SÉminaire de probabilités (Strasbourg)

Richard F. Bass
 L_{p} inequalities for functionals of brownian motion

Séminaire de probabilités (Strasbourg), tome 21 (1987), p. 206-217
http://www.numdam.org/item?id=SPS_1987__21__206_0
© Springer-Verlag, Berlin Heidelberg New York, 1987, tous droits réservés.
L'accès aux archives du séminaire de probabilités (Strasbourg) (http://portail. mathdoc.fr/SemProba/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques
http://www.numdam.org/

Richard Bass

1. Introduction

Let M_{t} be a continuous martingale. Let $\langle M\rangle_{t}$ be the quadratic variation process, let $M_{t}{ }^{*}=\sup _{s<t}\left|M_{s}\right|$, let $L(t, x)$ be local time at x, and let $L_{t}^{*}=\sup _{x} L(t, x)$. Barlow and Yor $[3,4]$ showed that in addition to the well-known equivalence in L_{p} norm between $M_{t}{ }^{*}$ and $\left.\langle M\rangle\right\rangle_{T}^{1 / 2}$, one also had equivalence in L_{p} norm between $L_{T}{ }^{*}$ and $\langle M\rangle_{T}^{1 / 2}$. That is, if $p \in(0, \infty)$, there exist constants c_{p} and c_{p} depending only on p such that if T is any stopping time,

$$
\begin{equation*}
\left.c_{p} E\langle M\rangle\right\rangle_{T}^{p / 2} \leqslant E L \stackrel{\star}{T}_{p}^{p} \leqslant C_{p} E\langle M\rangle{ }_{T}^{p / 2} \tag{1.1}
\end{equation*}
$$

Many other functionals of M have been found to be dominated in L_{p} norm by $\langle M\rangle_{T}^{1 / 2}$. These include various ratios of M^{*} and $\langle M\rangle^{1 / 2}[4,6,9]$; moduli of continuity of M and $L(t, x)$ [4]; and number of upcrossings [1,2]. For example, if $U_{t}(a, a+\epsilon)$ is the number of upcrossings of the interval $[a, a+\epsilon]$ by M up to time t, and $V_{t}=\sup _{\epsilon} \operatorname{mup}_{a} \varepsilon U_{t}(a, a+\epsilon)$, the main result of [2] is that
(1.2) $E V_{T}^{p} \leqslant C_{p} E\langle M\rangle{ }_{T}^{p / 2}$,
C_{p} a constant depending only on p.

The main purpose of this paper is to give some quite general and easily verifiable conditions for increasing functionals and ratios of increasing functionals of Brownian motion to dominate or be dominated in L_{p} norm by $T^{1 / 2}$. We state our results for Brownian motion, but these translate immediately via a time change argument to results for arbitrary continuous martingales. The results on L^{*}, ratios of M^{*} and $\langle M\rangle^{1 / 2}$, moduli of continuity, and upcrossings mentioned above then become
special cases of our general theorems. In particular, our proofs of Theorems 1 and 2 give a new and very simple demonstration of the main results of [3], while the proof of Theorem 4 gives a very simple demonstration of the result of [2].

As another application of Theorem 4, we also prove a new inequality. Let $N_{t}(a, \epsilon)$ be the number of excursions of Brownian motion at level a of length longer than ϵ that are completed by time t. Let $S_{t}=\sup _{\epsilon} \sup _{a} \epsilon^{1 / 2} N_{t}(a, \epsilon)$. We then show that there exists C_{p} depending on $p \in(0, \infty)$ such that
(1.3) $E S_{T}^{\rho} \leqslant C_{\rho} E T^{p / 2}$.

Section 2 contains the results on increasing continuous functionals of Brownian motion plus some examples, while Section 3 contains the results on ratios of increasing continuous functionals. To handle upcrossings, we also need to consider discontinuous functionals, and this is done in Section 4.

I would like to thank Marc Yor for suggesting this problem and for his continued interest.

