SÉminaire de probabilités (Strasbourg)

SAULD. JACKA

A maximal inequality for martingale local times

Séminaire de probabilités (Strasbourg), tome 21 (1987), p. 221-229
http://www.numdam.org/item?id=SPS_1987_21_221_0
© Springer-Verlag, Berlin Heidelberg New York, 1987, tous droits réservés.
L'accès aux archives du séminaire de probabilités (Strasbourg) (http://portail. mathdoc.fr/SemProba/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

Article numérisé dans le cadre du programme

A Maximal Inequality for Martingale Local Times

S.D. Jacka

Department of Statistics, University of Warwick Coventry CV4 7AL, U.K.

1. Introduction

Let M and N be continuous local martingales, let \hat{M}, \hat{N} denote $M-M_{0}$ and $N-N_{0}$ respectively, and let $L_{t}^{a}(M), L_{t}^{a}(N)$ denote the local times of M and N respectively.

It was shown in [3] that
$K_{p}| | \sup _{a} \sup _{t}\left|L_{t}^{a}(M)-L_{t}^{a}(N)\right|\| \|_{p} \geq \|\langle\hat{M}-\hat{N}\rangle_{\infty}^{\frac{1}{2}}| |_{p}$,
or equivalenrly,

$$
\begin{equation*}
c_{p}| | \sup _{a} \sup _{t}\left|L_{t}^{a}(M)-L_{t}^{a}(N)\right|\|\geq\|(\hat{M}-\hat{N})_{\infty}^{*}| |_{p} \tag{1.1}
\end{equation*}
$$

for all $\mathrm{p} \in(0, \infty)$, whilst Barlow and Yor established in [2] that

$$
\begin{aligned}
& \left\|\sup _{a} \sup _{t}\left|L_{\tau}^{a}(M)-L_{t}^{a}(N)\right|\right\| \leq \\
& \quad C_{p}\left\|(M-N)_{\infty}^{*}\right\|_{p}^{\frac{1}{2}}\left\|M_{\infty}^{*}+N_{\infty}^{*} \mid\right\|_{p}^{\frac{1}{2}}\left(1 \vee \operatorname { l n } \left\{\frac{\left\|M_{\infty}^{*}+N_{\infty}^{*}\right\|_{p}}{\left.\left.\left\|(M-N)_{\infty}^{*} \mid\right\|_{p}\right\}\right)^{\frac{1}{2}} .}\right.\right.
\end{aligned}
$$

In this note we prove the following:
Theorem 1 For all $p \in(1, \infty)$ there is a universal constant c_{p} such that for all continuous martingales $\mathrm{M}, \mathrm{N} \epsilon \mathrm{H}^{1}$

$$
\left|\left|\sup _{a} \sup _{\tau}\right| L_{\tau}^{a}(M)-L_{\tau}^{a}(N)\right|\left\|\left\|_{p} \leq C_{p}| | \sup _{a}\left|L_{\infty}^{a}(M)-L_{\infty}^{a}(N)\right|\right\|\right\|_{p} .
$$

2. Some preliminaries. We recall some properties of local times.

For a continuous semi-martingale $\left(X_{\tau} ; r \geq 0\right)$ we may define (c.f. [1]) irs family of local times by means of Tanaka's formula:

$$
\left|x_{c}-a\right|=\left|x_{0}-a\right|+\int_{0+}^{t} \operatorname{sgn}\left(x_{s}\right) d x_{s}+L_{\tau}^{a}(x)
$$

where

$$
\operatorname{sgn}(x)=\left\{\begin{aligned}
& 1: \\
&-1>0 \\
&-1:
\end{aligned}\right.
$$

Note that $L_{\tau}^{a}(X)$ is increasing in t and increases only on $\left\{\tau: X_{c}=a\right\}$ (c.f. [4]).

Furthermore it has been shown in [5] that if X is a continuous local martingale then $L_{L}^{a}(X)$ has a bi-continuous version and we shall assume, without loss of generality, that we are working with such a version.

