SÉminaire de probabilités (Strasbourg)

Daniel W. Stroock

Homogeneous chaos revisited

Séminaire de probabilités (Strasbourg), tome 21 (1987), p. 1-7
http://www.numdam.org/item?id=SPS_1987__21__1_0
© Springer-Verlag, Berlin Heidelberg New York, 1987, tous droits réservés.
L'accès aux archives du séminaire de probabilités (Strasbourg) (http://portail. mathdoc.fr/SemProba/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

Article numérisé dans le cadre du programme

Let (θ, H, W) be an abstract Wiener space. That is: θ is a separable real Banach space with norm $\|\cdot\|_{\theta} ; H$ is a separable real Hilbert space with norm $\|\cdot\|_{H} ; H \leq \theta,\|h\|_{\theta} \leq C\|h\|_{H}$ for some $C<\infty$ and all'h $\in H$, and H is $\|\cdot\|_{\theta}$ - dense in θ; and W is the probability measure on ($\theta, \mathscr{B}_{\theta}$) with the property that, for each $\ell \in \theta^{*}, \theta \in \theta \rightarrow$ $\langle\ell, \theta\rangle$ under W is a Gaussian random variable with mean zero and variance $\|\ell\|_{H}^{2} \equiv \sup \left\{\langle\ell, h\rangle^{2}: h \in H\right.$ with $\left.\|h\|_{H}=1\right\}$.
Let $\left\{\ell^{k}: k \in Z^{+}\right\} \subseteq \theta^{*}$ be an orthonormal basis in H; set $\mathscr{A}=\left\{\alpha \in \mathcal{N}^{Z^{+}}:|\alpha|=\sum_{k \in Z^{+}} \alpha_{K}<\infty\right\} ;$ and for $\alpha \in \mathscr{A}$, define

$$
H_{\alpha}(\theta)=\prod_{k \in Z^{+}} H_{\alpha_{k}}\left(\left\langle\ell^{k}, \theta\right\rangle\right), \theta \in \theta,
$$

where

$$
H_{m}(\xi)=(-1)^{m} e^{\xi^{2} / 2} \frac{d^{m}}{d \xi^{m}}\left(e^{-\xi^{2} / 2}\right), \quad m \in N \text { and } \xi \in R^{1}
$$

Then, $\left\{(\alpha!)^{-1 / 2} \mathscr{H}_{\alpha}: \alpha \in \mathscr{A}\right\}$ is an orthonormal basis in $L^{2}(W)$. Moreover, if, for $m \in \mathbb{N}$,

$$
\mathrm{Z}^{(\mathrm{m})} \equiv \overline{\operatorname{span}\left\{\mathcal{H}_{\alpha}:|\alpha|=\mathrm{m}\right\}} \mathrm{L}^{2}(w)
$$

then: $Z^{(m)}$ is independent of the particular choice of the orthonormal basis $\left\{\ell^{k}: k \in Z^{+}\right\} ; Z^{(m)} \perp Z^{(n)}$ for $m \neq n$; and $L^{2}(W)=\underset{m=0}{\infty} Z^{(m)}$. These facts were first proved by N. Wiener [6] and constitute the foundations on which his theory of homogeneous chaos is based.

The purpose of the present article is to explain how, for given $\Phi \in L^{2}(W)$, one can compute the orthogonal projection $\Pi_{Z}(m) \Phi$ of Φ onto $Z^{(m)}$. In order to describe the procedure, it will be necessary to describe the elementary Sobolev theory associated with (θ, H, W).

[^0]To this end, let Y be a separable real Hilbert space and set $\mathscr{P}(Y)=$ $\operatorname{span}\left\{\mathscr{H}_{\alpha} \mathrm{y}: \alpha \in \mathscr{A}\right.$ and $\left.\mathrm{y} \in \mathrm{Y}\right\}$. Then $\mathscr{F}(\mathrm{Y})$ is dense in $L^{2}(\mathbb{W} ; \mathrm{Y})$. Next, for $m \in \mathcal{N}$ and $\Phi \in \mathscr{P}(Y)$, define $\theta \rightarrow D^{m} \Phi(\theta) \in H^{\otimes^{m}} \otimes Y$ by

$$
\begin{aligned}
&\left(D^{m} \Phi(\theta), h^{1} \otimes \ldots \otimes h^{m} \otimes y\right) \\
& H^{\otimes^{m}} \otimes Y \\
&=\left.\frac{\partial^{m}}{\partial t_{1} \cdots \partial t_{m}}\left(\Phi\left(\theta+\sum_{j=1}^{m} t_{j} h^{j}\right), y\right)_{Y}\right|_{t_{1}=\ldots=t_{m}=0}
\end{aligned}
$$