2. Increasing functionals

Suppose (B_{t}, P^{x}, θ_{t}) is canonical Brownian motion. That is, $\Omega=C([0, \infty], \mathbb{R})$, the continuous functions from $[0, \infty)$ to \mathbb{R}, and $B_{t}(\omega)=\omega(t)$, the coordinate map. P^{x} is Wiener measure on Ω with $P^{x}\left(B_{0}=x\right)=1$. When $x=0$, we will usually write just P. Denote the natural filtration by F_{t}. Finally $\theta_{t}: \Omega \rightarrow \Omega$ are the translation operators defined by $\left(\theta_{t}(\omega)\right)(s)=\omega(s+t)$.

Suppose Φ is increasing, continuous, $\Phi(0)=0$, and of moderate growth:
(2.1) $\sup _{\lambda>0} \frac{\Phi(a \lambda)}{\Phi(\lambda)} \leqslant a^{p}$ for all $a>2$, for some $p \in(0, \infty)$.

The functions $x^{p}, p \in(0, \infty)$ obviously satisfy these hypotheses.

Suppose F_{t} is a continuous adapted nondecreasing functional of ω satisfying
(2.2) (i) (Uniform scaling near ∞) $\sup _{x, \lambda} p^{x}\left(F_{\lambda}^{2}>b \lambda\right) \rightarrow 0$ as $b \rightarrow \infty$;
(ii) (Subadditivity) There exists a constant K_{1} such that for all s, t,

$$
F_{t}-F_{s} \leqslant K_{1} F_{t-s}^{0} \theta_{s .}
$$

Suppose G_{t} is a nondecreasing adapted functional of watisfying
(2.3) (i) (Uniform scaling near 0$) \sup _{x, \lambda} P^{x}\left(G_{\lambda} 2<b \lambda\right) \rightarrow 0$ as $b \rightarrow 0$;
(ii) There exists a constant K_{2} such that for all s, t,

$$
G_{t-s} \cdot \theta_{s} \leqslant K_{2} G_{t}
$$

Note we do not require G to be continuous. A consequence of (2.3) (i) is that $G_{t}>0$, a.s. for $t>0$.

Our first two results are the following:

Theorem 1. Suppose F satisfies (2.2). There exists a constant C_{Φ} such that if T is any stopping time, then

$$
E \Phi\left(F_{T}\right) \leqslant C_{\Phi} E \Phi\left(T^{1 / 2}\right)
$$

Theorem 2. Suppose G satisfies (2.3). There exists a constant C_{Φ} such that if T is any stopping time, then

$$
E \Phi\left(T^{1 / 2}\right) \leqslant C_{\Phi} E \Phi\left(G_{T}\right)
$$

Before proving Theorems 1 and 2, we give some examples. The first
example is $M_{t}^{*}=\sup _{s<t}\left|B_{s}-B_{o}\right|$. The P^{x} distribution of M_{t}^{*} does not depend on x, and by scaling, we get (2.2) (i) and (2.3) (i). The subadditivity (2.2) (ii) is just the triangle inequality. Since $M_{t-s}^{*}{ }^{\circ} \theta_{s}=\sup _{s \leqslant r \leqslant t}\left|B_{r}-B_{s}\right| \leqslant 2 M_{t}^{*}$, we have (2.3) (ii). Thus M^{\star} satisfies both (2.2) and (2.3), and observing that $P\left(B_{0}=0\right)=1$, we recover from Theorems 1 and 2 the well-known Burkholder-Davis-Gundy inequalities.

A more interesting example is $L_{t}^{*}=\sup _{x} L(t, x)$. Because of the supremum in x, the P^{x} distribution of L_{t}^{*} does not depend on x. By scaling and the well-known fact that $0<L_{i}^{*}<\infty$, a.s., we get (2.2) (i) and (2.3) (i). Since $L(t, x)$ is an additive functional,
(2.4) $L(t, x)=L(s, x)+L(t-s, x){ }^{\circ} \theta_{s}$.

