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APPROXIMATION OF PREDICTABLE CHARACTERISTICS

OF PROCESSES WITH FILTRATIONS

Leszek S0142omi0144ski

1. Introduction.

Let ~) be a complete probability space and let S

space. Let F = {F(t)}t~R+ be 

F .(03A9,F ,P) i.e. a nondecreasing family of sub-6-algebras of F .
In the sequel we will consider 2h adapted processes X such

that :

(1) X(t) is a random 8 element on ,?) , t~.~ , ,

(2) almost all trajectories 03A903C9 ~ (X(03C9) : R+ ~ s )
are right-continuous and admit left hand limits ,
i.e. belong to 0 (~s) , ,

(3) the filtration ~ is right-continuous and complete.

We will denote by and the 6-algebra of Borel

subsets of S and the space of probability measures on S)(S’) , ,
respectively. It is well known that if 9(S) is equipped with the
topology of weak convergence and D Ls) is endowed with the

Skorokhod topology 3 then both spaces are metrisable as Polish

spaces (see e.g. p] , , J14]) . .
= 

’ ~n 0 = ’

lim tnk = +o0 , n~IN be a sequence of partitions of IR+ such that :

(4) Tn = Tn+1 , n~N ’

~  0 , 
’ 

’

where rn(t) ?max [k : , n~IN. For the array
we define the sequence of summation rules I m .

by the equality dfmax [tnk : tnk  t], t~R+, n~N.
Notice that {rn} n~IN = and .
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Let x be an element of D (,s) . Having the sequence of
summation rules ~ introduce a sequence n6~
of elements from 0 (.S) by the equality ,

The Skorokhod convergence is such that :

(6) 20142014~ x in 0 (S) .

Let S = ~ and let X be an ~ adapted real semimartingale ~
X(j0)= 0 , with the triplet of local predictable characteristics

(B~B (see Section 3~. . Let us fix By Theorem 1

of Grigelionis [5] there exists a semimatingale with independent
increments X03C9 such that its law is uniquely determined

by the triplet (.8~), (see Section 3 ~ .
Let us denote by the distribution of X~* considered

as a random element with values in :

(.7) 

Hence JL is a random measure with values in the set (denoted
by PIr) of distributions of processes with independent increments

and with trajectories in . The set PII is a closed subset

of .

Now, let X be an ~ adapted real process, X(p)== 0 . We will

consider a sequence n~IN 
of F°n Espied processes,

which is in fact a sequence of discretization of X according
to {In}n~IN : r (t)

(8) ~X(~(.t))= ~ A~X
(9) y~~t) ~~~Lt))

t6~ neM where 

By (1) and (6) we may trivially obtain

20142014~- X in DOR)

almost surely.

Since for every n~N X°n is a process with bounded

variation ~ X~c is a semimartingale. Therefore there exists

a random measure defined by (j) . Moreover the special
form of and %.~ implies that :
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where "~" denotes the convolution taken pointwise for the

random measures and 

is a regular version of the conditional distribution of the increment

~X given T(~,k-l~ 
Now, we are ready to introduce our main notion.

Definition 1. Let X be an ~ adapted real process . X(0)s p.
and letT = be a sequence of discretizations satisfying
(4) , (5) . We will say that X is T tangent to the family of

processes with independent increments or for simplicity X is

T tangent to PII iff there exists a random measure

J~ : : 8 20142014~ pu ~ such that

M -~ J~ in 9(DW) .

In the sequel we will denote the class of processes T tangent

to PII by 
. 

S Cr,D) .
In our paper we characterise the class of processes T tangent

to PII and we formulate limit theorems for processes from 

Main theorems are contained in Section 2. We defer the proofs to

Section 5 .

It is clear by using the counter example from Dellacherie.
Doleans-Dade [/tj that it is possible to construct a process X

(even a semimartingale ) and two sequences of discretizations
T = M = {T1n}n~N for which X 

to PII but X is not T1 tangent to PII . Hence in this

case and the property. X is T tangent
to PII " should be checked for fixed T 

= {Tn}n~N .Since the random measures X and Xg associated to
the semimartingale X and to the element of Sg(T.D). respecti-
vely, have some different properties (for more detail see Section

3 ) we reserve the notion JL~ only for semimartingales.
Recently Jacod [9] examined a particular case of the theorems

considered in our paper. Jacod characterised in detail the class of
processes T tangent to PII such that for every 
is additionally the law of continuous in probability process with
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independent increments.
Below we give Jecod’s results. In fact we change slightly the

form and notation in those theorems. Let denote the sub-

space of S examined in [9] .

Theorem ~l,(f9~). (i") Every continuous in probability process
with independent increments X . X(0’)s 0 belongs to 

, S (T~C) .
Then Xg = eC(x) . 

9

(ii) Every quasileft-continuous semimartingale X . X(0)= 0

belongs to S (T,c). In this case 03A9xg = X. 

’

In order to give a characterisation of processes from 

it is necessary to define the following family of processes.

Definition 32 (~9~) . (JL) We say that the bounded and predictable
process B ~ B(0)= 0 with continuous trajectories belongs to

the class 

(13) sup |  Enk-10394nkB - B(t)|~ 0 . 

(14) ~[~,(A~ -(E~.A~B)~~ 0 . 

where ~(L-)=~’’)~(tn~k-l) 
(ii) We say that the process B belongs to iff

there exists a localizing sequence ~ ~~ ~~’

of ~ stopping times for which B~k 6B(T,C) , 

We will also use the characteristics 6 , ~ such that

(15~ ~ is a process with continuous and nondecreasing

trajectories, ~(o)= 0

(16) 03B3 is a random measure on 0, t~IR+
= .+~ . . 

(~~ and are two

vector spaces.

The sum of a quasileft-continuous semimartingale and a process

from Bloc(T,C) belongs to Sg(T,C).
process X belongs to 

, C 

iff there exists

the triplet (B. 2,03B3) with B ~. 2 ,03B3
satisfying (15) and (16) respectivel such that X - B is a

quasileft-continuous semimartingale with triplet of predictable2014

characteristics (0~6~~) . In this case the triplet (.B,6 ~)
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is uniquely determined.