To simplify notation we fix M and N, two continuous martingales, and their filtration ($F_{r} ; \tau \geq 0$) and define

$$
U(a, r)=\left(L_{t}^{a}(M)-L_{t}^{a}(N)\right)
$$

$$
A_{t}=\sup _{a}\left(L_{\tau}^{a}(M)-L_{t}^{a}(N)\right)=\sup _{a} U(a, t)
$$

$$
\begin{aligned}
& B_{t}=\sup _{a}\left(L_{t}^{a}(N)-L_{t}^{a}(M)\right)=-\inf _{a} U(a, t) \\
& D_{t}=\sup _{a}\left|L_{s}^{a}(M)-L_{s}^{a}(N)\right|
\end{aligned}
$$

and for any $\left(X_{t} ; t \geq 0\right)$

$$
x_{t}^{*}=\sup _{s \leq t}\left|x_{s}\right|, \hat{X}_{t}=x_{t}-x_{0}
$$

3. Proof of Theorem 1. The crucial result is contained in the following lemma:

Lemma 2 Define

$$
\begin{aligned}
& \sigma_{x}=\inf \left\{t \geq 0: A_{t} \geq 2 x\right\} \\
& \tau_{x}=\inf \left\{t \geq \sigma_{x}: U\left(M_{\sigma_{x}}, t\right) \leq x\right\}
\end{aligned}
$$

where, as is usual inf ϕ is taken as ∞ : then, if M and N are in H^{1}.

$$
\begin{equation*}
\mathbb{E}\left[\left(2(\hat{M}-\hat{N})_{\infty}^{*}+A_{\infty}\right) I_{\left(\sigma_{x}<\infty, \tau_{x}=\infty\right)}\right] \geq x \operatorname{IP}\left(\sigma_{x}<\infty\right) \tag{3.1}
\end{equation*}
$$

Proof It was shown in [3] that A_{t} is continuous, so on $\left(\sigma_{x}<\infty\right), A_{\sigma_{x}}=2 x$. Now M and N are in H^{1} so $M_{\infty}^{*}, N_{\infty}^{*}<\infty$ a.s., so a.s. $U\left(a, \sigma_{X}\right)$ is zero off a compact set (since $L_{t}^{a}(X)$ only increases when X is at a) and continuous and we may conclude that $\sup _{a}\left(a, \sigma_{x}\right)$ is attained.

We may deduce that, on $\left(\sigma_{x}<\infty\right), \underset{a}{ } \sup \left(a, \sigma_{x}\right)$ is attained at $a=M_{\sigma_{x}}$ for,

since $b \neq M_{\sigma_{x}}, \exists c<\sigma_{x}$ s.t. $L_{\tau}^{b}(M)=L_{\sigma_{x}}^{b}$ (M) whilst (since $L_{s}^{b}(N)$ is increasing in s) $L_{t}^{b}(N) \leq L_{\sigma}^{b}(N)$ so that $U(b, t) \geq U\left(b, \sigma_{x}\right)$ which contradicts the definition of σ_{x}. We conclude that, on $\left(\sigma_{x}<\infty\right), U\left(M_{\sigma_{x}}, \sigma_{x}\right)=2 x$ whilst M is in H^{1} so has a limit variable M_{∞} and so

$$
\begin{equation*}
\mathbb{E}\left[U\left(M_{\sigma_{x}}, \sigma_{x}\right)-U\left(M_{\sigma_{x}}, \tau_{x}\right)\right]=\mathbb{E}\left[\left(2 x-U\left(M_{\sigma_{x}}, \tau_{x}\right)\right) I_{\left(\sigma_{x}<\infty\right)}\right] \tag{3.2}
\end{equation*}
$$

(since $\tau_{x} \geq \sigma$ so, on $\left.\left(\sigma_{x}=\infty\right), \sigma_{x}=\tau_{x}=\infty\right)$.