Taking suprema over x leads to (2.2) (ii). Since by (2.4),

$$
L(t-s, x) \bullet \theta_{s} \leqslant L(t, x)
$$

taking suprema over x again gives (2.3) (ii). Thus L^{*} satisfies both (2.2) and (2.3).

Two other examples satisfying both (2.2) and (2.3) that can be treated similarly are

$$
c_{t}^{B}=\left[\sup _{0 \leqslant r<s \leqslant t} \frac{\left|B_{s}-B_{r}\right|}{|s-r|^{1 / 2-\epsilon}}\right]^{\epsilon / 2}
$$

and

$$
c_{t}^{L}=\left[\sup _{a \neq b} \frac{1 L(t, a)-L(t, b) \mid}{|a-b|^{1 / 2-\epsilon}}\right]^{\frac{2}{1+2 \epsilon}} .
$$

To show C_{t}^{B} is continuous, one needs to use the fact that

$$
\lim \sup _{010,|s-r| \leqslant \delta, r, s \in[0, t]} \frac{\left|B_{s}-B_{r}\right|}{|t-s|^{2 / 2-\epsilon / 2}}=0, \text { a.s.. }
$$

with a similar comment for C_{t}^{L}.

We now prove Theorems 1 and 2.

Proof of Theorem 1. Trivially we may assume $T<\infty$, a.s. Let $\beta>1$, $0<1$, and let $U=\inf \left\{t: F_{t}>\lambda\right\}$. Using the strong Markov property of Brownian motion at U,

$$
\begin{aligned}
P\left(F_{T}>\beta \lambda, T^{1 / 2} \leqslant \delta \lambda\right) \leqslant & P\left(F_{T}-F_{U} \geqslant(\beta-1) \lambda, T \leqslant \delta^{2} \lambda^{2}, U<T\right) \\
\leqslant & P\left(F_{U+\delta^{2} \lambda^{2}}-F_{U} \geqslant(\beta-1) \lambda, U<T\right) \\
\leqslant & P\left(F_{\delta^{2} \lambda^{2}}{ }^{\circ} \theta_{U} \geqslant(\beta-1) \lambda / K_{1}, U<T\right) \\
= & E\left[P \left(F_{\delta^{2} \lambda^{2}}{ }^{\circ} \theta U^{\left.\left.\geqslant(\beta-1) \lambda / K_{1} \mid F_{U}\right): U<T\right]}\right.\right. \\
= & E\left[P^{B} U_{i}\left(F_{\delta^{2} \lambda^{2}} \geqslant(\beta-1) \lambda / K_{1}\right) ; U<T\right] \\
\leqslant & \sup _{x} P^{x}\left(F_{\delta^{2} \lambda^{2}} \geqslant(\beta-1) \lambda / K_{1}\right) P(U<T) \\
& \leqslant \sup _{x, \lambda} P^{x}\left(F_{\lambda^{2}}>\frac{\beta-1}{2 K_{1} \delta} \lambda\right) P\left(F_{T}>\lambda\right) .
\end{aligned}
$$

By taking 0 sufficiently small, using (2.2) (i), and appealing to Lemma 7.1 of [5], the proof is complete.

Proof of Theorem 2. Suppose $\beta>1, \delta<1$. Using the Markov property at the fixed time λ^{2}, we have