(iv) The space contains : all the processes B ,

ata): 0 with continuous trajectories and bounded variation, all
the continuous elements from DQR) equal null in 0 ~

It can be observed (see , Remark 1.16 ~ that the

technique used for the characterisation of the class S (T,c) can

not to be extended to the class , Our method is more general
and we hope that it is slightly simpler to the one mentioned above.

We end this section with a simple example of a family of proces-
ses from not necessary belonging to .

Example. Every process with independent increments X ~ 0

is T tangent to PII .

In order to explain this fact let us note that for each n~N
semimartingale with independent increments for which :

= 
.

By (10) the conclusion follows and = (R(x) .
In the following sections we restrict our attention to the real

(P adapted processes X satisfying the assumption

(17) X(o)= 0 .

2. Main results.

2.1 The semimartingales T tangent to PII .

Let T = sequence of discretizations satisfying
(4), (5) with the accompanying sequence of summation rules 

, , .
Let 

Since for = F(tnk)
c: F°n (t) so by simple calculations we have

[n()  t ] = [n() = tnk]
- &#x26; FIN(t).

But if ~* is an 3’ stopping time only we do not know whether
stopping time or not. This implies the
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existence of examples of semimartingales which are not T tangent
to PII .

Theorem 1. Let X be a semimartingale with the predictable
characteristics defined by (.7) . The semimartingale X

is T tangent to PII ie. X ~ S (r,D) iff the following
condition (.T) is satisfied : 

for every predictable stopping time 6 there,
exists a sequence stopping

(r) times such that

L~C~ ~ ~n ~ ~6-~ ~
n-~ o0 J

where Ap ~[y(.~.tR)>0 , ~+oo] . .
In this case J~ == J~ .

Due to Theorem 1 it is possible to give a nontrivial example
of a semimartingale from .

Corollary 1. Let X be a semimartingale of which every predic,-
table jump 6* has one of the two following forms :

(l8") (~ = ~~ s.l(~=s.) on the set A~ for some

sequence of positive constants {sk}k~IN

(l9") L = T +c on the set A6 for some F stopping time
~ and for some positive constant c .

Then XC S (j,D,) .

2.2 The characterisation of processes from 

First we introduce a new class of processes appropriate to

’

- Definition 2.(i~ We say that a bounded and predictable process
B , B(O) = 0 belongs to the class iff

(20) sup | Enk-10394nkB - 0394nkB |~ 0, *

(ii) We say that the process B belongs to Bloc(T,D) iff

of ~ stopping times and B(T,D) . ;

Let us assume that B~B(r,D) . Since an adapted process
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[Enk-10394nkB - 0394nkB]}t~R+ is for fixed n~IN a local martingale

it follows by the Davis-Burkholder-Gundy inequality (see [7])
that (20) implies (l4) . Therefore :

B(T,C) == B with continuous trajectories } .

We can easily extend the above equality to the classes 

and for two different sequences of discretizations T , T1 .
Now, let us observe that it is possible to express (20) in

terms of convergence in D(.~.). By (71) B ~ B(o)s 0 belongs
to B(T,D) iff

(21) B~ 20142014). B in D(R) , ,

where above and in the next sections for every special semimartingale
X , X denotes its predictable compensator ~ ~to)= 0 . .

Let (Bhg,G2g,vg) be s triplet of characteristics such that :

(22) Bhg is a predictable process, Bhg(O)= 0 ,
(23) G2g is a process with continuous and nondecreasing

trajectories ~ (P~= 0 , ,
(24) )~ is a random measure on for which

0 , ~ 0 . 

03B3g({t} R)1,

(1 - 03B3g({s} R))(0394Bhg(s))2  +~
= for every , ~>0.

~R.
Theore m 2. (i~ and S (T,o) are two

vector spaces.
The sum of a T tangent to PII semimartingale and a

process from B~(T,D’) belongs to S (T,o) . .
(iii) The process 

, 

X belongs to 
, 

S (T,D) iff there exists
a systemof characteristics (Bhg, 2g,03B3gg) satisfying (22) - (24)
such that Bg ~ and X - Bhg is a semimartingale
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from with the triplet of predictable characteristics

(BB6~~) given by : :

0-~t) . 

9 (ds d )
+ 03A3(1 - 03B3g({s} R))I(O ~ 0394Bhg(s),(s,-0394Bhg(s)) ~ A)

.. 
~ 

.

In this case the triplet 
_ ~0~6~~ ~ is uniquely determined. .

The space Bloc 
~ 
contains : t all predictable processes

B , B(0)= 0 with bounded variation, satisfying the condition

(r) , and all F(p) measurable processes equal null in 0 ;

Corollary 2. Let X be a process with conditionally
independent increments. Then .

2.3 Functional limit theorems for processes tangent to PII .

It is interesting that limit theorems for the processes tangent
to PII can be formulated in the same way as for semimartingales

(functional limit theorems for semimartingales can be found in

F~J ~ ~0~ ) . . In order to study those theorems we will use an

approach of Aldous 

Let X be an ~ adapted real process. Aldous has shown

that there exists a unique ~ adapted process Z with trajecto-

ries in the space such that for every 

and A 6lS(D(.!R~) we have : :

Z(t,A) = P (X ~A )~t3)

i.e. Z(t): , Jb x ~(D(t~) 20142014~ Co.lj is a regular version

of the conditional distribution of X given ~(t)
For every the trajectory

t~~ (x(t~),z(t~)) ~ ~x9(D(R))
is an element of the space so we can define the

extended distribution of the process X as the distribution of

the random element
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(j t20142014~ (X~.Z~)) .

be a sequence of Fn adapted processes. We say
that the sequence {Xn}n~ N converges extendedly to X~
and write X" ~ X~ iff the extended distributions

of ~J ~~~ weakly convergent to the extended distribu-
tion of X~ .

Some necessary and sufficient conditions for extended convergence
of semimartingales have been given in [~.lj and ~171 . It is proved
by Kubilius ~12j that the theorems from and ~17~ can bo

extended to the case where the limit process is a semimartingale but
not necessarily with independent increments.