$$
\text { Similarly, we may see that, on }\left(\tau_{x}<\infty\right), U\left(M_{\sigma_{x}}, \tau_{x}\right)=x \text { so that (3.2) is }
$$

$$
\begin{equation*}
\mathbb{E}\left[2 x I_{\left(\sigma_{x}<\infty\right)}-x I_{\left(\tau_{x}<\infty\right)}-U\left(M_{\sigma_{x}}, \tau_{x}\right) I_{\left(\sigma_{x}<\infty, \tau_{x}=\infty\right)}\right] \tag{3.3}
\end{equation*}
$$

Conversely, (3.2) is

Applying Tanaka's formula to the two $\left(F_{\sigma_{x}+\tau}: r \geq 0\right)$ martingales, $m_{t}=M_{\sigma_{x}+t}$ and $n_{t}=N_{\sigma_{x}+\tau}$, we obrain the formulae

$$
\begin{align*}
& L_{\tau_{x}}^{M}{ }_{\sigma_{x}} M_{M)}^{M}-L_{\sigma_{x}}{ }_{\sigma_{x}}(M)=L_{\tau_{x}}{ }_{\sigma_{x}}-\sigma_{x}(m) \\
& =\left|M_{\tau_{x}}-M_{\sigma_{x}}\right|+\int_{\sigma_{x}}^{\tau_{x}} \operatorname{sgn}\left(M_{s}-M_{\sigma_{x}}\right) d M_{s} \tag{3.5.i}
\end{align*}
$$

$$
\begin{align*}
{ }^{L_{\sigma_{\sigma_{x}}}(N)-L_{\sigma_{x}}^{M_{\sigma_{x}}}(N)=} & L_{\tau_{x}}^{M_{\sigma_{x}}}{ }^{-\sigma_{x}}(n) \\
= & \left|N_{\tau_{x}}-M_{\sigma_{x}}\right|-\left|N_{\sigma_{x}}-M_{\sigma_{x}}\right| \\
& +\int_{\sigma_{x}}^{\tau} \operatorname{sgn}\left(N_{s}-M_{\sigma_{x}}\right) d N_{s} \tag{3.5.ii}
\end{align*}
$$

Now M and N are in H^{1} and $|\operatorname{sgn}(x)|=1$ so the two stochastic integrals in (3.5) are uniformly integrable and so we may apply the optional sampling theorem to obtain:

$$
\begin{align*}
& \left.\mathbb{E E}^{M_{\sigma_{\sigma_{x}}}}{ }_{x}(M)-L_{\sigma_{x}}^{M_{\sigma_{x}}}(M)\right]=\mathbb{E}\left|M_{\tau_{x}}-M_{\sigma_{x}}\right| \tag{3.6.i}\\
& \mathbb{E}\left[L_{\tau_{x}}^{M_{\sigma_{x}}}{ }_{(N)}-L_{\sigma_{x}}^{M_{\sigma_{x}}}(N)\right]=\mathbb{E}\left(\left|N_{\tau_{x}}-M_{\sigma_{x}}\right|-\left|N_{\sigma_{x}}-M_{\sigma_{x}}\right|\right) \tag{3.6.ii}
\end{align*}
$$

Substituring equarions (3.6) in (3.4), and equating (3.2), (3.3) and (3.4) we see chat

$$
\begin{gather*}
\operatorname{IE}\left[2 x I_{\left(\sigma_{x}<\infty\right)}-x I_{\left(\tau_{x}<\infty\right)}-U\left(M_{\sigma_{x}}, \tau_{x}\right) I_{\left(\sigma_{x}<\infty, \tau_{x}=\infty\right)}\right] \\
=\operatorname{IE}\left[\left|N_{\tau_{x}}-M_{\sigma_{x}}\right|-\left|N_{\sigma_{x}}-M_{\sigma_{x}}\right|-\left|M_{\tau_{x}}-M_{\sigma_{x}}\right|\right] \tag{3.7}
\end{gather*}
$$