$$
\begin{aligned}
& P\left(T^{1 / 2}>\beta \lambda, G_{T} \leqslant \delta \lambda\right) \leqslant P\left(T>\beta^{2} \lambda^{2}, G_{T-\lambda}{ }^{\bullet} \theta_{\lambda} \text { 2 } \leqslant K_{2} \delta \lambda\right) \\
& \left.\leqslant P(T) \lambda^{2}, G_{\beta}^{2} \lambda^{2}-\lambda^{2}{ }^{\bullet} \theta_{\lambda} \leqslant K_{2} \delta \lambda\right) \\
& \left.=E\left[P\left(G_{\left(\beta^{2}-1\right) \lambda^{2}}{ }^{\bullet} \theta_{\lambda} \leqslant K_{2} \delta \lambda \mid F_{\lambda}\right) ; T\right\rangle \lambda^{2}\right] \\
& \left.\left.=E\left[P^{B} \lambda^{2}\left(\beta^{2}-1\right) \lambda^{2} \leqslant K_{2} \delta \lambda\right) ; T\right\rangle \lambda^{2}\right] \\
& \leqslant \sup _{x, \lambda} P^{x}\left(G_{\left(\beta^{2}-1\right) \lambda^{2}}<2 K_{2} \delta \lambda\right) P\left(T^{1 / 2}>\lambda\right) .
\end{aligned}
$$

Again, take 0 sufficiently small and use (2.3)(i) and [5, Lemma 7.1] to complete the proof. \quad a
3. Ratios of functionals

Our result here is

Theorem 3 Suppose $\alpha>0$. Suppose F satisfies (2.2), G satisfies (2.3), and moreover G is a continuous functional of ω. Then there exists C_{Φ} such that if T is any strictly positive stopping time,

$$
E \Phi\left[\frac{F_{T}^{\alpha+1}}{G_{T}^{\alpha}}\right] \leqslant C_{\Phi} E \Phi\left(G_{T}\right)
$$

We make the obvious remark that if G_{t} satisfies (2.2) as well as (2.3), we can replace G_{T} on the right side of the above equation by $T^{1 / 2}$.

Proof. We start with

$$
\begin{aligned}
P\left[\frac{F_{T}^{\alpha+1}}{G_{T}^{\alpha}}>\beta \lambda, G_{T} \leqslant \delta \lambda\right] & =\sum_{n=0}^{\infty} P\left(F_{T}^{\alpha+1}>\beta \lambda G_{T}^{\alpha}, \delta 2^{-(n+1)} \lambda<G_{T} \leqslant 82^{-n} \lambda\right) \\
& \leqslant \sum_{n=0}^{\infty} p_{n^{\prime}}
\end{aligned}
$$

where

$$
\begin{aligned}
P_{n} & =P\left(F_{T}>\beta^{\prime} \zeta 2^{-n \gamma} \lambda, G_{T} \leqslant 02^{-n} \lambda\right) \\
\gamma & =\alpha(\alpha+1), \\
\beta^{\prime} & =\beta^{\nu(\alpha+1)}, \\
\text { and } \zeta & =\delta^{y_{2}-\gamma} .
\end{aligned}
$$

Let

$$
\begin{align*}
U_{n} & =\inf \left\{t: F_{t}>2^{-n \gamma}\{\lambda\}\right. \tag{3.1}\\
v_{n} & =\inf \left\{t: G_{t}>2 K_{2} \delta 2^{-n} \lambda\right\} \\
\text { and } w_{n} & =U_{n}+v_{n} \cdot \theta_{U_{n}}=\inf \left\{t>U_{n}: G_{t-U_{n}} \bullet \theta_{U_{n}}>2 K_{2} \delta 2^{-n} \lambda\right\}
\end{align*}
$$

Observe that by (2.3) (ii) we have $W_{n} \geqslant T$ on the set $\left(U_{n} \leqslant T, G_{T} \leqslant 0^{-n} \lambda\right)$.

Then by the strong Markov property at U_{n},

$$
\begin{align*}
\rho_{n} & \leqslant P\left(F_{T}-F_{U_{n}} \geqslant\left(\beta^{\prime-1}\right)\left(2^{-n \gamma} \lambda, U_{n}<T, G_{T} \leqslant \delta 2^{-n} \lambda\right)\right. \tag{3.2}\\
& \leqslant P\left(F_{W_{n}}-F_{U_{n}} \geqslant\left(\beta^{\left.\prime-1) \zeta 2^{-n \gamma} \lambda, U_{n}<T\right)}\right.\right. \\
& \leqslant P\left(F_{V_{n}} \cdot \theta_{U_{n}} \geqslant K_{1}^{-1}\left(\beta^{\prime}-1\right) \zeta 2^{-n \gamma} \lambda, U_{n}<T\right) \\
& =E\left[P^{B} U_{n}\left(F_{V_{n}} \geqslant K_{1}^{-1}\left(\beta^{\prime}-1\right) \zeta 2^{-n \gamma} \lambda\right): U_{n}<T\right]
\end{align*}
$$