In the present paper we propose another way of generalization.
We apply the method from and ~17~ to the processes tangent
to PII .

Theorem 3. Let {Xn} n~IN be a sequence of Fn adapted
tangent to and let X~ .

be a continuous in probability process with independent increments.
Under the condition 

’

(Sup 8g) sup 
t Bh,ng(t) - Bh,~g(t)| ’ ~ 0 . 

the following two conditions are equivalent j

~ J~f-~ 
(li) X~ .

Similarly we could formulate a version of Theorem 3 from filj
where the condition (Sup B_) is also necessary in some special
sense.

3. Preliminary remarks.

3.1 Convergence in the Skorokhod topology;

The space D (s) with the Skorokhod topology 0 has been
discussed in detail by several authors : Lindvall fl4l , Billingsley
[2] and Aldous [1] . In the present paper we will use frequently

the results from 
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Let x be an element of D ~S) . . Let us denote by ~x
the element x stopped at s ~ , s~)R~  i.e.

sx(t) A f ’ s~ x(s) .

Remark 1. Let be a sequence of elements from

D (S) such that , x ~ Xoo . Then by Proposition 26.8

from [1] for .each there exists a sequence {sn}n~IN
s ~ s for which ~ x~ . Moreover if {un} n~N

is a sequence satisfying u~ ~ s~ ~ ne)N and u~-2014~ s

then also ~x ---~ 
~ 

Suppose that S ~ S are two Polish spaces. In Section 2.3

and in other sections of our paper we often use the convergence in

the Skorokhod t opology in . By Proposition 29.2

from ~lj we obtain following simple characterisation of the conver-

gence in 

Let {xn}n~N{~} , {yn} ~N{~} be two sequences of
elements from D (s) and D (~S ) respectively. Then

(x~,y~)2014> ~.y~) in iff x~20142014~ in o(s)
y 20142014~ y~ in o(s~) and for every t there exists

a sequence ~t~~ ~~~ . t~ 20142014~ t such that x~(t~) 20142014~ 

~n~n-) 20142014~ ~~-) ’ -~ y-~) ’ 20142014~ 

Remark 2. The above result is simpler in the case S == ~ ~
S~= R . Then D~") iff

x 
n 2014~ xoo  y~ 20145~ Yc. in OCR) and for every 

and 0 } there exists a sequence
{tn} n~IN , tn ~ t , such that 0394xn(tn)~ 0394xon(t) and

0394yn(tn) ~ 0394y~(±). Consequently (xn,yn) ~ (x~,y~) in D(R2)
iff xn ~ x~ , yn ~ y~ and xn - yn ~ x~ - y~
in OCR).

Now, assume that x 6 D(.tR) . x(?)= 0 and x has quadratic

variation ~x~ , i.e. for each t there exists a finite

limit 

M~~~ ~ ~ ~ (x(t~n~k~ - 
for some fixed sequence of discretizations T == .

Therefore and M(o)= 0 . It is clear by using e.g.

3.2. in [8~ that Ix~-~20142014~ D] ~ ~)-
Moreover by Remark 2 and. (o)(.~~~t:x~~2014~(M~~~ ~ 
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Using Remark 2 once more

(25) sup |( [x]°n(t) - [x°n](t) t ~ 0 , q C .

t~q J j
The following lemma is an easy corollary of (25) .

Lemma 1. Let X be a local martingale. Then 
,

sup |[X]°Fn(t) - [xogn](t)| ~ 0 ’ , 

3.2 The Lenglart type inequality.

The following lemma follows readily from the concept of domina-

tion introduced by Lenglart {~133 . .
Lemma 2. Let X be a process with bounded variation . Then,

for all ~> 0 and for every ~ stopping time ~ : :

P [Var (03C4)>~]  4 ~-1 E Var X(03C4)^( + sup|0394 X(t)|)
+ 2 P ~ Var X(~)~ ~ ~.

Proof . Let X and X" be two increasing processes such
that X = X~ - X" and Var X = X~ + X" . . Therefore

P[Var (03C4)>~]  P [+(03C4)>~ 2] + P [-(03C4)>~ 2] .
Using the inequality of Rebolledo {~16~ to the first component on

the right-hand side in the above inequality we obtain : :

P [+(03C4)>~ 2]2 ~-1 E X+(03C4)^( + sup|0394X+(t)|)
+ P [ X+(03C4) > ] .

The same estimation is also true in the case of the process X"
Therefore the proof is complete. tt

Corollary 3. Let {Xn}n~IN be a sequence of Fn adapted
processes with bounded variation such that {sup |0394Xn(t)| }n~IN
is uniformly intearable for some sequence {03C4n}n~ IN of Fn
stopping times. If Var Xn(03C4n) ~ o then

Var ~~,) -~0 . 

m
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3.3 The predictable characteristics of semimartingales and

processes tangent to PII .

Let X be a semimartingale. Let h be a continuous

function h : )~ .2014-~ r-1~1~ such that x for

(x) ) ~1/2 and n(x~= 0 for [x)~! . By X~ we denote

the process given by the formula

(26) xh(t) ~X(t) - , 

s~t~
The process X is a semimartingale with bounded jumps , ,

I ~1 , , hence it is also a special semimatingale and

can be uniquely decomposed into the sum :

(27) , t6)Rt . .

Where B is a predictable process with bounded variation ,
0 ~1 and M~ is a local martingale,

M~0)= 0, 
t

Let X be the unique continuous martingale part of the semi-

martingale X . We define

(28) 6~(t) ~ ; , t 

where ~(~~ ~ is the quadratic variation process of X 

Let v = be the dual predictable projection of

the jump-measure of the process X

(29) l(AX(s)6A , AX(s)/ 0 ) t~R+, A~B(R) .

The triple (B~B ~~y) is called a system of local predictable
characteristics of the semimartingale X. It can be observed that

this system satisfies the following properties :

(30) B is a predictable process with bounded variation.

(31) 03B42 is a process with continuous and nondecreasing tra-

jectories , 0 ~

(32~ ~ is a random measure on such that :

~()R~o;)=o ,
~+oo . , te)R+ ’

It is clear that in general, it is not true that B belongs
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to However comparing (30~ - (32) with the properties
of predictable characteristics of processes tangent to PII we can

conclude that the system C , V) fulfills the conditions

(22) - (24) , too.

