_{n}}^{\prime}}(t)-\widetilde{Y}\left(\rho \mathbb{P}_{k_{n}}(t)\right)\right| \underset{\beta}{\longrightarrow}, q \in \mathbb{R}^{\dagger} .
$$

 follows by Corollary 3 that

$$
\sup _{t \leqslant q}\left|\overparen{Y \circ \rho \mathcal{I}_{k_{n}}}(t)-\widetilde{Y}\left(\rho \mathbb{1}_{k_{n}}(t)\right)\right| \underset{\gamma}{ } \quad 0, q \in \mathbb{R}^{+} \text {. }
$$

Moreover, we could prove that for every subsequence $\left\{m_{n}\right\} \subset\{n\}$ there exists a further subsequence $\left\{\mathbb{k}_{m_{n}}\right\} \subset\left\{m_{n}\right\}$ for which the above convergence holds. Therefore the proof of (64) is complete.

Let $\left\{z^{i}\right\} i \in \mathbb{N}$ be a new sequence of processes given by the equalities $z^{i}(t)=x(t)-Y^{i}(t) \quad, t \in \mathbb{R}^{t}, i \in \mathbb{N}$. By using the arguments of Meyer [15]:

$$
E \sup _{t \leqslant q}\left|\widetilde{z}^{i} \circ \rho_{n}(t)-\widetilde{z^{I}}\left(\rho_{n}(t)\right)\right|^{2} \leqslant 4 E \sum_{k=1}^{r_{n}(q)}\left(E_{k-1}^{n} \Delta_{k}^{n \widetilde{Z^{1}}}-\Delta_{k}^{n \widetilde{z^{i}}}\right)^{2}
$$

$$
\begin{align*}
& \leqslant 4 c\left\{\begin{array}{l}
\left.E \max \left|\Delta_{k}^{n} z^{i}\right|^{2}\right\}^{\frac{1}{2}} \quad . ~
\end{array}\right. \\
& \text { Since } \quad \lim _{i \rightarrow \infty} \overline{\lim } E \max \left|Q_{n \rightarrow \infty}^{n} z^{i}\right|^{2}=0 \quad \text { we have } \\
& \lim _{i \rightarrow \infty}{\underset{\lim }{n \rightarrow \infty}}^{P}\left[\sup _{t \leqslant q}\left|\overparen{z^{i} \circ \rho_{n}}(t)-\widetilde{z}^{i}\left(\rho_{n}(t)\right)\right| \geqslant \varepsilon\right]=0 \tag{66}
\end{align*}
$$

for every $\varepsilon>0$ and every $q \in \mathbb{R}^{\dagger}$. It is easy to show that
(66) and (64) imply

$$
\sup _{t \leqslant q}\left|\widetilde{x o f}_{n}(t)-\widetilde{x}\left(\rho_{n}(t)\right)\right| \underset{\gamma}{ } \quad 0 \quad, \quad q \in R^{t}
$$

Finally (10) gives (i) .
(i) \Rightarrow (ii) First assume that $\quad 6=\sigma^{i k}$ i.e $\quad 6$ is of the form given by (63) . Then by the arguments from the proof of Proposition 1 the condition (T^{*}) is fulfilled. Now, let remark that we can assume that

$$
\sigma=\sum_{i=1}^{\infty} \sum_{k=1}^{\infty} \sigma^{i k} I\left(\sigma=\sigma^{i k}\right)+\{+\infty\} I\left(\sigma=\sigma^{i k} \quad i, k \in \mathbb{N}\right) .
$$