For any x, any $r>0$,

$$
\begin{equation*}
P^{x}\left(F_{V_{n}} \geqslant K_{1}^{-1}\left(\beta^{\prime-1}\right) \zeta 2^{-n \gamma} \lambda\right) \leqslant c E^{x} F_{V_{n}}^{r}{ }^{r n \gamma} \lambda^{-r} \tag{3.3}
\end{equation*}
$$

where here and in the remainder of the proof c denotes a constant whose value is unimportant and may change from place to place and which depends on β, α, δ, and r, but not λ or n. Using Theorems 1 and 2 with P replaced by P^{x}, the right side of (3.3) is

$$
\leqslant c E^{x} V_{n}^{r / 2} 2^{r n \gamma_{\lambda}}{ }^{-r} \leqslant c E^{x} G_{V_{r}}^{r} 2^{r n \gamma_{\lambda}}-
$$

Since $G_{V_{r}} \leqslant 2 K_{2} \delta 2^{-n} \lambda$, we then have

$$
\begin{aligned}
p_{r} & \leqslant c 2^{r n(\gamma-1)} P\left(U_{n}<T\right) \\
& \leqslant c 2^{r n(\gamma-1)} P\left(F_{T}>\zeta 2^{-n \gamma} \lambda\right) .
\end{aligned}
$$

Hence

$$
\begin{align*}
P\left[\frac{F_{T}^{\alpha+1}}{\beta G_{T} \alpha^{\alpha}}>\lambda\right] & \leqslant P\left[\frac{F_{T}^{\alpha+1}}{G_{T} \alpha}>\beta \lambda, G_{T} \leqslant \delta \lambda\right]+P\left(G_{T}>\delta \lambda\right) \tag{3.4}\\
& \leqslant c \sum_{n=0}^{\infty} 2^{r n(\gamma-1)_{P}}\left[\frac{2^{n \gamma} F_{T}}{\sigma}>\lambda\right]+P\left[\frac{G_{T}}{\delta}>\lambda\right]
\end{align*}
$$

We integrate (3.4) against $d \Phi(\lambda)$ and use integration by parts to get

$$
\begin{aligned}
E \Phi\left[\frac{F_{T}^{\alpha+1}}{\beta G_{T}}\right] & \leqslant c \sum_{n=0}^{\infty} 2^{r n(\gamma-1)} E \Phi\left[\frac{2^{n \gamma} F_{T}}{\zeta}\right]+E \Phi\left[\frac{G_{T}}{\delta}\right] \\
& \leqslant c \sum_{n=0}^{\infty} 2^{\left.r n(\gamma-1)+n p \gamma_{\zeta}-p_{E \Phi(} F_{T}\right)+\delta^{-p} E \Phi\left(G_{T}\right)} .
\end{aligned}
$$

Since $\gamma-1<0$, the infinite series will be summable provided we choose r larger than $p \gamma /(1-\gamma)$. Another application of Theorems 1 and 2 to handle $E \Phi\left(F_{T}\right)$ completes the proof. \quad a

4. Discontinuous functionals

To handle the results on upcrossings of [2], we need to consider discontinuous functionals.