for $h^{1}, \ldots h^{m} \in H$ and $y \in Y$. Then D^{m} maps $\mathscr{P}(Y)$ into $\mathscr{P}\left(H^{\otimes^{m}} \otimes Y\right)$ and $D^{n}=D^{m} \circ D^{n-m}$ for $0 \leq m \leq n$. Associated with the operator D^{m} : $\mathscr{P}(\mathrm{Y}) \rightarrow \mathscr{P}\left(\mathrm{H}^{\otimes^{m}} \otimes \mathrm{Y}\right)$ is its adjoint operator ∂^{m}. Using the Cameron-Martin formula [1], one can easily prove the following lemma.
(1) Lemma: The operator ∂^{m} does not depend on the choice of orthonormal basis $\left\{\ell^{k}: k \in Z^{+}\right\}, \mathscr{P}\left(H^{\otimes^{m}} \otimes Y\right) \subseteq \operatorname{Dom}\left(\partial^{m}\right)$, and $\partial^{m}: \mathscr{P}\left(H^{\otimes^{m}} \otimes Y\right) \rightarrow \mathscr{P}(Y)$. Moreover, if $m \in Z^{+}, K=\left(k_{1}, \ldots, k_{m}\right)$ $\left(Z^{+}\right)^{m}$, and $e^{K}=e^{k_{1}} \otimes \ldots \otimes e^{k_{m}}$, then

$$
\begin{equation*}
\partial^{m} e^{K}=H_{\alpha(K)} \tag{2}
\end{equation*}
$$

where $\alpha(K)$ is the element of A defined by

$$
(\alpha(K))_{k}=\operatorname{card}\left\{1 \leq j \leq m: k_{j}=k\right\}, k \in Z^{+}
$$

In particular, $H^{\otimes^{m}} \subseteq \operatorname{Dom}\left(\partial^{m}\right)$.
Since ∂^{m} is densely defined, it has a well-defined adjoint $\left(\partial^{m}\right)^{*}$. Set $W_{m}^{2}(Y)=\operatorname{Dom}\left(\left(\partial^{M}\right)^{*}\right)$ and use $\|\cdot\|_{W_{m}^{2}}^{2}(Y)$ to denote the associated graph norm on $W_{m}^{2}(Y)$. The following lemma is an easy application of inequalities proved by M and P. Kree [3].
(3) Lemma: $W_{m}^{2}\left(H^{\otimes^{m}} \otimes Y\right) \subseteq \operatorname{Dom}\left(\partial^{m}\right),\left\|\partial^{m} \Psi\right\|_{L}^{2}(W ; Y) \leq C_{m}\|\Psi\|_{W_{m}}^{2}\left(h^{\theta^{m}} \otimes Y\right)$, and $\partial^{m}=\left(\left(\partial^{m}\right)^{*}\right)^{*}$. Moreover, $\mathscr{F}(Y)$ is $\|\cdot\|_{W_{m}^{2}(Y)}$-dense in $W_{m}^{2}(Y)$.

Finally, $W_{m+1}^{2}(Y) \subseteq W_{m}^{2}(Y)$ and $\|\cdot\| W_{W_{m}^{2}(Y)} \leq C_{m}\|\cdot\|_{W_{2}^{m+1}(Y)}$ for allm ≥ 0. Warning: In view of the preceding, the use of D^{m} to denote its own closure $\left(\partial^{m}\right)^{*}$ is only a mild abuse of notation. Because it simplifies the notation, this abuse of notation will be used throughout what follows.

Now set $W_{-m}^{2}(Y)=W_{m}^{2}(Y)^{*}, m \geq 0$, and $W_{\infty}^{2}(Y)=\bigcap_{m=0}^{\infty} W_{m}^{2}(Y) . \quad$ Then, when $W_{\infty}^{2}(Y)$ is given the Fréchet topology determined by $\left\{\|\cdot\| W_{m}^{2}(Y)\right.$: m $\geq 0\},\left(W_{\infty}^{2}(Y)\right)^{*}$ is $W_{-\infty}^{2}(Y) \equiv \bigcup_{m=0}^{\infty} W_{-m}^{2}(Y)$. Moreover, $L^{2}(W ; Y)$ becomes a subspace of $W_{-\infty}^{2}(Y)$ when $\Phi \in L^{2}(\mathbb{W} ; Y)$ is identified with the linear functional $\Psi \in W_{\infty}^{2}(Y) \rightarrow E^{W}\left[(\Phi, \Psi)_{Y}\right]$; and in this way $W_{\infty}^{2}(Y)$ becomes a dense subspace of $W_{-\infty}^{2}(Y)$. Finally, D^{m} has a unique continuous extension as a map from $W_{-\infty}^{2}(Y)$ into $W_{-\infty}^{2}\left(H^{\otimes m} \otimes Y\right)$. In particular, for $T \in W_{-\infty}^{2}\left(R^{1}\right)$, there is a unique $D^{m} T(1) \in H^{\otimes^{m}}$ defined by:

$$
\begin{equation*}
\left(D^{\mathrm{m}} \mathrm{~T}(1), \mathrm{h}\right)_{H^{\otimes}}=\mathrm{T}\left(\partial^{\mathrm{m}} \mathrm{~h}\right), \mathrm{h} \in \mathrm{H}^{\otimes} \tag{4}
\end{equation*}
$$

Note that when $\Phi \in W_{\infty}^{2}\left(R^{1}\right)$,

$$
\begin{equation*}
D^{m} \Phi(1)=E^{W}\left[D^{m} \Phi\right] \tag{5}
\end{equation*}
$$

(6) Theorem: Let $\Phi \in L^{2}(w)$ be given. Then, for each $m \geq 0$:

$$
\begin{equation*}
\pi_{Z}(m) \Phi=\frac{1}{m!} \partial^{m}\left(D^{m} \Phi(1)\right) \tag{7}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
\Phi=\sum_{m=0}^{\infty} \frac{1}{m!} \partial^{m}\left(D^{m} \Phi(1)\right) \tag{8}
\end{equation*}
$$

In particular, when $\Phi \in W_{\infty}^{2}\left(\mathrm{R}^{1}\right)$:

$$
\Pi_{Z}(m) \Phi=\frac{1}{m!} \partial^{m} E^{W}\left[D^{m} \Phi\right]
$$

and

$$
\Phi=\sum_{m=0}^{\infty} \frac{1}{m!} \partial^{m} E^{W}\left[D^{m} \Phi\right]
$$

Proof: Simply observe that, by Lemma (1):

$$
\begin{aligned}
\partial^{\mathrm{m}}\left(D^{\mathrm{m}} \Phi(1)\right) & =\sum_{K \in\left(Z^{+}\right)^{m}} E^{W \prime \prime}\left[\Phi \partial^{m} e^{\mathrm{K}}\right] \partial^{\mathrm{m}} e^{\mathrm{K}} \\
& =\sum_{|\alpha|_{=\mathrm{m}}}\binom{m}{\alpha} E^{W}\left[\Phi H_{\alpha}\right]_{\alpha}=m!\Pi_{Z(m)}{ }^{\Phi}
\end{aligned}
$$

The classic abstract Wiener space is the Wiener space associated with a Brownian motion on R^{1}. Namely, define $H_{1}\left(R^{1}\right)$ and $\theta\left(R^{1}\right)$ to be, respectively, the completion of $C_{o}^{\infty}\left((0, \infty) ; R^{1}\right)$ with respect to

$$
\|\psi\|_{H_{1}}\left(R^{1}\right) \equiv\left(\int_{0}^{\infty}\left|\psi^{\prime}(t)\right|^{2} d t\right)^{1 / 2}
$$

and

$$
\|\psi\|_{\theta\left(R^{1}\right)} \equiv \sup _{t \geq 0} \frac{1}{1+t}|\theta(t)|
$$

Then Wiener's famous existence theorem shows that there is a probability measure on $\theta\left(R^{1}\right)$ such that $\left(\theta\left(R^{1}\right), H_{1}\left(R^{1}\right), W\right)$ is an abstract Wiener space. For $\left(\theta\left(R^{1}\right), H_{1}\left(R^{1}\right), W\right), K$. Ito [2] showed how to cast Wiener's theory of homogeneous chaos in a particularly appealing form. To be precise, set $\mathrm{a}_{\mathrm{m}}=[0, \infty)^{m}$; and, for $f \in$ $L^{2}\left(\square_{m}\right)$, define
$\int_{\square_{m}} f d^{m} \theta=\sum_{\sigma \in \Pi_{m}} \int_{0}^{\infty} d \theta\left(t_{m}\right) \int_{0}^{t} m-1 d \theta\left(t_{m-2}\right) \cdots$