3.4 The processes with independent increments.

Let X be a process with independent increments. As it is

proved in Jacod [8] and in Grigelionis [5] there exists a non-

random system of characteristics (Bhg, G2g, 03B3g) satisfying (22)
(24) . Moreover if we denote DO = { ie IRt : = 0}

then for every s, t e s  t

E exp i~(t)- X(e)? ~~ - 
~ B~(s)) - ~~(t) - ~~

+ (ei03B8x - 1 - i03B8h(x))I(rD0) 03B3g(dr dx)}.

Conversely if (Bhg, G2g, Vg) is 

with properties (22) - (24) then there exists a process with inde-

pendent increments X for which the condition (33) holds. There-

fore the law of X is uniquely determined by the triple

(B . the sequel we will use the notation

~.~g)~~’
In [8] Jacod has gived also necessary and sufficient conditions

for the weak convergence of sequence of processes with independent
increments. Let be a sequence of processes with inde-

pendent increments with the sequence of their characteristics
{(Bh,ng,G2,ng, 03B3ng)} n~N{~} .

Theorem 04 20142014~ ~~) in 
-- 

iff 
.

the following conditions are satisfied j

(34) -~. B~’~ in ,

(35) -~ in s

(36) ~ in 

where 2,ng(t) + (h(x)- 0394Bh,ng(s))203B3ng({s} dx) +
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+ t[I - (0394Bh,ng(s))2, t e lfl ’, n G 

and is a family of positive and bounded, continuous functions

vanishing in some open neighbourhood of o ;

4. Fundamental properties of processes tangent to PII.

4,I Necessary and sufficient conditions for the processes
from S (T,D) .

It is possible to characterise a process x e S 9 (T,D) in terms

. of convergence in probability of the predictable characteristics of

their discretizations {Xon} n
Proposition 1.A process x is T tangent to PII iff 

,

the following conditions are fulfilled :

l~~~ fi# ~l
(3 8 ) [(X°n)h - (X°n)h ] ~ Chg(.) G 2g(.) +(h(x) -0394Bhg(s))203B3g({s}dx)
39> -i@dx> ~ J fa> Pg @x> , f Go cvo> ,

where the triple (Bhg,2g,03B3g ) posseses the properties (22) - (24 )
In this case

L40) Bhg is a local martingale,

(41) 2g * (Xh - Bhg )c>,

(42 ) t( f (x) N (dx) - f [x) i’ 9 is a local martingale

for every f G 

Proof. Let us assume that the process X is T tangent

to PII . By a routine technique of subsequences and by Theorem J4

used for fixed 03C9 ~ 4X we can readily see that the triplet

(B~[w), 6~(u), P (w)) is well defined.
~ First we check the properties [22) and (40) for the process

Bhg. To, prove the predictability of Bhg we use Theorem 88 c

from [4] . It is clear by (37) that Bhg is adapted to I .
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Therefore we have to verify that B~ (6) is $l(6-) measurable

for every predictable F stopping time 6 and 2lB§(6) * °
for every totally inaccessible l$’ stopping time.

Let be the array of 3’ stopping time defined by
the equalities :

j4s) = o , 6~ ~ - inf [ t > 6~ . ~" ~ , ] / ] > i i I
I,k e N , where (I. ) i~IN iS a sequence of positive constants
such that ~i + 0 , P(IAB§Ct)( = ~i , t e’o’ ) = ° and

in f 03C6 df + oJ .

Let (Y§~ ) be defined analogously for fixed n 6 #4 as the

following array of predictable FoIn stopping times: ’

(44) = 0 , &#x26; inf [ t i’ ’l n ~ ’ ~ ~ ~ > g I ]
I , k e §J . Let us fix I, k e )bj . For simplicity we will write

t n , q§ instead of fi§ 03C4inn , Gik .

By elementary computations: : 9§ I (V  +«) ++ 67
and 0394(xogn)h(03C4n) I (v £ + oo) ~ iy on the se t [§i£+ m] .
Let us put for every n n E N : 

p g

g 
if %~ $ $~[6)

n 

l +/ if % > 

where J*n(t) = min [tnk : tnk  t ] , t ~ IR+(hln* (g) is ;VO!nstopping time! ). According to (10) 0394(xogn)(g*n(g))~ 0394xh(g)on the set L6" +o-)J . Therefore 0394(xog)h (03C4n)I(fn(6) ~ 03C4n, 03C4n+~)
~ O on the set [6 £+ m ] and as a consequence: 
§5) In 1 (fl  + ~) -+ l§i on the set [§g£+m] ,
(46 ) (J  +,) ~ 0394Bhg() on the se t %6 d+m)
(47) £l n $ on the set [§ n  + m ] ’ n Q IN .

Now we will show that $ is a predictable $ stopping time.
Let w be a positive constant and ( k ) ~ g ~ be a subsequence
(kn§Inl , kn + + - for which  P[03B4kn = + ~ , s+«j
 y . Since by (47) ~ ~

1 5~~ = + « , s+- jC = iJ~~  X~~  +mo jn 

~ ~l~’ ~’~ ~ ~ °~~ 
n



462

we have 
[03B4kn 
=+oo , +~]~Fkn (kn*()-) .

By the following simple lemma

Lemma 3. Let 6~ be a ~ stopping time. Then for every
~ (P~)’)~~~ and moreover r 

’

(~) ~ ~ . Ot
we obtain that ~~L~ = +~ . ~~o~~~y~~) .

Hence we can define new 
" ° ~- ~ ~ stopping time 0)r. :
6 on the set 

Gf  { +~ on the set SJ .

For every n~:M we also define :

tkn,j-1 if 03B4kn = tkn,j , j~IN
Gkn + ~ if 03B4kn = + ~ .

If we put k,g max (gki^n) then (?.  Gf n~IN

and Gkn,j ~ Gf.
Therefore is a predictable ~ stopping time. Taking

a sequence ~~ ~~~ ’ ~i ~ ~ ~ define a stationary

decreasing sequence {Gfi} of predictable 4= stopping

times 1 ~  . Thus G is a predictable F stopping

time , too. 