Suppose H_{t} is a nondecreasing adapted functional of ω satisfying
(4.1) (i) (Uniform scaling near ∞) $\sup _{x, \lambda} P^{x}\left(H_{\lambda}{ }^{2}>b \lambda\right) \rightarrow 0$ as $b \rightarrow \infty$.
(ii) There exists a continuous adapted nondecreasing functional F satisfying (2.2) such that
(a) (Bounded jumps) $\sup _{s \leqslant t}\left|\Delta H_{s}\right| \leqslant F_{t}$ for all s.t;
(b) (Partial subadditivity) $H_{t} H_{s} \leqslant K_{3} H_{t-s} \bullet \theta_{s}+F_{t}$ for all s,t.

For such H we have

Theorem 4 Suppose H satisfies (4.1). There exists a constant C_{Φ} such that if T is any stopping time, then

$$
E \Phi\left(H_{T}\right) \leqslant C_{\Phi} E \Phi\left(T^{1 / 2}\right)
$$

and

Theorem 5 Suppose H satisfies (4.1). Suppose G satisfies (2.3) and moreover is a continuous functional of ω. Suppose $\alpha>0$. Then there exists a constant C_{Φ} such that for any strictly positive stopping time T

$$
E \Phi\left[\frac{H_{T}^{\alpha+1}}{G_{T}^{\alpha}}\right] \leqslant C_{\Phi} E \Phi\left(G_{T}\right)
$$

Before proceeding to the proofs, let us look at some examples. Pirst consider $V_{t}=\underset{a, \epsilon}{\sup \varepsilon} U_{t}(a, a+\epsilon)$, where $U_{t}(a, a+\epsilon)$ is the number of
upcrossings of the interval $[a, a+\epsilon]$ by time t. The P^{x} distribution of V_{t} is independent of x because of the supremum in a, and the scaling in λ follows easily from that of the Brownian motion. Provided we know $P\left(V_{1}<\infty\right)=1$ (which we will show shortly), we then have (4.1)(i).

Let $F_{t}=2 M_{t}^{*}$ and observe that we cannot have an upcrossing before time t of size larger than $2 M_{t}^{*}$. This gives (4.1)(iia). It is not hard to see that

$$
U_{t}(a, a+\epsilon) \leqslant U_{s}(a, a+\epsilon)+U_{t-s}(a, a+\epsilon) \cdot \theta_{s}+1_{\left(2 M_{t}^{*}>\epsilon\right)}
$$

Multiplying by ϵ and taking suprema over a and ϵ gives (4.1)(iib).
It remains to show $P\left(V_{1}<\infty\right)=1$. Let $\left.T_{r}=\inf \left\{t: L_{t}^{*}\right\rangle r\right\}$ and let $T_{r}(x)=\inf \{t: L(t, x)>r\}$. Let $\epsilon_{n}=2^{-n}$. Fix M and let

$$
W_{n}=\sup \left\{\epsilon_{n} U_{T_{r}}\left(a, a+\epsilon_{n}\right):|a| \leqslant M, a / \epsilon_{n} \text { an integer }\right\}
$$

Since $L\left(T_{r}, x\right) \leqslant r$, then $T_{r}(x) \geqslant T_{r}$, and so $U_{T_{r}}\left(a, a+\epsilon_{n}\right) \leqslant U_{T_{r}(a)}\left(a, a+\epsilon_{n}\right)$. If N is the number of excursions at level a whose maxima exceed $a+\epsilon_{n}$ by time $T_{r}(a)$, then $U_{T_{r}(a)}\left(a, a+\epsilon_{n}\right) \leqslant N+1$. By Ito's theory of excursions, N is a Poisson random variable, and the parameter is r/2 ϵ_{n} (see [8]). By standard estimates for the tail of the Poisson distribution, if $\beta>3 r$,

$$
P\left(N>B / \epsilon_{n}\right) \leqslant \exp \left(-c r / \epsilon_{n}\right)
$$

where c is a constant whose value is unimportant. From this follows

$$
P\left(W_{n}>\beta+1\right) \leqslant 2 M \epsilon_{n}^{-1} \exp \left(-c r / \epsilon_{n}\right)
$$

This is summable in n, and by Borel-Cantelli, $P\left(W_{n}>\beta+1\right.$ i.o.) = o. Each $w_{n}<\infty$, a.s. by the continuity of Brownian paths, and so we conclude that $W=\sup _{n} W_{n}<\infty$, a.s.