We begin with the simpler case where σ satisfies

$$
\begin{equation*}
\sigma=\sum_{1=1}^{j} \sigma^{1}\left(\sigma=\sigma^{1}, \quad \sigma^{1} \neq \sigma^{k} \quad 1 \leqslant k \leqslant 1-1\right) \tag{67}
\end{equation*}
$$

$$
+\{+\infty\} I\left(\sigma \neq \sigma^{1} \quad 1 \leqslant 1 \leqslant j\right)
$$

and each 6^{1} is of the form $6^{1}=6^{i k}$. Observe that by Lemma 3 there exists a sequence $\left\{c_{n}\right\}_{n \in \mathbb{N}}, c_{n} \uparrow+\infty$ for which

$$
I\left(E\left(I\left(A_{l}\right) \mid F_{\rho_{n}}\left(\rho_{n}^{*}\left(\sigma^{1}\right)-\right)\right)>1-c_{n}^{-1}\right) \longrightarrow I\left(A_{l}\right)
$$

where $A_{1} \stackrel{d f}{=}\left[\sigma=\sigma^{1}, \sigma^{1} \neq \sigma^{k} \quad 1 \leqslant k \leqslant 1-1\right]$ for every 1 $1 \leqslant 1 \leqslant \mathrm{j}$. Since for each σ^{l} the condition (T^{*}) is fulfilled there exists a sequence $\left\{\delta_{n}^{l}\right\}_{n \in \mathbb{N}}$ of predictable $\mathscr{\mathscr { F }} \rho_{n}$ stopping times satisfying (57). As a consequence

$$
\begin{equation*}
I\left(A_{n 1}\right) \stackrel{d f}{=} I\left(E\left(I\left(A_{1}\right) \mid F_{o p_{n}}\left(\delta_{n}^{1}\right)\right)>1-c_{n}^{-1}\right) \rightarrow \gamma I\left(A_{1}\right) . \tag{68}
\end{equation*}
$$

Therefore if we take $\delta_{n}^{1, *}{ }_{=}^{d} \delta_{Q^{1}}^{1} I\left(A_{n 1}\right)+\{+\infty\} I\left(A_{n 1}{ }^{c}\right)$, $1 \leqslant 1 \leqslant j$ and $\delta_{n}=\min _{n} \delta_{n}^{l, n}$ then it is easy to see that the condition $\left(T^{*}\right)$ is satisfied for the stopping time σ of the form (67)

Finally let us observe that we can extend this fact to every predictable \mathcal{F} stopping time σ (just as in Lemma 6). Since $(T) \Longleftrightarrow\left(T^{*}\right)$ the proof is complete.

Let us note that in general ie. if we do not assume that the property (T) is satisfied then (i) is not true. Using
" the method of Laplacian " we can obtain only that

$$
\underset{x \circ \rho_{n}}{ }(t) \rightarrow \widetilde{x}(t) \text {, weakly in } \mathbb{L}^{1}, t \in \operatorname{Cont} \widetilde{x} .
$$

4.3 Necessity of the condition (T)

Theorem 1 says that the semimartingale x belongs to $S_{g}(T, D)$ if X satisfies the condition (T) . The above result seems
to be not true in the general case. But we have.
Proposition 3. Let X be a process T tangent to PII. Then the condition (T) is fulfilled:

Proof. Let $\left\{\varepsilon_{i}\right\}_{i \in \mathbb{N}}$ be a sequence of constants, $\varepsilon_{i} \downarrow 0$ such that $\mathcal{U}_{g}\left(\mathbb{R}^{+} \times\left(|x|=\varepsilon_{i}\right)\right)=0, i \in \mathbb{N}$. The family
$\left\{\nu_{g}\left((0, t] \times\left(|x| \geqslant \varepsilon_{i}\right)\right)\right\}_{t \in \mathbb{R} t}$ is a predictable process for which by (39)
(69)

$$
\sum_{k=1}^{r n} E_{k-1}^{n} I\left(\varepsilon_{i} \leqslant\left|A_{k}^{n} x\right|\right) \underset{\gamma}{\rightarrow} \gamma_{g}\left((0, \cdot] \times\left(|x| \geqslant \varepsilon_{i}\right)\right) \quad, i \in \mathbb{N}
$$