$$
\int_{0}^{t_{2}} f\left(t_{\sigma(1)} \ldots t_{\sigma(m)}\right) d \theta\left(t_{1}\right)
$$

where Π_{m} denotes the permutation group on $\{1, \ldots, m\}$ and the $d \theta(t)$-integrals are taken in the sense of Itô. What Ito discovered is that, for given $\Phi \in L^{2}(W)$, there exists a unique symmetric $f_{\Phi}^{(m)} \in$ $L^{2}\left(口_{m}\right)$ such that

$$
\begin{equation*}
\Pi_{Z(m)}^{\Phi}=\frac{1}{m!} \int_{\mathrm{a}_{\mathrm{m}}} \mathrm{f}_{\Phi}^{(\mathrm{m})} \mathrm{d}^{\mathrm{m}} \theta \tag{9}
\end{equation*}
$$

In order to interpret Ito's result in terms of Theorem (5), let $\left\{\psi^{k}: k \in Z^{+}\right\} \subseteq C_{o}^{\infty}\left((0, \infty) ; R^{1}\right)$ be an orthonormal basis in $L^{2}\left(a_{1}\right)$ and
$\operatorname{define} e^{k} \in \square\left(R^{1}\right)^{*}$ by $e^{k}(d t)=\left(\int_{0}^{t} \psi^{k}(s) d s\right) d t . \quad$ Then $\left\langle e^{k}, \theta\right\rangle=\int_{0_{1}}$ $\psi^{\mathrm{k}} \mathrm{d}^{1} \theta$. Moreover, by using, on the one hand, the generating function for the Hermite polynomials and, on the other hand, the uniqueness of solutions to linear stochastic integral equations (cf. H. P. McKean [5]), one finds that for $K=\left(k_{1}, \ldots, k_{m}\right) \in\left(Z^{+}\right)^{m}$:

$$
\int_{0_{m}} \psi^{k} d^{m} \theta=H_{\alpha(K)}
$$

where $\psi^{K}=\psi^{k_{1}} \otimes \ldots \otimes \psi^{k_{m}}$ and $\alpha(K) \in \&$ is defined as in Lemma (1). Hence, by Lemma (1):

$$
\begin{equation*}
\partial^{m} e^{K}=\int_{0_{m}} \psi^{K} d^{m} \theta, \quad K \in\left(Z^{+}\right)^{m} \tag{10}
\end{equation*}
$$

Finally, for $\left(t_{1}, \ldots, t_{n}\right) \in \square_{m}$, define $h_{\left(t_{1}, \ldots, t_{m}\right)}\left(s_{1}, \ldots s_{m}\right)=$ $\left(s_{1} \wedge t_{1}\right) \ldots\left(s_{m} \wedge t_{m}\right)$. Then, for each $h \in H_{1}\left(R^{1}\right)^{\theta^{m}}$, there is a unique $h^{\prime} \in L^{2}\left(口_{m}\right)$ such that $\left(h, h\left(t_{1}, \ldots, t_{m}\right)\right)_{H_{1}}\left(R^{1}\right)^{\otimes m}$
$\int_{0}^{t}{ }_{m} \ldots \int_{0}^{t} r h^{\prime}\left(s_{1}, \ldots, s_{m}\right) d s_{1}, \ldots, d s_{m}$ for all $\left(t_{1}, \ldots, t_{m}\right) \in \square_{m}$ (11) Theorem: Given $\Phi \in L^{2}(W)$ and $m \geq 1$, the $f_{\Phi}^{(m)}$ in (9) is $\left(D^{m} \Phi(1)\right)$.

Proof: By (9):

$$
\begin{aligned}
\partial^{m}\left(D^{m} \Phi(1)\right) & =\partial^{m}\left[\sum_{K \in\left(Z^{+}\right)^{m}}\left(D^{m} \Phi(1), e^{K}\right)\right. \\
& =\sum_{K \in\left(Z^{+}\right)^{m}}\left(\left(D^{m} \Phi(1)\right)^{\prime}, \psi^{K}\right)_{L^{2}\left(\square_{m}\right)} \int_{0_{m}} \psi^{\otimes^{m}} e^{K} d^{m} \theta \\
& =\int_{\square_{m}}\left(D^{m} \Phi(1)\right)^{\prime} d^{m} \theta
\end{aligned}
$$

Thus, by (7):

$$
\Pi_{Z}(m)=\frac{1}{m!} \int_{0_{m}}\left(D^{m} \Phi(1)\right)^{\prime} d^{m} \theta
$$

