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Lp INEQUALITIES FOR FUNCTIONALS OF BROWNIAN MOTION

Richard Bass

1. Introduction

Let Mt be a continuous martingale. Let M>t be the quadratic varia-

tion process, let Mt* - sup Ms ( , , let L(t,x) be local t ime at x, and let

sc 
~

Lt* - sup L(t,x). Bar low and Yor [ 3 , 4 ] showed that in add it ion to the
x

well-known equivalence in L P norm between Mt* and M>~, one also had

equivalence in L P norm between LT* and M>~. That is, if p e (o,«),

there exist constants cp and Cp depending only on p such that if T is

any stopping time,

(1.1) c P  EL*pT  C P 

Many other functionals of M have been found to be dominated in

L norm by M>1/2T. These include various ratios of M* and M>Jtz [4,6,9]; ;

modul i of cont inu ity of M and L(t,x) [ 4 ] ; and number of upcrossings

[ 1, 2 ] . For example, if Ut (e,a+E ) is the number of upcrossings of the

interval [a,a+E] by M up to time t, and Vt - sup sup~Ut (a,a+E ), , the main
- 

e a

result of [2] is that

(1.2) EVpT  C P 

Cp a constant depending only on p.

The main purpose of this paper is to give some quite general and

easily verifiable conditions for increasing functionals and ratios of

increasing functionals of Brownian motion to dominate or be dominated 
in

L norm by We state our results for Brownian motion, but these
P

translate immediately via a time change argument to results for arbi-

trary continuous martingales. The results on L*, ratios of M* and

M>~, moduli of continuity, and upcrossings mentioned above then become
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special cases of our general theorems. In particular, our proofs of

Theorems 1 and 2 give a new and very simple demonstration of the main

results of [3], while the proof of Theorem 4 gives a very simple demons-

tration of the result of [2].

As another application of Theorem 4, we also prove a new inequal-

ity. Let Nr(e,E) be the number of excursions of Brownian motion at

level a of length longer than E that are completed by time t. Let

St . supsup We then show that there exists C depending on
E a 

t P

p e (0,~) such that

(1.3) Cp E 

Section 2 contains the results on increasing continuous functionals

of Brownian motion plus some examples, while Section 3 contains the

results on ratios of increasing continuous functionals. To handle

upcrossings, we also need to consider discontinuous functionals, and

this is done in Section 4.

I would like to thank Marc Yor for suggesting this problem and for

his continued interest.

2. Increasing functionals

Suppose is canonical Brownian motion. That is,

C( [o,~], the continuous f unctions f rom [o,~) to ~, and

the coordinate map. P~ is Wiener measure on n with

P~ (B~-~f) - 1. When ~f - o, we will usually write just P. Denote the

natural filtration by Ft. Finally ~ : s n -~ n are the translation opera-

tors def ined by ( 9E( ~r ) )( s ) _ 
’

Suppose ~ is increasing, continuous, ~(0) - o, and of moderate

growth:
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(2.1)  ap for all a > 2. for some p e (o.").( 2 .1 ) sup 03A6(a03BB) 03A6(03BB)  ap for all s > 2 , ’ for some p E (0,~) .

The functions xp, p e (o.") obviously satisfy these hypotheses.

Suppose Ft is a continuous adapted nondecreasing functional of w

satisfying

(2.2) ( i) (Uniform scaling near ") sup px (F 2 > ba ) ~ o as b -* ";

x,X X

(ii) (Subadditivity) There exists a constant K1 such that for all

s, t,

Ft - Fs  K1 Ft-s° 03B8s.

Suppose Gr is a nondecreasing adapted functional of w satisfying

(2.3) (i) (Uniform scaling near o) sup Px (G 2 
 b03BB) ~ o o;

X, X

( i i ) There exists a constant KZ such that for all s, t,

Gt-s ° 8S  KZ Gt . °

Note we do not require G to be continuous. A consequence of (2.3) (i)

is that Gt > o, a. s . f or t > o.

Our first two results are the following:

Theorem 1. Suppose F satisf ies (2.2) . . There exists a constant C03A6 such

stopping 

E03A6( FT) C03A6 E03A6(T1/2).

Theorem 2. Suppose G satisfies (2.3). . There exists a constant C03A6

such that if T JL&#x26; Anx stopping time, then

E~(T~)  C~ 

Before proving Theorems 1 and 2, we give some examples. The first
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example is sup Bo’. distribution of Mf does not depend

on x, and by scaling, we get (2.2) (i) and (2.3) (i). The subadditivity

(2.2) (ii) is just the triangle inequality. Since

M*t-s ° 8s = sup Bs t  2Mt, we have (2.3) ( ii) . Thus M* satisf ies

both (2.2) and (2.3), and observing that - 1, we recover from

Theorems 1 and 2 the well-known Burkholder-Davis-Gundy inequalities.