Let $\left\{\gamma_{k}\right\}_{k \in \mathbb{N}}$ be a sequence of positive constants, $\gamma_{k} \downarrow 0$,
 denote

$$
\sigma^{i 0}=0, \quad \sigma^{i k}=\inf \left[t>\sigma^{i, k-1}, \gamma_{g}\left(\left\{_{t}\right\} \times\left(|x| \geqslant \varepsilon_{i}\right)\right)>\gamma_{k}\right]
$$

then repeating the arguments from the proof of Proposition 2 we obtain that the property (T) holds for every predictable F stopping time of the form

$$
\sigma=\sum_{k=1}^{\infty} \sum_{i=1}^{\infty} \sigma^{i k} I\left(\sigma=\sigma^{i k}\right)+\{+\infty\} I\left(\sigma^{\infty} \neq \sigma^{i k} \quad i, k \in \mathbb{N}\right)
$$

And as a consequence the property (T) is fulfilled also in the general case.
4.4 The class $\mathrm{B}_{\text {lock }}(\mathrm{T}, \mathrm{D})$.

Exactly in the same way as in the proof of Proposition 1 we obtain that the bounded process B belongs to $B(T, D)$ if one of the following two conditions is satisfied
(70) $\quad\left(B \circ \rho_{n}, \overparen{B \circ \rho_{n}}\right) \underset{\gamma}{ }(B, B) \quad$ in $D\left(\mathbb{R}^{2}\right)$,

$$
\begin{equation*}
\overparen{B 0 \rho_{n}} \xrightarrow[\gamma]{ } B \quad \text { in } D(\mathbb{R}) \text {. } \tag{71}
\end{equation*}
$$

Now we collect fundamental properties of the class
$B_{10 c}(T, D)$.
Proposition 4. (i) $B_{10 c}(T, D)$ is a vector space.
(ii) If $B \in B_{\text {lac }}(T, D)$ and B is a local martingale then $B=0$.
(iii) If $B \in B_{\operatorname{loc}}(T, D)$ then $B \in S_{g}(T, D) \frac{\text { and has a triplet }}{B^{h}}$ of characteristics $\left(B_{g}^{h}, \sigma_{g}^{2}, \mathcal{V}_{g}\right)$ for which: $B_{g}^{h}=B^{h}$,

Proof. It is clear that in the proof of (i) , (ii) and also (iii) (by Corollary 4) it suffices to consider $B(T, D)$ instead of $B_{\text {hoc }}(T, D)$.In this case (i) and (ii) are evident.

Therefore we give a proof of (iii) only . Let $B \in B(T, D)$. We will show that the conditions (37) - (39) in Proposition 1 are satisfied. Since the process B satisfies the condition (T) it is obvious that $B-B^{h}$ fulfills the condition (T) too. By Proposition 2

$$
\overparen{B o \rho}_{n}-\overparen{B^{h} \circ \rho_{n}}=\overparen{\left(B-B^{h}{ }_{0} \rho_{n}\right.} \rightarrow B-B^{h} .
$$

By Lemma 4 and Corollary 3
(72)
 i.e. the condition (37) is satisfied with $B_{g}^{h}=B^{h}$. By the arguments used previously, (72) and Davis-Burkholder-Gundy inequality imply that $\left[\left(B \circ \rho_{n}\right)^{h}-\left(B \circ \rho_{n}\right)\right](q) \rightarrow 0, q \in \mathbb{R}^{+}$. Finally by Corollary 3

$$
\left[\left(B \circ \rho_{n}\right)^{h}-\left(B^{\circ} \rho_{n}\right)^{h}\right](q) \underset{\gamma^{2}}{\rightarrow} \quad 0 \quad, \quad q \in \mathbb{R}^{+}
$$

i.e. the condition (38) follows with $\sigma_{9}^{2}=0$.

Similarly by Proposition 2 , Lemma 5 and Corollary 3

where N is the jump-measure associated to the process B. Therefore the condition (39) is satisfied too. Hence $B \in S_{g}(T, D)$.

Proofs of theorems.
5.1 Proof of Theorem 1.