Given a and ϵ, we can f ind n and x such that $a \leqslant \because \leqslant x+\epsilon_{n} \leqslant a+\epsilon, x$ is
an integer multiple of ϵ_{n}, and $\epsilon / 8 \leqslant \epsilon_{n} \leqslant \epsilon$. So

$$
\epsilon U_{\tau_{r}}(a, a+\epsilon) \leqslant 8 \epsilon_{n} U_{\tau_{r}}\left(x, x+\epsilon_{n}\right) .
$$

Hence

$$
\sup _{|a| \leqslant M / 2, \epsilon} \epsilon U_{T_{r}}(a, a+\epsilon) \leqslant 8 W<\infty, \text { a.s. }
$$

Finally, M and r are arbitrary; that $V_{1} \leqslant \infty$, a.s. follows easily.

For a second example, consider $S_{t}=\sup _{\epsilon, a} \epsilon^{1 / 2} N_{t}(a, \epsilon)$, where $N_{t}(a, \epsilon)$ is the number of excursions at level a whose length exceeds ϵ and which are completed by time t. Let $F_{t}=t^{1 / 2}$. It is trivial that F satisfies (2.2). It is impossible to have completed an excursion of length longer than ϵ by time t if $\epsilon>t$, and so (4.1)(iia) is immediate. The argument for (4.1)(iib) is similar to the one for $v_{t^{\prime}}$ and by scaling, we will have (4.1)(i) as soon as we know $S_{1}<\infty$, a.s.

Since $N_{t}(a, \epsilon) \leqslant t \in$ for $\epsilon \leqslant t$ and $=0$ for $\epsilon>t$, it suffices to show $\lim _{\epsilon \perp 0} \sup _{a} \epsilon^{1 / 2} N_{t}(a, \epsilon)<\infty$, a.s. But this follows from a result of Perkins [7].

We now prove Theorem 4.

Proof of Theorem 4 Let $\beta>3$. Let $U=\inf \left\{t: H_{t}>\lambda\right\}$. By (4.1)(iia), $H_{U} \leqslant \lambda+F_{U} . \quad$ Then

$$
\begin{aligned}
& P\left(H_{T}>\beta \lambda, T^{1 / 2} \leqslant \delta \lambda\right) \leqslant P\left(H_{T}>\beta \lambda, T \leqslant \delta^{2} \lambda^{2}, F_{T} \leqslant \lambda\right)+P\left(F_{T}>\lambda\right) \\
& \left.\left.\leqslant P\left(H_{T}{ }^{-H}\right\rangle(\beta-2) \lambda, U<T, F_{T} \leqslant \lambda, T \leqslant \delta^{2} \lambda^{2}\right)+P\left(F_{T}\right\rangle \lambda\right) \\
& \left\langle P\left(H_{0^{2} \lambda^{2}}{ }^{\bullet} \theta_{U}\right\rangle(\beta-3) \lambda / K_{3^{\prime}} U\langle T)+P\left(F_{T}\right\rangle \lambda\right) \\
& \left.=E\left[P^{B} U_{\left(H{ }_{\delta}^{2} \lambda^{2}\right.}>(\beta-3) \lambda / K_{3}\right): U\langle T]+P\left(F_{T}\right\rangle \lambda\right) \\
& \left.\left\langle\epsilon(\delta, \beta) P\left(H_{T}\right\rangle \lambda\right)+P\left(F_{T}\right\rangle \lambda\right) .
\end{aligned}
$$

where $\epsilon(0, \beta)=\sup _{x, \lambda} P^{x}\left(H{ }_{0}^{2} \lambda^{2}>(\beta-3) \lambda / K_{3}\right)$.