As a consequence A~~" ~ for every totally

inaccessible T- stopping time 6 .

Finally we have to verify that ~C?) is ?~-) measu-

rable for every predictable ? stopping time ~ . . This is clear
if =0 .In this case for stopped processes

(4S) ’ -~ ~-~ .

On the other hand let 6 be of the form 6 = 

Then by (45) and (46) we have

-~ ~-~ -
And the property together with Remark 2 implies that the

conclusion (48) follows~ too. Thus (48) holds for every ? stop-

ping time 6 . Since the left-hand side of (48) is (j~S)’)
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measurable so it follows by Lemma 3 that and in particu-
lar 39 ~6’ are ~’’C6-~ measurable. Therefore the process

Bhg is predictable. 
h hIn the next step we will show that Xh - B9 is a local ma~-

tingale. Let 6 be a fixed ~ stopping time. First let us
note that the property

(49) var C In*n(6) - (Xln)h) Cq , p p , g~IR+
together with Corollary 3 implies the convergence

(:>0) sup l (xofn)h. S (xfõ..’( n)h(t) 1 ~ o 

For proving (49) the following simple lemma will be used.

Lemma 4.

Var 

Proof of lemma. By the definition
00

(X ° fn)h(t) .. - GC~(X°~,~C6~) ’ >i 6~ )
= Jn(t)

where ~~ = 0 , (~p~ = inf ~t ] 6~-1 ,‘~,CX~ ~~~t)I > ~ ~ and
and 0 ~ E ~ 1/2 , P C[~ [ _ ~ , t E = 0 .

we denote
00

° i~C~°~n~~nC61)~ _ , 
t E where ~p~ = 0 , rpl _ inf ~t , ~’-1 , ~~ .
Since max Ci : q ?~~’~ ~ +~ , q E. ~,’~ it follows by the
convergence lfm P C p ~~ ~I 6i ~ C +~ = 0
that 

J n n ’

lim P [J1n(t)~ In(t). t S q] = 0 q E IRt.
Hence Var (J1n - Jn)(q) p p , and thus the estimation
of Var C Xho n - (Xoln - J1n))(q) , q~IR+ finishes the proof.

Let us observe that

C J~))(q ) =

= 

k = 
x)+ s~~~1
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= % [(0394x(gi) -h(0394x(gi)))-(0394xoln(ln*n(Gi)) - h(0394xoln(ln*(Gi))))]]
I(tnk = J*n(gi))

 fi ~ ]@ x 6~> - h wx «~>» I
m~ f$16b)

= (0394x(Gi) - h(0394x(Gi)))-(0394Xogn(ln*(Gi)) - h(0394xogn(ln*(gi))* (q  n*(Gi)).
Then (10) implies that the last sum converges almost surely to 0

for every q G )+ . ~

By Lemma 4 the estimation of (49) reduces to convergence

Var ((Xh°n)*n() - Xh,°n)(q) ~ o , q @ fl f .
But the equality

((Xholn)ln*(g) - Xh,g,ln)(t) = (Xh(g*n(g))I ( t j y’i(6))
assures that convergence due to the right continuity of Xh.

Comparing (50) and (48) we obtain :

U~~ ~r ~l’~’ .

Let us denote Mhg * Xh - Bhg . Since the process Mhg has bounded

jumps £ 2 we can choose a localizing sequence )6 k}
t ~

of l$ stopping times such that +OO a.s. and

sup |Mhg(t)| / k , k . Let us f ix and

Cont x ( t e G’ : = 0 ) . For fixed k 6 iN there

exists a sequence (T n ) of stopping times

such that 

52> (~ 6~ j~]~ ’ "~ ~ > " 
- o 
p 9

[53) there exists a sequence (s ) of positive numbers for

which f n (sn) >, s , n e n (sn) ~ s and

Mh,03C4n,kn(sn)~ "1’ 
d4> SjP 1 Ml17n @>1  k + i . n C ’N *

It can be easily verified by Tschebyschev inequality and (52) , (53)
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that M9’ ~p~ 0 . . On the other

hand by standard arguments and the property *~p (s ) ~3~~
~’‘(,t)- - M9. 6k~s) ~ ( 

Therefore M9 for every t,s ~ Cont M
t )~ s. Hence ~i ’~k is a uniformly integrable martingale

and the proof of (40) is complete.
It is interesting that instead of (37) we can consider a more

stringent condition

~ ((~’ .~’) -~ C Xh . B9 , in 

The above property is a consequence of Remark 2 and the argument
given below. Let be of the form o" = Gik defined by
(43~) . Then there exists a sequence ~~~ ~ n ~ ~ of predictable

stopping times such that

(56) lim P C *n()~ 03B4n , .  +~ ] = 0 . .

To prove (56) let us take a sequence {n} n~N
satisfying (45) - (47) . Therefore by (46) we have

° ~~n ’C+°’°J ~ ~B9C6)
on the set . Using (47) one can see that

E C4~x ° ~~~ hC~’~) I C~~C6) _ ~n)~~~C~ ~)I ~O ~  
(57) = ~ril.°~~~3‘~,~~C6) )~I~~C,~o~= 

I (03B4n +~).

Since by Lemma 3

(58) 

on the set [+~]. so (57) and the convergence 

E(0394Bhg()I(*n()= n , +~)|F°n(03B4n-))~ 0394Bhg()I(+~) .
Hence

C I((*n (6) = 03B4n, +~) |
E ~)
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and we have lim E |0394Bhg() I(*n() ~ 03B4n , +~) (n o . Finally
to end the proof of £51) it remains to observe that |0394Bhg()| > ~i
on the set . 

Now let us note that Remark 2 and (56) guarantee more

stringent convergence in (37) . It is clear that in fact we have

the following convergence

d9 > sup| Bl %n t» - I w ° . q E "’ .

We can prove (39) and Q2) using the following Lemma 5

instead of Lemma 4 .