Let us suppose that X is a semimartingale for which the condition (T) holds. By Proposition 1 it is sufficient to check that the set of conditions (37) - (39) is fulfilled. The following proposition is very useful in the proof of (37) - (39) .

Proposition 5. Let X be an \mathcal{F} adapted process and let c be some constant $c>0$. The following implications are true :
(i) if $\sup _{t}\left|x^{h}(t)\right|<c \quad$ then

$$
\sup _{t \leqslant q}|x^{h} \circ \rho_{n}(t)-\overbrace{\left(x \circ \rho_{n}\right)^{h}}(t)| \rightarrow \quad 0 \quad, q \in \mathbb{R}^{+}
$$

(ii) $\frac{\text { if }(37) \text { holds and }}{\sup _{t}\left|x^{h}(t)\right|<c \quad \sup _{t}\left[M_{g}^{h}\right](t)<c \cdot c h e r n}$ (where $\left.M_{g}^{h} \stackrel{d f}{=} x^{h}-B_{g}^{h}\right)$

$$
\begin{aligned}
& \left.\sup _{t \leq q}\left[M_{g}^{h}\right]_{0 \rho_{n}}(t)-\left[\left(x \circ \rho_{n}\right)^{h}-\left(x \circ \rho_{n}\right)^{h}\right](t)\right] \rightarrow \boldsymbol{\beta}^{p} \quad 0 \quad, q \in \mathbb{R}^{+} \text {. }
\end{aligned}
$$

Proof. The conditions (i) and (iii) are easy consequences of Corollary 3 and, Lemma 4 and 5 respectively. In order to prove (ii) first let us observe that

$$
\left[M_{g}^{h}\right] \rho_{n}=\overbrace{\left[M_{g}^{h} \rho_{n}\right]}^{\left[\left(x^{h}-B_{g}^{h}\right) \circ \rho_{n}\right]} \text {. }
$$

On other hand we have the following estimation :

$$
\begin{aligned}
& \operatorname{var}({\left[x^{h} \circ \rho_{n}-\overparen{x^{h} \circ \rho_{n}}\right]-\left[\left(x \circ \rho_{n}\right)^{h}-\widetilde{\left.\left.\left(x \circ \rho_{n}\right)^{h}\right]\right)(q)}\right.} \\
& \leqslant 8 c \sum_{k=1}^{\sum_{n}(q)} \|_{k}^{n} x^{h}-h\left(\Delta_{k}^{n} x\right)\left|+\left|E_{k-1}^{n} \Delta_{k}^{n} x^{h}-E_{k-1}^{n} h\left(\Delta_{k}^{n} x\right)\right|\right) \\
& \quad=8 c \operatorname{Var}\left(x^{h} \circ \rho_{n}-\left(x \circ \rho_{n^{\prime}}\right)^{h}\right)(q)+8 c \operatorname{Var}\left(x^{h} \circ \rho_{n}-\left(x \circ \rho_{n}\right)^{h}\right)(q) .
\end{aligned}
$$

Thus twofold application of Corollary 3 enables us to test (ii) by simply examing if

$$
\text { (73) } \sup _{t \leqslant q}\left\lceil\left[\left(x^{h}-B_{g}^{h}\right) \circ \rho_{n}\right](t)-\left[x^{h} \cdot \rho_{n}-x^{h} \circ \rho_{n}\right](t)\right] \rightarrow \lim _{n+} \quad 0 \quad, q \in \mathbb{R}^{t} \text {. }
$$

It is clear that for every $n \in \mathbb{N}$ and $t \in \mathbb{R}^{+}$

$$
\begin{aligned}
{\left[\left(x^{h}-B_{g}^{h}\right) \circ \rho_{n}\right](t)-\left[x^{h} \circ \rho_{n}-x^{h} \circ \rho_{n}\right](t) } & =\sum_{k=1}^{n} E_{k-1}^{n}(t) \\
-2 & \left.\sum_{k=1}^{r n} \sum_{k-1}^{n} E_{k}^{n} B_{g}^{n}-E_{k-1}^{n}\left(\Delta_{k}^{n} x^{h}-E_{k-1}^{n} B_{g}^{n}\right)^{n} x_{k}^{n} x^{h}\right)\left(\Delta_{k}^{n} B_{g}^{h}-E_{k-1}^{n} \Delta_{k}^{n} B_{g}^{h}\right)
\end{aligned}
$$