Now, by a similar argument to that given above, we may see that, on $\left(\tau_{x}<\infty\right), N_{\tau_{x}}=M_{\sigma_{x}}$, so on ($\left.\tau_{x}<\infty\right)$ the term inside the expectation on the RHS of (3.7) is non-positive whilst on ($\sigma_{x}=\infty$) it disappears so that the RHS is dominated by

$$
\operatorname{E}\left[\left(\left|N_{\infty}-M_{\infty}\right|-\left|N_{\sigma_{x}}-M_{\sigma_{x}}\right|\right) I\left(\sigma_{x}<\infty, \tau_{x}=\infty\right)\right]
$$

Observing that $\left|X_{\infty}\right|-\left|X_{\sigma_{x}}\right| \leq 2 \hat{X}_{\infty}^{*}$ and rearranging terms in (3.7) we achieve the inequality:

$$
\begin{align*}
\mathbb{E}\left[\left(U\left(M_{\sigma_{x}}, \tau_{x}\right)\right.\right. & \left.+2(\hat{M}-\hat{N})_{\infty}^{*}\right) I_{\left(\sigma_{x}<\infty, \tau_{x}=\infty\right)} \\
& \geq 2 x \mathbb{P}\left(\sigma_{x}<\infty\right)-x \mathbb{P}\left(\tau_{x}<\infty\right) \tag{3.8}
\end{align*}
$$

All that remains, to complete the proof, is to see that, since $\tau_{x} \geq \sigma_{x}, \mathbb{P}\left(\tau_{x}<\infty\right) \leq \mathbb{P}\left(\sigma_{x}<\infty\right)$, whils on $\left(\tau_{x}=\infty\right)$
$U\left(M_{\sigma_{x}}, \tau{ }_{x}\right)=U\left(M_{\sigma_{x}}, \infty\right) \leq A_{\infty}$.
Lemma 3 If M and N are martingales in H^{1}

$$
\begin{equation*}
\mathbb{E}\left(2(\hat{\mathrm{M}}-\hat{\mathrm{N}})_{\infty}^{*}+\mathrm{A}_{\infty}\right) \mathrm{I}_{\left(\mathrm{A}_{\infty} \geq \mathrm{x}\right)} \geq \mathrm{x} \mathbb{P}\left(\mathrm{~A}_{\infty}^{*} \geq 2 \mathrm{x}\right) \tag{3.9}
\end{equation*}
$$

Proof on $\left(\sigma_{x}<\infty, \tau_{x}=\infty\right), A_{\infty} \geq x$ whilst $\left(\sigma_{x}<\infty\right)=\left(A_{\infty}^{*} \geq 2 x\right)$ so (3.9) follows immediarely from (3.1).

We may now establish the theorem:
Proof of the theorem: multiplying both sides of (3.9) by $\mathrm{px}^{\mathrm{p}-2}$ and integrating with respect to x we obrain, by Fubini's theorem:

$$
\begin{equation*}
\frac{\mathrm{p}}{\mathrm{p}-1} \mathbb{E}\left(2(\hat{\mathrm{M}}-\hat{\mathrm{N}})_{\infty}^{*}+\mathrm{A}_{\infty}\right) \mathrm{A}_{\infty}^{\mathrm{p}-1} \geq \mathbb{E}\left(\mathrm{A}_{\infty}^{*}\right)^{\mathrm{P}} / 2^{\mathrm{P}} \tag{3.10}
\end{equation*}
$$

whilst reversing the roles of M and N in (3.9) we obrain:

$$
\begin{equation*}
\frac{\mathrm{p}}{\mathrm{p}-1} \mathbb{E}\left(2(\hat{\mathrm{M}}-\hat{\mathrm{N}})_{\infty}^{*}+\mathrm{B}_{\infty}\right) \mathrm{B}_{\infty}^{\mathrm{p}-1} \geq \mathbb{E}\left(\mathrm{B}_{\infty}^{*}\right)^{\mathrm{p}} / 2^{\mathrm{p}} \tag{3.10}
\end{equation*}
$$