Lemma 5. For eve ry f G 

var ( j f jX) (N ° j I(dX ) - j f (X) N (dX))’j ) (q ) ~ o , q e(R’ .
j~ ~ ~i~ ~ 19 *

The poof of [38) and (41) is essentially the same as in

previous cases. In both Lemma I and Corollary 3 are basic

and the condition (59) is very useful.

To prove the converse implication let us assume that the condi-

tions £_37) - Q9 ) are satisfied. Using Theorem J4 for fixed

ure 03A9 once more we obtain X 6 and this completes

the proof..
Using Proposition I we can conclude that every process x

T tangent to PII has triplet of predictable characteristics

6§. >g I or equivalently a random measure A§ with

values in PII such that

/x g j,j * L(Bhg(03C9), G2g(03C9), v g jgr» , ur e &#x26; .

Let fl$ be some $$ stopping time . By the stopped random measure

(jL~ )" we will mean the random measure with values in PII

defined by the formulas :

ci x Bi ,03C4(03C9)(03C9), 6 > >JEt5: > . 03C9~ a .

By the arguments from the proof of Proposition I we obtain: :

Corollary 5. The process x belongs to - iff

there exists a localizing sequence ~ ~ jq , i~ ’b + m a.S.

lr which x% k 6 S (T,D) , k e IN. In this case

= a >"~ , k c iY ..
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~2_Approximation in probability for predictable compensators of ,

special semimartingale.

The following result forms the essential part of Theorem 1 . .

Proposition g_. Let X be a special semimartingale such that,
( ~c ~ sup Var X (t) ~c for some constant c ~> 0 . .,

Then the two conditions given below are equivalent y

(i) ~~ in D CtR) ,J ~o

(if) the property is satisfied.

Proofs (li) =~> (i) First let us observe that it is very conve-

nient to have the following property instead of (j) : :

for every predictable ~ stopping time 6* there

(r ) exists a sequence n~IN of predictable
stopping times such that

lim P[*n() ~ 03B4n , A] = 0 .
The equivalence is evident if the stopping time
satisfies ~~~~~n~ "~ ."~:))J.To obtain the general
case we use the following lemma.

Lemma 6. Let us suppose that the predictable ~ stopping time,
5 is of the form sk I (5’ == sk) on the set A

for some of positive constants °

Then for the stopping time ~ the conditions (r) and 
hold.

Proof of lemma. Let us note that without loss of generality wo
may assume that the stopping time ~ is of the form

CtQ

~ ~" j~~i~~k) ~~i(.S-~,k6~). °
We begin with a simpler case where ~ satisfies

~ ~" j~~~=~~ ~t~l(6-/s~l~k~j)~ t
for some fixed J~:!tJ . Observe that for every k , 
there exists a sequence s~s, . 
and a sequence of positive constants {cn} ...... , c ~ +~
for which : :
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(.~= 1(6= s~
for every k ~ , 1 ~ k ~.j . . Finally if we define the sequence 
by the equalities

(s1) 
on the set An1
on the set 

for every 

(+ go) on the set 

then the condition (T~) is fulfilled by the stopping time S

defined by (61) . If we put instead of 

get a sequence {n} of stopping times satisfying
the condition (r) . .

Now, let us suppose that 6 is of the form (60~ . . Yle denote

for every j 6 N the stopping time of the form (61) by 6"" 
Therefore for each we can define the sequence jS~} of .

predictable stopping times for which lim P[ *n(j)~ 03B4jn,
j  +~ 1= 0 . . Since lim P /0 J= 0 we can choose

a sufficiently slowly increasing sequence {jn } , jn ~ + ~

such that :

~62) lim P t ~(6-) / ~ . , ~~.o ~ = 0 .

n~~

Analogously we show that the condition (T) is satisfied for the

stopping time (? ,too..

So we can assume that the condition holds .

Now, we will consider the sequence of processes 

defined by YBt)= 0394X(ik)I(t  ik), t~IR+  

where the array 

’ 

of predictable ? stopping time is defined
as follows : 

’
~ ~°= 0 . 

inf ~t ~ ~~’~ ,)A~(.t)~~]
i,k for some sequence of positive constants ,

0 ~ U~Ct)~ ~ ’ , 0 . , 

In the next step of the proof we will show that

(64) sup | Yi°n(t) - Yi(n(t)) | ~ 0 , q~R+.
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First let us note that by Proposition 1.49 from [s]
i(t) =  E(0394X(ik)| F(ik-))I (t 

Then Yi°n = Yik°n and Yi = Yik.
)~ k= 1 J~ 

Now let us assume that the following convergence holds :

(65) aup ) ( Yik°n(t) - Yik(n(t))| ~ 0 . q~IR+,
~~q J J y

Hence for every 

) Yik°n(t)- Yik(n(t))|~ 0, q~IR+.
Since max [i : i  q]+~ we have lim sup 
= 0 and lim Var( 03A3 Y-" /(q) = 0 . . Then it follows by Corollary 3
that (~55) 

" 

~(64) . .
Therefore without doss of generality we will consider a process

Y of the form Y(t)= X() I (t  ) , t tor some pre-
dictable ? 

stoppinq time 
6’ . It is easy to verify that

= ~ ~X(?) I (j~) = t,,)
. Y°n(t) = E(0394X() I(*n() = t,,) | F(tn,k-1))

In the next considerations the notations from the proof of
Proposition 1 are used.

Let us fix  > 0 subsequence 
n ~N . We de-

note , t~R+. Since for every

~n~-)~~n ~ o~~~ =L~)~~ ,~~]~~)~~ .~(+00~ by Corollary 3 ~nd we have : ’

’ ~~ - ~n))-~ 0

q ~R+. It is clear that E(Y-kn(03B4kn)|F(kn)).
Now. let us observe that by the implication §. ~4.00" 

03B4kn  *kn() and the definition of 

lim P[kn ~ kn, , ~] = 0 .
"n "n~ ~ "

Hence the convergences : " 

~ 0394X() on the set
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[+ ~ ] , lim P [ 03B4kn q , = 

+ ~ ] = 0 q~ R + (we can
assume the 

convergence 1 ) imply that 

~ o , 

Since , E (0394X()I(+~)| F(kn,))~ E(0394X()I(+~)
~(6,:)) . Hence

~p) S ~t) - E ~axC6’~-)~~~6~~)~I Ct y~ ~k~6’ ~ ,~ o

q Therefore there exists a sequence {ln}n~IN ’ )?) ~ 0
and one subsequence {1kn}, {kn}~{kn} such that

~* ~ _ 0 . 