Since $B_{g}^{h} \in B_{l o c}(T, D)$ the first term converges to $0 \overbrace{M^{n}}^{\text {in probabili }}$ ty. Now, let us note that second sum is of the form $\left[M^{n}, N^{n}\right](t)$, where M^{n}, N^{n} are two local martingales given by the formulas $N^{n} d f B_{g}^{h} \rho \rho_{n}-B_{g}^{h} \rho_{n}, M^{n} \stackrel{d f}{m} x^{h} \cdot \rho_{n}-x^{h_{0}} \rho_{n}$. By the Kunita-Wata-
nate inequality

$$
\operatorname{Var}\left[M^{n}, N^{n}\right](q) \leqslant\left\{\left[M^{n}\right](q)\left[N^{n}\right](q)\right\}^{\frac{1}{2}} \quad, q \in \mathbb{R}^{+}
$$

Since by the arguments used previously $\left[N^{n}\right](q) \longrightarrow 0$ and $\left.\left[M^{n}\right] \rightarrow \gamma_{g}\right]$ in $D(R)$ where $\sup _{t}^{h}\left[M_{g}^{h}\right](t){ }^{\gamma}<c$ it followsby Corollary 3 that (73) and (ii) are satisfied.

Let $\left\{\tilde{l}_{k}\right\}_{k \in \mathbb{N}}$ be a localizing sequence $\tau_{k} \uparrow+\infty$ for which $\sup _{t \leqslant \tau}\left|x^{h}(t)\right| \leqslant k, k \in \mathbb{N}$. By Proposition 2

Therefore by (i) we have

$$
\overbrace{\left(x \tau_{k \circ \rho_{n}}\right)^{h}}^{\rightarrow} \quad B^{h, \tau_{k}} \quad, k \in \mathbb{N} .
$$

Hence there exists a sufficiently slowly increasing sequence $\left\{k_{n}\right\}$ $k_{n} \uparrow+\infty \quad$ such that

Finally by Corollary 3 the condition (37) is fulfilled. By exactly the samelithe conditions (38).(39) are satisfied, too. To obtain the converse implication we use Proposition 3.

Proof of Corollary 1. First let us note that if a predictable \mathcal{F} stopping time σ is of the form (18) then the condition
(T) follows by Lemma 6 . Next let σ be of the form (19). Then without loss of generality we may assume that $\sigma \leqslant q$ for some constant $q>0$. Let us put $\varepsilon_{n} \stackrel{d f}{=} \max \left(t_{n, k+1}-t_{n k}\right)$.

5.2 Proof of Theorem 2.

We start with the proof of property (iii). Let us assume that $x \in S_{g}(T, D)$. Therefore by Proposition 1 the condition (37) is fulfilled. Let $\left\{\tau_{k}\right\} k \in \mathbb{N}$ be a localizing sequence for which $\sup _{t \leqslant \tau_{k}} B_{g}^{h}(t) \mid \leqslant k \quad, k \in \mathbb{N} \cdot B y$ (71) $\quad B_{g}^{h,} \tau_{k} \in B(T, D)$. $t \leqslant \mathcal{V}_{k}{ }_{N}$ Now, let us consider the process $\mathrm{x}-\mathrm{B}_{\mathrm{g}}^{\mathrm{h}}$. Repeating the arguments from Jacod [8] we can prove that $x-B_{g}^{h}$ is a semimartingale with the triple offpredictable characteristics ($B^{h}, \sigma^{2}, \nu^{h}$).

