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A Maximal Inequality for Martingale Local Times

S.D. Jacka

Department of Statistics, University of Warwick
Coventry CV4 7AL, U.K.

1. Introduction

Let M and N be continuous local martingales, let M, N denote M-MC
and respectively, and let Lat(M), Lat(N) denote the local times of M
and N respectively.

It was shown in C3] that

Kp ~sup sup|Lat(M)-Lat(N) | ~p ~ ~->~~p ,

or equivalently,

cp ~sup sup|Lat(M)-Lat(N) | ~ ~ ~ (-)*~~p (1.1)

for all whilst Barlow and Yor established in [2] that

In this note we prove the following:

Theorem 1 For all there is a universal constant c such that for
p

all continuous martingales 
p 2014201420142014201420142014201420142014
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2. Some preliminaries. We recall some properties of local times.

For a continuous semi-martingale (X ; ; we may define (c.f. Cl])

its family of local times by means of Tanaka’s formula:

(Xt-aI - + t0+ sgn(Xs)dXs + 

where

sgn(x) = 
1 : x>O

- 1 : : x_0

Note that Lat(X) is increasing in t and increases only on {c: X =a}
(c.f. [4]).

Furthermore it has been shown in [5] that if X is a continuous local

martingale then Lat(X) has a bi-continuous version and we shall assume,
without loss of generality, that we are working with such a version.

To simplify notation we fix M and N, two continuous martingales, and

their filtration (F ; ; and define

U(a,t) = (Lat(M) - Lat(N))

A 
= sup(LL(M) - Lat(N)) = sup U(a,t)

a a
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Bt = sup(LL(N) - L~(M)) _ - U(a,t1
a a

Dt = c 
a 

s s

and for any (Xt; t>_0)

Xt * = Xt_X0.c st s’’ c c 0

3. Proof of Theorem 1. The crucial result is contained in the following

lemma:

Lemma 2 Define

o - inf{t>_0: A >_2x}

Tx 
= U(MQ ,t)_x}

x

.

where, as is usual inf03C6 is taken then, if M and N are in Hl ‘

IE[(2(-)*~ + A~)I(03C3x~,03C4x=~) ] ~ x IP(03C3x ~) (3.1)

Proof It was shown in [3] that A 
t 

is continuous, so on (o x ~), A o - 2x.

Now M and N are in Hl so a.s., so a.s. U(a,Q ) is zero off x a
compact sec (since L~(X) only increases when X is at a) and continuous
and we may conclude that supU(a,ox) is attained.

a 

We may deduce that, on (a °o), supU(a,Qx) is attained at a=MQ for

suppose not, then [ b~M03C3 s.t. " 2x = U(b,o ) a " > U(b,t) for all tQ but, 
’

x 
~ x
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since bxM , s.t. Lb(M) = Lb (M) whilst (since Lb(N) is increasing
Q x t a~ s 

’

b 
x 

b 
x

in s) Lt(N)  Lc (N) so that U(b,t) >_ U(b,cr ) which contradicts the
x

definicion of o . We conclude that, on (Q c°), U(M ,c ) = 2x whilst
x x 03C3x x

M is in H1 so has a limit variable M and so 
x

1FCU(Mo ,oX) - U(Mo ,03C4x)] = ,03C4x))I(03C3x~)] (3.2)

(since T x ?o so, on (a x =~), o x =’r x =°°).

Similarly, we may see that, on (r oo), U(Mo ,TX)=x so that (3.2) is
x

IE[2xI(03C3x ~) - xI(03C4x~) - U(Mc ,03C4x)I(03C3x~,03C4x=~)] (3.3)

Conversely, (3.2) is

M M M M

X(N) - Lo X(N) ) - (L03C4 X(M) - Lo x(M))] (3.4)
x x x x

Applying Tanaka’s formula to the two (FQ +t : martingales,
x

mt 
= Mo +t and nt 

= N6 +t , we obtain the formulae

M M M
L L = L 

cX 
(m)