Since Var ~ 0 , q~R+ it

follows by Corollary 3 that

sup I 0 ’ q~R+.

Moreover, we could prove that for every subsequence 
there exists a further subsequence for which the

above convergence holds. Therefore the proof of (64) is complete.

Let .~~ be a new sequence of processes given by the

equalities Z (.~== X(t) - i E ]1~ . By using the

arguments of Meyer :

E sup l 4 E 

4 E (0394nkZi)2  4 E max |0394nkZi| Var Zi(q)~ 
k =a." 

4c .

~ ’’ 

Since lim ll? E ~ax 1 pkZ~ ‘ 2 a ~ we have

k~r~(.q) 
C66~ 0

t ~q ,l ~

for every !.~ 0 and every q E ~’~ . It is easy to show that

(66) and (64) imply
~ . G~IRt .

’ ~ !*
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F in ally (10) g ive s (i) .

(~) -====> First assume that ~ =~ ~~~ i.e ~ is of the

form given by (63) . Then by the arguments from the proof of Pro-

position 1 the condition fulfilled . Now, let remark that

we can assume that
oo c~

0-- 03A3 03A3 ik I ( = ik) + {+~} I ( = ik i,k~N).
We begin with the simpler case where  satisfies

(67) 
o’ ° 1I ( = 1 , 1 ~ k 1kl-1)

+ {+~} i ( ~ 1 11 j)
and each ~ is of the form G~ = ~~ . Observe that by

3 there exists a sequence ~n~~~ ~°*’ ""~~

where A1 df [ = 1 , 1 ~ k 1kl-1 ] I

1  l  j . Since for each 6 the condition (T*) is fulfilled
there exists a sequence ~hj of predictable ~P stopping
times satisfying (§7) . As a consequence

(68) I(A~) i . c~) ~ I(A,) .

Therefore if we take 1  l  j and n ’= min 1,*n then it i$ easy to see that
the condition (T*) is for the stopping time 6’ of the
form (67) .

Finally let us observe that we can extend this fact to every
predictable ~ stopping time ~T (just as in Lemma 6 ) .
Since (r)~([~) the proof is complete . ))

Let us note that in general i.e. if we do not assume that
the property (rt is satisfied then (i) is not true . Using

" the method of Laplacians " 
we can obtain only that

~n ~) 20142014> weakly t 6 Cent ~ .

4.3 Necessity of the condition (r) .
Theorem 1 says that the semimartingale X belongs to S (r,D)

iff X satisfies the condition (T). The above result seems
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to be not true in the general case. But we have .

Proposition 3. Let X be a process T tangent to PII . .

Then the condition (T) is fulfilled.

Proof. Let be a sequence of constants, ~i ~ 0
such that 03B3g(R+x(|x| = ~i))= 0 , i~IN. The family

{03B3g((0,t]x(|x|  ~i))}t~R+ is a predictable process for which

by (39) 

(69) ~~I~~~xt)~ 
Let be a sequence of positive constants , 0 , ,

t6)R~=0 we

denote

~0=0 , ° 6" = inf [t ~ 6’~-’ 
then repeating the arguments from the proof of Proposition 2

we obtain that the property (T) holds for every predictable
y stopping time of the form

 = 03A3 03A3 
1 
ik I ( = ik) + {+~} I ( ~ ik i.keM).

And as a consequence the property (T ) is fulfilled also in the

general case. . M

4.4 The class *

Exactly in the same way as in the proof of Proposition 1 we

obtain that the bounded process B belongs to iff

one ef the following two conditions is satisfied

(70) (.~ ~-~ 0~ ~ in D~) .

(71) 20142014~ B in D(~) .
~ ’ ~ ~

Now we collect fundamental properties of the class

Proposition 4.(i~ is a vector space.

B ~ B. (T,D) and B is a local martingale

then B = 0 .

(iii)If B 6 then B ~ S (j.D) and has a triplet

of characteristics (S2g,g) for which : Bg " B ,
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io = 0 , and 03B3g is equal to the jump-measure N associated

to the process B .

Proof. It is clear that in the proof of (.i) ~ (ii) and also

(by Corollary 4 ) it suffices to consider instead of

this case (i) and (ii) are evident.

Therefore we give a proof of (iii) only. Let .

We will show that the conditions (37) - (39) in Proposition 1

are satisfied.Since the process B satisfies the condition (T)
it is obvious that 8 - B fulfills the condition (T) too.

By Proposition 2 

n n n = 

n ~ B - Bh .

By Lemma 4 and Corollary 3

(72) Born + Born -~ (e~ B)+ B = B~

i.e. the condition (37) is satisfied with B~ = B~ .
By the arguments used previously Davis-Burkholder-Gundy
inequality imply that y Finally by Corollary 3 by 

0 , 

i.e. the condition (38) follows with 6b = 0 .
Similarly by Proposition 2 , Lemma 5 and Corollary 3

~M~~~Cdx) -~ , f6 
R ’ ~R

where N is the jump-measure associated to the process B .

Therefore the condition (39) is satisfied too . . Hence Be S (T,D). .~ 
N

5. Proofs of theorems.

5.1 Proof of Theorem 1.

Let us suppose that X is a semimartingale for which the
condition (T) holds. By Proposition 1 it is sufficient to check
that the set of conditions (37) - (39) is fulfilled. The following
proposition is very useful in the proof of (37) - (39) .