Next,

$$
\begin{align*}
P\left[\frac{H_{T}}{\beta}>\lambda\right] & \leqslant P\left(H_{T}>\beta \lambda, T^{1 / 2}\langle\delta \lambda)+P\left(T^{1 / 2}>\delta \lambda\right)\right. \tag{4.2}\\
& \leqslant \epsilon(\delta, \beta) P\left(H_{T}>\lambda\right)+P\left(F_{T}>\lambda\right)+P\left[\frac{T^{1 / 2}}{\delta}>\lambda\right]
\end{align*}
$$

Suppose for the moment that H_{T} is bounded. Integrating from 0 to ∞ with respect to $d \Phi(\lambda)$,

$$
E \Phi\left[\frac{H_{T}}{\beta}\right] \leqslant \epsilon(0, \beta) E \Phi\left(H_{T}\right)+E \Phi\left(F_{T}\right)+E \Phi\left[\frac{T^{1 / 2}}{8}\right]
$$

and so

$$
\begin{equation*}
E \Phi\left(H_{T}\right) \leqslant \beta^{p} E \Phi\left[\frac{H_{T}}{\beta}\right] \leqslant \beta^{p} \epsilon(\delta, \beta) E \Phi\left(H_{T}\right)+\beta^{p} E \Phi\left(F_{T}\right)+\beta^{p} \delta^{-p} E \Phi\left(T^{1 / 2}\right) \tag{4.3}
\end{equation*}
$$

Choose δ sufficiently small so that $\beta^{p} \in(\delta, \beta)<1 / 2$. Subtracting $\beta^{p} \epsilon(\theta, \beta) E \Phi\left(H_{T}\right)$ from both sides of (4.3), multiplying by $\left[1-\beta^{p} \epsilon(\delta, \beta)\right]^{-1}$, and using Theorem l completes the proof when H_{T} is bounded.

If H_{T} is not bounded, note that (4.2) holding for H_{T} implies (4.2) holds for $H_{T} \wedge N$, for all $N>0$. Arguing as above, we get

$$
E \Phi\left(H_{T} \wedge N\right) \leqslant C_{\Phi} E \Phi\left(T^{1 / 2}\right)
$$

C_{Φ} indepedent of N. Now let $N \rightarrow \infty$.
Since the proof of Theorem 5 is very similar to that of Theorem 3, we omit the proof.

Note: B. Davis (in this volume) has independently discovered a simple proof of the main result of $[3]$, and also an extension to the case of stable processes.

References

1. M.T. Barlow. Inequalities for upcrossings of semimartingales via Skorokhod embedding. Z. Wahrscheinlichkeitstheorie 64 (1983) 457-473.
2. M.T. Barlow. A maximal inequality for upcrossings of a continuous martingale. Z. Wahrscheinlichkeitstheorie 67 (1984) 169-173.
3. M.T. Barlow and M. Yor. (Semi-) Martingale inequalities and local times. Z. Wahrscheinlichkeitstheorie 55 (1981) 237-281.
4. M.T. Barlow and M. Yor. (Semi-) Martingale inequalities via the Garsia-Rodemich-Rumsey lemma and applications to local times. J. Funct. Anal. 49 (1982) 198-229.
5. D.L. Burkholder. Distribution function inequalities for martingales. Ann. Probability 1 (1973) 19-42.
6. R. Fefferman, R.F. Gundy, M. Silverstein, E. Stein. Inequalities for ratios of functionals of harmonic functions. Proc. Nat. Acad. Sci. USA 79 (1982) 7958-7960.
7. E. Perkins. A global intrinsic characterization of Brownian local times. Ann. Probability 9 (1981) 800-817.
8. L.C.G. Rogers. Williams' characterisation of the Brownian excursion law: proof and applications. Séminaire de probabilités XV, LNM 850, Springer, Berlin, 1981.
9. M. Yor. Application de la rélation de domination à certains renforcements des inégalités de martingales. Séminaire de probabilités XVI, LNM 920, Springer, Berlin, 1982.