By Proposition 3 and Proposition 4 the processes X, B_{g}^{h} satisfy the condition (T) . As a consequence the semimartingale $X-B_{g}^{h}$ fulfills the condition (T). too. Hence Theorem 1 implies that ${ }^{g} x-B_{g}^{h} \in S_{g}(T, D)$.

Let us suppose that X is a semimartingale T tangent to PII and the process B belongs to ${ }^{B_{10 c}}(T, D)$. We show that $X+B$
$\in s_{g}(T, D)$. Let $\left\{\sigma^{k}\right\}_{k \in \mathbb{N}}$ be a sequence of \mathcal{F} stopping times such that :

$$
\left.\sigma^{0}=0 \quad, \quad \sigma^{k}=\inf \left[t>\sigma^{k-1}, \quad \max (|\Delta x(t)|, \mid \Delta B(t))\right\rangle 4^{-1}\right]
$$

We will consider new processes defined as follows :

Let us observe that we have the following equality

$$
\begin{align*}
(x+B)^{h} & =\left(x_{2}+B_{2}\right)^{h}+\left(x_{1}+B_{1}\right)^{h} \\
& =x_{2}+B_{2}+\left(x_{1}+B_{1}\right)^{h} \tag{75}
\end{align*}
$$

Since the processes $x_{1}^{h}, B_{1}^{h},\left(x_{1}+B_{1}\right)^{h} \quad$ have locally integrable variation and satisfy the condition (T) by Proposition 2 and
 $\left(\left(x_{1}+B_{1}\right) \circ \rho_{n}\right)^{h} \longrightarrow\left(x_{1}+B_{1}\right)^{h}$. It is easy to see that :

$$
\overbrace{\left((x+B) \cdot \rho_{n}\right)^{h}}^{\gamma} \widetilde{x_{2}}+B_{2}+{\widetilde{\left(x_{1}+B_{1}\right)}}^{h}
$$

and the condition (37) is fulfilled. The remaining conditions
(38) and (39) are also corollaries from Proposition 2,3 and 5 (ii) (iii) . Hence the proof of (iii) and (ii) is complete.

The property (i) is an easy consequence of (ii) , Proposition 4 and the simple remark that the set of semimartingales T tangent to PII forms a vector space. Let us also observe that the property (iv) is clear by Proposition 2 and (10).

Proof of Corollary 2. Let us suppose that X is a process with conditionally independent increments given 6 algebra G. By the arguments from Jacod [8] there exists a system of G measurable characteristics $\left(B_{g}^{h}, \sigma_{g}^{2}, \mathcal{\nu}_{g}\right)$ satisfying the properties (22)(24) for which $X-B_{g}^{f} \quad \underset{i s}{ }$ a semimartingale. Since $G \subset \mathcal{F}(0)$
and the predictable stopping times $\left\{\sigma^{k}\right\}_{k \in \mathbb{N}}$ exhausting the presdictable jumps of X are G measurable so for all $k, n \in \mathbb{N}$
$\rho_{n}\left(\sigma^{k}\right)$ is $F_{\rho} g_{n}$ stopping time. Therefore by Theorem $1 \quad x-B_{g}^{h}$ $\in S_{g}(T, D)$. Similarly by Theorem 2 (iv) $B_{g}^{h} \in B_{l o c}(T, D)$. Using Theorem 2 (i) the proof is complete.

5.3 Proof of Theorem 3.

$$
\Phi_{g}^{x}(\theta, t) \stackrel{d f}{=} \int_{\mathbb{R}} \exp i \forall x \Lambda_{g}^{x}(t, d x) \quad \forall \in \mathbb{R}, t \in \mathbb{R}^{+} .
$$

Proposition 6. Let $x \in S_{g}(T, D)$. Then for each $\theta \in \mathbb{R} \Phi_{g}^{x}$ is a predictable process such that the process $\quad Y_{\theta}$ defined by formula :

$$
Y_{\theta}(t) \stackrel{d f}{=} \exp i \theta \times(t) / \Phi_{g}^{x}(\theta, t) \quad t \in \mathbb{R}^{\dagger} .
$$

is a local martingale on the stochastic interval $\mathbb{\|} 0, \mathrm{Rff}$ where $R_{\theta}=\inf \left[t:\left|\Phi_{g}^{x}(\theta, t)\right|=0\right]$.