03C4x 03C3x 03C4x -03C3x

- M - M t + 
( X 

sgn(M -M )dM (3.5.i)
= [M03C4x 

- M03C3x
|+ ]03C3 sgn(Ms-M03C3x)dMs (3.3.1)

X

M M M

L TX ox(N) _ L QX Qx(N) = L03C4x-03C3x (n)
= I NT _MQ I _ I

x x x x

T

+ 
f ~ 

sgn(N -M )dN (3.5.ii)
~a 

’ 

s 7 
x 

s

x



225

Now M and N are in H and 1 so the two stochastic integrals

in (3.5) are uniformly integrable and so we may apply the optional

sampling theorem to obtain:

M M
a o

IE[L03C4 x(M) - L G x(M)] = IEIM T -M a 1 (3.6.i)
X X X X

M M
o a

IE[L 
T 
~(N) - L 

a 
~(N)] = 

T -M a I - 

a 
-M 

a 
!) (3.6.ii)

x x x x x x

Substituting equations (3.6) in (3.4), and equating (3.2), (3.3) and

(3.4) we see that

°°) ~ - ~~) - ~~~,~ =~)~
X X X X X

= IE[|N -M03C3x| - |N03C3x
-M03C3x| - 

|M 
M03C3x|] 

(3.7)

Now, by a similar argument to that given above, we may see that, on

(T 
x T 

= M 
a 

, so on (T 
x 
~) the term inside the expectation on the

x x

RHS of (3.7) is non-positive whilst on (o =00) it disappears so that the

RHS is dominated by

IE[(|N~-M~| - |N03C3x -M03C3|)I(03C3x ~, 03C4x =~)]

Observing that )  2X~ and rearranging terms in (3.7) we
x

achieve the inequality:

IE[(U(M03C3x,03C4x) + 2(-)*~)I(03C3x~,03C4x=~)

~ 2x IP(03C3x~) - x IP(03C4x~) (3.8)
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All that remains, to complete the proof, is to see that, since

x >_6 , x ,  whilst on (T x =~)

U(Mc ,Tx) = U(Mc . D
x x

Lemma 3 If M and N are martingales in Hl

lE(2(M-N)* + >-x) 
? 

~3.9)

Proof On (a x =00), whilst tc so (3.9) follows

immediately from (3.1). D

We may now establish the theorem:

Proof of the theorem: multiplying both sides of (3.9) by pxp 
2 

and

integrating with respect to x we obtain, by Fubini’s theorem:

- ~- ~(2(M-N)* + (3.10)

whilst reversing the roles of M and N in (3.9) we obtain:

.~ E(2(M-N)~ . + (3.10)~

Clearly D = A vB , , so that, since A 
t 

and B 
t 

are non-negative,

2Dp ? Ap + D~.
t t t t

Thus, adding (3.10)A and (3.10)B
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2p (p-1) IE[(2(M-N)*~ + D~)Dp-1~] ~ IE(D*~)p/2p

Applying Holder’s inequality to the first term on the left, we obtain,

2p+1p (p-1) (2~(-)*~~p (~D~~p)p-
1 

+ IE Dp~) ~ IE(D*~)p (3.11)

Now, by (1.1), c , so substituting this inequality

in (3.11):

2p+1p (p-1) ~D~~pp + 2c p~D~~ p-1p) ~ ~D*~~pp, (3.12)

and dividing both sides of (3.12) by we obtain the result that

~D*~~p ~ Kp~D~~p

where K 
P 

is the largest zero of

fp (x) = xp - 2p+1p (p-1) (2cp x+1) []

Corollary 4 If M is in H1 then for all ae R

~(M-M0)*~~p ~ Kp 2 inf sup|La~(m) - Lx-a~(M)~|p

This follows immediately from theorem 1 and (1.1) by seccing N = x-M
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Remarks

(1) Theorem 8 of Ell! enables us co extend the range of p in Theorem 1

(2) Corollary 4 is a specific case of the more general result chac

I K inf .

The author would like co thank Doug Kennedy for helpful criticism

and advice during the preparation of this paper.
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