Proposition 5. Let X be an ~ adapted process and let c

be some constant c~> 0. The following implications are true : .
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(i) if I ;c then
20142014 

t 

(x.f~Ct))20142014~ 0 . q~ R~ ,
J J V

if (37) holds and 

(where Mhg f Xh - Bhg) then t 

~J~~ -~nP--~]Ct)) I ~ 0 ~ ~~

(iii) if f and .S ~c then

sup |) (t)- ) ~ 0 . 
~~ (R 7 ~ 

’ ~
Proofs The conditions (ji.) and (iii) are easy consequences of

Corollary 3 and, Lemma 4 and 5 respe.ctively. In order to prove

(li") first let us observe that

[Mhg]°n = [Mhg°n] = K?" - Bhg)°n] .
On other hand we have the following estimation :

~- (. ~] - -~P&#x26; ~
8c (|0394nkXh - h(0394nkX)| + |Enk-10394nkXh - Enk-1h(0394nkX)|)

= - (X°n)h)(q) + 8cVar(Xn°n - (X°n)h)(q).
Thus twofold application of Corollary 3 enables us to test (ii)
by simply examining if 

M sup |[Xh - Bhg)n](t) -[Xh-n - Xh°n](t)|~ ° ’ , 

It is clear that for every N and t ~. R

[(Xh - Bhg)°n](t)- [Xh°n - Xh°n](t ) = Enk-1(0394nkBhg - Enk-10394nkBhg)2
- 2 Enk-1(0394nkXh - Enk-10394nkXh)(0394nkBhg - Enk-10394nkBhg) .

Since BhgBloc(T,D) the f irst te rm conve rges to 0 in probabili
ty. Now, let us note that second sum is of the form [Mn,Nn](t) ,
where Mn , Nn are two local martingales given by the formulas
N" , Mn f Xh-n - Xh°n . By the Kunita 
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nabe inequality

Var . q6~ .
Since by the arguments used previously "2014~ 0 and

20142014~~J ~ where sup ~](t)~:c it

follows|by Corollary 3 that (73) and are satisfied.

Let k~?M localizing sequence t~. 1~ +00

for which k~IN. By Proposition 2

t~~y~~~ ~-~~ 
(74) 20142014~ .k6~ .

Therefore by CL) we have

20142014~ , 

Hence there exists a sufficiently slowly increasing sequence /k J
kn ~ + oo such that

(X03C4knn)h ~ B

Finally by Corollary 3 the condition (.37) is fulfilled. By exactly
the same orguments the conditions (38),(39) are satisfied,too . To obtain
the converse implication we use Proposition 3. )t

Proof of Corollary 1. First let us note that if a predictable
T stopping time  is of the form (18~ then the condition

(T~ follows by Lemma 6 . Next let 5" be of the form (19).
Then without loss of generality we may assume that o’ ~ q for

some constant q ~> 0 . Let us put &#x26; =t* max (t . , - t . ) ,n k~r r n. n

n ~-!~ . Since for ~.~ ~ c Pn ~ ’*’ ~ stopping
time the convergence ~n ~ ~ implies the condition (r) . tt

5.2 Proof of Theorem 2.

we start with the proof of property (lii) . Let us assume that

X ~ S (r,D) . Therefore by Proposition 1 the condition (37) is
fulfilled. Let {03C4k} k~IN localizing sequence for which

. By (7l) e 
let us consider the process 

9 
X - B 

h 
. Repeating the

arguments from Jacod [8] we can prove that 
9 

X - Bhg is a semi-

martingale with the triple of predicatable characteristics (B*B 2, 03B3h).
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By Proposition 3 and Proposition 4 the processes X , B
satisfy the condition (r) . . As a consequence the semimartingale
X - B fulfills the condition (r) ~ too. Hence Theorem 1 implies
that X - ~ S (T,D) .

Let us suppose that X is a semimartingale T tangent to PII

and the process B belongs to " We show that X + B

6 S (r~o) . Let 16 r ~ ~ sequence stopping times

such that :

6~ == 0 . 6~ = inf [t ~ 6-~~ .

will consider new processes defined as follows : :

X = X - X . BX’)= B . B - B . .
k  Gk .

Let us observe that we have the following equality

(75) 
(X + B)h = 

(X2 + B2)h + (X1 + B1)h= X2 + B2 + (X1 + B1)h.
Since the processes , , )h have locally integrable
variation and satisfy the condition (T) by Prooosition 2 and

~P~~~ ~ ’ -~ ~’’ ~~1~" -~ ~ ’
((x + ~ 20142014~ (x + B ) 

~ 
. It is easy to see that t

~y -~. X~ and (B~~" 20142014~ B~ . Therefore by

(75)’ and 

Proposition 5 (i) ((X + B)°n)h ~ X2 + B2 + (X1 + B1)h
and the condition (.37) is fulfilled. The remaining conditions

(38~ and (39) are also corollaries from Proposition 2 ~ 3

and 5 .Q.ii) . Hence the proof of (iii) and (ii) is

complete.
The property (JL) is an easy consequence of (ii) ~ Proposition

4 and the simple remark that the set of semimartingales T tangent

to PII forms a vector space. Let us also observe that the property

is clear by Proposition 2 and ~LO) . M

Proof of Corollary 2. Let us suppose that X is a process with

conditionally independent increments given 6 algebra G . By the

arguments from Jacod [8] there exists a system of G measurable

characteristics satisfying the properties (22) -
(24") for which X - BT’ is a semimartingale. Since G =.?(o)
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and the predictable stopping times exhausting the pre-
dictable jumps of X are G measurable so for all 

is ~ stopping time. Therefore by Theorem 1 X - 8~
6 S (T~o) . Similarly by Theorem 2 Bloc (r,D) . Using

Theorem 2 (i) the proof is complete, ft

5.3 Proof of Theorem 3.

Let X be a process T tangent to PII with random

measure JL~ ’ First we define the family of characteristic fun-
ctions of ~ .We take

03A6xg(03B8,t)  exp i03B8x xg(t,dx) 

Proposition 6. Let X Then for each -9-&#x26;tH 03A6xg
is a predictable process such that the process XA. defined

by formula : ;

Y~(t)~ exp 
is a local martingale on the stochastic interval [[, 0~ Rj]L
where R~ = inf [t :j$~fe-t~= O’}.

Proof. Let Z = X - Bh. Then

(exp / 03A6xg(03B8,t)) exp (-i03B8Bhg(t))
and a simple computation based on Theorem 2 (iii) shows that

.

Since the local martingale property for {exp iz(t)/03A6zg(03B8,t)}t~R
is well known the proof is finished. tN 
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