Clearly $D_{\tau}=A_{\tau} v B_{\tau}$, so chat, since A_{τ} and B_{τ} are non-negative,

$$
2 D_{\tau}^{P} \geq A_{\tau}^{P}+B_{\tau}^{P} \geq D_{\tau}^{P} .
$$

Thus, adding (3.10) A and (3.10) ${ }_{B}$,

$$
\frac{2 \mathrm{p}}{(\mathrm{p}-1)} \mathbb{E}\left[\left(2(\mathrm{M}-\mathrm{N})_{\infty}^{*}+\mathrm{D}_{\infty}\right) \mathrm{D}_{\infty}^{\mathrm{p}-1}\right] \geq \mathbb{E}\left(\mathrm{D}_{\infty}^{*}\right)^{\mathrm{p}} / 2^{\mathrm{p}}
$$

Applying Holder's inequality to the first term on the left, we obtain,

$$
\begin{equation*}
\frac{2^{p+1} p}{(p-1)}\left(2\left|\left|(\hat{M}-\hat{N})_{\infty}^{*}\right|\right|_{p}\left(| | D_{\infty} \|_{p}\right)^{p-1}+\mathbb{E} D_{\infty}^{p}\right) \geq \mathbb{E}\left(D_{\infty}^{*}\right)^{p} \tag{3.11}
\end{equation*}
$$

Now, by (1.1), $\left\|(\hat{M}-\hat{N})_{\infty}^{*}\right\|_{p} \leq c_{p}| | D_{\infty}^{*} \mid \|_{p}$, so substituting this inequality in (3.11):

$$
\begin{equation*}
\frac{2^{p+1} p}{(p-1)}\left(\left\|D_{\infty}\right\|_{p}^{p}+2 c_{p}\left\|D_{\infty}^{*} \mid\right\|_{p}\left\|D_{\infty}\right\|_{p}^{p-1}\right) \geq\left\|D_{\infty}^{*}\right\|_{p}^{p} \tag{3.12}
\end{equation*}
$$

and dividing both sides of (3.12) by $\left\|D_{\infty}\right\|_{p}^{P}$ we obtain the result that

$$
\left|\left|D_{\infty}^{*}\right|\left\|_{p} \leq K_{p}| | D_{\infty}\right\|_{p}\right.
$$

where K_{p} is the largest zero of

$$
f_{p}(x)=x^{p}-\frac{2^{p+1} p}{(p-1)}\left(2 c_{p} x+1\right)
$$

Corollary 4 If M is in H^{1} then for all $p \in(1, \infty), a \in \mathbf{R}$

$$
\left.\left\|\left(M-M_{0}\right)_{\infty}^{*}\right\|_{p} \leq \frac{K_{p}}{2} \inf _{x \in \mathbb{R}}| | \sup _{a} \right\rvert\, L_{\infty}^{a}(M)-L_{\infty}^{x-a}(M)\| \|_{p}
$$

This follows immediately from theorem 1 and (1.1) by secting $N=x-M$.

Remarks

(1) Theorem 8 of [1] enables us to extend the range of p in Theorem 1 to $(1, \infty]$.
(2) Corollary 4 is a specific case of the more general result that

$$
\left\|(\hat{M}-\hat{N})_{\infty}^{*}\right\|\left\|_{p} \leq K_{p} \inf _{x \in \mathbb{R}}\left|\sup _{a}\right| L_{\infty}^{a}(M)-L_{\infty}^{a-x}(N)\right\| \|_{p}
$$

The author would like to thank Doug Kennedy for helpful criticism and advice during the preparation of this paper.

References

[1] AZÉMA, J. and YOR, M. En guise d'introduction. Temps Iocaux Astérisque 52-53, 3-16 (1978).
[2] BARLOW, M.T. and YOR, M. Semimartingale Inequalities via the Garsia-Rodemich-Rumsey Lemma. J. Funct. Anal., 49, 198-229 (1982).
[3] JACKA, S.D. A Local Time Inequality for Martingales. Sém. Probab. XVII, Lecture Notes in Maths 986. Berlin-Heidelberg-New York: Springer (1983).
[4] YOR, M. Rappels et préliminaries généraux. Temps Locaux Astérisque 52-53, 17-22 (1978).
[5] YOR, M. Sur la continuité des remps locaux associés à certaines semimartingales. Ibid. 23-36.