A more interesting example sup L(t,x). Because of the
x

supremum in x, the Px distribution of L*t does not depend on x. By scal-

ing and the well-known f act that o  Li  oo, a.s., we get (2.2) ( i ) and

(2.3) (i). Since L(t,x) is an additive functional,

(2.4) L(t,x) - L(s,x) + L(r-s,x) ° 

es.

Taking suprema over x leads to (2.2) (ii). Since by (2.4),

° 

6s  L(t,x),

taking suprema over x again gives (2.3) (ii). Thus L* satisfies both

(2.2) and (2.3).

Two other examples satisfying both (2.2) and (2.3) that can be

tr eated similarly are

and

To show C~ is continuous, one needs to use the fact that
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with a similar comment for C..
We now prove Theorems 1 and 2. .

proof of Theorem 1. Trivially we may assume T  "~ a.s. 1,

8  1, and let U - inf (ts Ft > a ) . Using the strong Markov property of

Brownian motion at U,

By taking 0 sufficiently small, using (2.2) (i), and appealing to Lemma

7.1 of [5], the proof is complete. 0

Proof of heo em 2. Suppose ~ > 1, 8  ~. Using the Markov property at

the fixed time a2, we have

Again, take 8 sufficiently small and use (2.3)(i) and [5, Lemma 7.1] to

complete the proof. o
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3. Ratios of functionals

Our result here is

~Theorem ~ Suppose a > o. Suppose F satisfies (2.2), G satisfies

(2.3), moreover G continuous functional cu. Then there

exists C03A6 such that If T .is anx strictly positive stopping time,

We make the obvious remark that if Gt satisf ies (2.2) as well as (2.3),

we can replace GT on the right side of the above equation by T~.

Proof. We start with

where

> ~’~2 ny~,GT  82 n~ ),
y = al( a+1 ),

~ s ~1/( a+1 ) ~ ,
and ( - 8y2 y.

Let

(3.1) inf (rs Fr > 

inf (ts Gr > 2K202 n J~ ~ ~
° 9U = inf (r > Un s 

° 

6U > 2K203B42-n03BB}.

Observe that by ( 2 . 3 ) ( i i ) we have T on the set   03B42-n03BB).

Then by the strong Markov property at U~, ,
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~~ ’~~ ~n ~ ~~’ ~~~~ ~~" ~n ~ ~ ~~ ~’ 

 PFw -Fu > s’-1>2  T>
n n

° 

~U~ ~ ~1~~~’ ~~’~ ~~"~n 
~ ~~

~U
" ~~~ 

~ 
~ ~ ~~

For any x, any , > o,

~~ ’ ~~ ’ ~ ~1~~~’ ~~~~ ~~’ ~ ~ "

where here and in the remainder of the proof c denotes a constant whose

value is unimportant and may change from place to place and which

depends on s, a, 6, and ,, but not 03BB or n. Using Theorems I and 2 with

P r eplaced by P~ , the r ight s ide of ( 3 . 3 ) is

~ 
’ 

~ ’°

Since G~  2K~62 ~X , we then have
,

p,  c2’~~~ ~~P( U~  T)

 2~~’x >.

Hence

(3.4) P [F03B1+1T 03B2GT03B1 > 03BB ] P [ F03B1+1T GT03B1 > 03B203BB,GT 03B403BB ] + P(GT > 03B403BB)

 c  2rn(03B3-1)P [ 2n03B3FT 03B6 > 03BB ] + P [ GT 03B4 > 03BB ].
n*o

We integrate (3 .4) against and use integration by parts to get

E03A6 [ F03B1+1T 03B2GT ]  c 2rn(03B3-1) E03A6 [ 2n03B3FT 03B6 ] + E03A6 [ GT 03B4 ]
 c  2rn( 03B3-1)+np03B3 03B6-pE03A6(FT) + 03B4 -pE03A6( GT).

n.o



213

Since y-1  o, the infinite series will be summable provided we choose r

larger than Another application of Theorems 1 and 2 to handle

completes the proof. o

4. Discontinuous functionals

To handle the results on upcrossings of [2], we need to consider

discontinuous functionals.

Suppose Ht is a nondecreasing adapted functional of w satisfying

(4.1) ( i) (Uniform scaling near co) sup P~(H Z > ba ) ~ o as b - -.
x,X X

(ii)There exists a continuous ad_ a,pted nondecreasina functional F

satisfying (2.2) such that

( a) (Bounded jumps) sup (  Ft for all s, f;

(b) (Partial subadditivity) Ht-Hs  K3Ht-s 
° 

9s + Ft or s, t.