$$
\begin{aligned}
& \text { Proof: Let } z=x-B_{g}^{h} \text {. Then } \\
& \gamma_{\theta}(t)=\left(\exp i \theta z(t) / \Phi_{g}^{X}(\theta, t)\right) \quad \exp \left(-i \theta B_{g}^{h}(t)\right)
\end{aligned}
$$

and a simple computation based on Theorem 2 (iii) shows that

$$
\Phi_{g}^{X}(\theta, t) \exp \left(-i \theta_{g}^{h}(t)\right)=\Phi_{g}^{z}(\theta, t)
$$

Since the local martingale property for $\quad\left\{\exp i \theta z(t) / \Phi_{g}^{Z}(\theta, t)\right\}_{t \in \mathbb{R}^{t}}$

Acknowledgements. I would like to thank Professor Jean Jacod for careful reading of the manuscript which enabled to avoid several mistakes and misprints.

Institute of Mathematics Nicholas Copernicus University ul. Chopina 12/18
87-100 Toruń Poland

References.

1. Aldous, D.J.: A concept of weak convergence for stochastic processes viewed in the Strasbourg manner. Preprint, Statist.Laboratory Univ.Cambridge 1979
2. Billingsley, P.: Weak Convergence of Probability Measures. New York : Wiley 1968
3. Dellacherie, C, Meyer, P.A. : Probabilities and Potential. North.-Holland 1978
4. Dellacherie, C,Doleans-Dade, C : Un contre-example au probleme des Laplaciens approches. Lecture Notes in Math. 191 , 128-140. Springer-Verlag 1970
5. Grigelionis, $\mathrm{B}_{\text {. }}$: On the martingale characterisation of stochastic processes with independent increments. Lietuvos Mat. Rinkynys XVII, 1, 75-86, 1977
6. Grigelionis, $B, M i k u l e v i c i u s, R: O n$ weak convergence of semimartingales. Lietuvos Mat. Rinkynys XXI, 3, 9-24, 1981
7. Jacod,J. : Calcul stochastique et problemes de martingales. Lecture Notes in Math. 714 , 1979
8. Jacod,J. : Processus a accroissements independants : une condition necessaire et suffisant de convergence. Z.Wahr.Verw. Gebiete 63, 109-136, 1983
9. Jacod.J. : Une generalization des semimartingales : les processus admettant un processus a accroissements independants tangent Lecture Notes in Math. 1059 , 91-118, 1984
10.Jacod,J.,Kłopotowski,A.,Memin, J. : Theoreme de la limite centrale et convergence fonctionnelle vers un processus a accroissements independants, la methode des martingales. Ann. IHP B XVIII , 1-45. 1982
10. Jakubowski,A.,Słomiński,L. : Extended convergence to continuous in probability processes with independent increments. Probab. Th. Rel. Fields 72, 55-82, 1986
12.Kubilius, K. : On necessary and sufficient conditions for the convergence to quasicontinuous semimartingale. Preprint , 1985
11. Lenglart, E. : Relation de domination entre deux processes. Ann. IHP B XIII , 171-179, 1977
12. Lindvall, T. : Weak convergence of probability measures and random functions in the function space $0[0, \infty)$. J.Appl. Probab. 10, 109-121, 1973
13. Meyer, P.: Integrales Stochastiques. Lecture Notes in Math. 39 . 72-94, 1967
16.Rebolledo.R. : Central limit theorems for local martingales. Z.Wahr.Verw. Gebiete 51, 262-286, 1982
17.Słomiński,L. : Necessary and sufficient conditions for extended convergence of semimartingales. Probab. and Math. Statistics 7. Fasc.1, 77-93, 1986