For such H we have

Theorem 4 Su ose H sa is ’es (4.1). e e exists a constant C03A6 such

that .if T la anv stopping then

and

Theorem 5 Suppooe H satisf ies (4.1). Suppose G satisfies (2.3 ) and

moreover is a continuous functional of 03C9. Suppos_e a > ther_e

exists A constant C03A6 such that for any strictly positive stopping time T

E03A6 [ H03B1+1T G03B1T ]  C03A6E03A6(GT).
Before proceeding to the proofs, let us look at some examples.

First consider Vt - where is the number of
a,E



214

upcrossings of the interval by time t. The Px distribution of Vr
is independent of x because of the supremum in a, and the scaling in a

follows easily from that of the Brownian motion. Provided we know

P(V1  ~) = 1 (which we will show shortly), , we then have (4.1)(i). .

It

Let 2Mr and observe that we cannot have an upcross ing before
It

time t of size larger than This gives (4.1) ( iia) . . It is not hard

to see that

+ ° 

9$ + 1 * 
.

Multiplying by E and taking suprema over a and E gives (4.1)(iib).

*

It remains to show  ~) _ ~. Let rr 
= inf ~tt Lr > r~ and let

r(x ) = inf (rs L(t,x) > r~ . Let 2 ~ . . F ix M and let

Wn - sup {~nUTr ( a, a+ En ) s M, a/En an integer).

Since L(rr,x)  r, then Tr(x) ? rr, and so UT Ur (a)(a,a+~n). If N
, ,

is the number of excursions at level a whose maxima exceed by time

Tr(a ), , then UT N + 1. . By Ito’s theory of excursions, , N is a

,

Poisson random variable, and the parameter is (see [8]). . By stan-

dard estimates for the tail of the Poisson distribution, if ~B > 3r,

P( N > exp( -cr/ En ),

where c is a constant whose value is unimportant. From this follows

. P( Wn > ~B+1 ) 
1 

.

This is summable in n, , and by Borel-Cantelli, , P( Wn > i.o. ) = o. . Each

Wn  ~, a.s. , by the continuity of Brownian paths,and so . we conclude that

W - eup W  ~, a. s . .

n 

Given a and E, we can f ind n and x such that a  ;; ~ a + E, , x is
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an integer multiple of E~, and E/8  e  E. So

~Ur (a,a+~) 8~nUr(x,x+~n).

Hence

sup eU (a,a+e)  8W  co, a.s.

r

Finally, M and r are arbitrary; that V1  co, a.s. . follows easily.

For a second example, , consider sup , where is
E,8

the number of excursions at level a whose length exceeds E and which are

completed by time t. Let Ft - It is trivial that F satisf ies (2.2). .

It is impossible to have completed an excursion of length longer than E

by time t if E > r, and so (4.1)(iia) is immediate. The argument for

(4.1)(iib) is similar to the one for V~, and by scaling, we will have

(4.1)(i) as soon as we know S1  ~, a.s. .

Since  t/E f or E  t and - o f or E > t, it suf f ices to show

lim sup  co, a.s. But this f ollows f rom a result of Perkins
eio a

[7].

We now prove Theorem 4.

Proof of Theorem 4 Let 03B2 > 3. . Let U - inf (tl Ht) 03BB}. By (4.l)(iia),

HU  a + F U . . Then

>  8~)  >   ~) + > x >

 P(HT-HU > (~-2)~~U  T,FT   82~2) + P(FT > l~)

 ~~ 2 2 
" 

~0 ~ (~-3)~~~  7-) + > X)

- EIP BU (H 2 2 ) (03B2-3)03BB/K3); U  T] + > 03BB)

 P(HT > 03BB) + P(FT > 03BB),

where E( 8,,~ ) = sup 2 2 
> ( ~-3 ) ~/K3 ) .

x,X 
~
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Next,

( 4 . 2 ) P ( HT > 1~ ]  >  + > 8~)

 e( 8,,~ ) > ~ ) + > ~ ) + P l ( ~~ ~ ~ ~"
Suppose for the moment that HT is bounded. Integrating from 0 to GO

with respect to d~(a),

B~!  Eb ( ~~) +E~F ( T) + E~ i 
and so

( 4 . 3 ~  ~~’° E~ ~ ~  + + 

Choose 0 sufficiently small so that  ~h. Subtracting

from both sides of (4.3), , multiplying by 

and using Theorem 1 completes the proof when HT is bounded.

I f HT is not bounded, note that (4.2) hold ing f or HT implies (4.2)

holds for HT A N, for all N > o. Arguing as above, we get

 T ~ ),

C~ indepedent of N. Now let N ~ ~. 0

Since the proof of Theorem 5 is very similar to that of Theorem 3,

’ 

we omit the proof.

Note: B. Davis (in this volume) has independently discovered a simple proof

of the main result of C3~, and also an extension to the case of stable pro-
cesses.
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