(12) Remark: It is intuitively clear that the $f_{\Phi}^{(m)}$ in (9) must be given by $f_{\Phi}^{(m)}\left(t_{1}, \ldots, t_{m}\right)=E^{W}\left[\dot{\theta}\left(t_{1}\right) \ldots \dot{\theta}\left(t_{m}\right)\right]$, where $\dot{\theta}(t)$ is white noise. What Theorem (11) does is provide a rigorous meaning for this equation.
(13) Remark: Given $d \geq 2$, define $H_{1}\left(R^{d}\right)$ and $\theta\left(R^{d}\right)$ by analogy with $H_{1}\left(R^{1}\right)$ and $\theta\left(R^{1}\right)$. Then $\left(\theta\left(R^{d}\right), H_{1}\left(R^{d}\right)\right.$, W becomes an abstract Wiener space when is the Wiener measure associated with the Brownian motion in R^{d}. To provide an Ito interpretation in this case, let $\left\{\Psi^{k}: k \in Z^{+}\right\} \subset C_{o}^{\infty}\left((0, \infty) ; R^{1}\right)$ be chosen as before and set $\ell^{(k, i)}=\Psi^{k} e_{i}, k \in Z^{+}$and $i \in \mathscr{D} \equiv\{1, \ldots, d\}$, where $\left\{e_{1}, \ldots, e_{d}\right\}$ is a standard basis for R^{d}. Next, for $f=\sum_{I \in \mathscr{D}^{m}} f_{I^{\prime}} e_{I} \in L^{2}\left(口_{1} ;\left(R^{d}\right)^{\otimes m}\right)$, define

$$
\int_{\square_{m}} f d^{m} \theta=\sum_{I \in \mathscr{D}^{m}} \int_{\square_{m}} f_{I} d^{m} \theta_{I}
$$

where
$\int_{0_{m}} f_{I} d^{m} \theta_{I}=$
$\sum_{\sigma \in \Pi_{m}} \int_{0}^{\infty} d \theta_{i_{m}}\left(t_{m}\right) \int_{0}^{t}{ }^{m} d \theta_{i_{m-1}}\left(t_{m-1}\right) \ldots \int_{0}^{t_{2}} f_{I^{\prime}}\left(t_{\sigma(1)} \ldots . t_{\sigma(m)}\right) d \theta_{i_{1}}\left(t_{1}\right)$
for $I=\left(i_{1}, \ldots, i_{m}\right) \in \mathscr{D}^{m}$. One can then check that

$$
\partial^{m^{2}}(\mathrm{~K}, \mathrm{I})=\int_{\mathrm{o}_{\mathrm{m}}} \Psi^{\mathrm{K}_{\mathrm{d}} \mathrm{~m} \theta_{\mathrm{I}} .}
$$

Finally, after associating with each $h \in H_{1}\left(R^{d}\right)^{\otimes^{m}}$ the unique $h^{\prime} \epsilon$ $L^{2}\left(\square_{i}^{m} ;\left(R^{d}\right)^{\otimes^{m}}\right)$ satisfying

$$
h\left(t_{1}, \ldots, t_{m}\right)=\int_{0}^{t_{m}} \int_{0}^{t_{1}} h^{\prime}\left(s_{1}, \ldots, s_{m}\right) d s_{1} \ldots d s_{m}
$$

we again arrive at the equation

$$
\Pi_{Z}(m) \Phi=\int_{\square_{m}}\left(D^{m} \Phi(1)\right) d^{m} \theta
$$

(14) Remấk: Theorem (11) is little more than an exercise in formalism unless $\Phi \in W_{\infty}^{2}\left(R^{1}\right)$. Fortunately, many interesting functions are in $W_{\infty}^{2}\left(R^{1}\right)$. For example, let $\sigma: R^{1} \rightarrow R^{1}$ and $b: R^{1} \rightarrow R^{1}$ be smooth functions having bounded first derivatives and slowly increasing derivatives of all orders. Define $X(\cdot, x), x \in R^{1}$, to be the solution to

$$
\mathrm{X}(\mathrm{~T}, \mathrm{x})=\mathrm{x}+\int_{0}^{\mathrm{T}} \sigma(\mathrm{X}(\mathrm{t}, \mathrm{x})) \mathrm{d} \theta(\mathrm{t})+\int_{0}^{\mathrm{T}} \mathrm{~b}(\mathrm{X}(\mathrm{t}, \mathrm{x})) \mathrm{dt}, \mathrm{~T} \geq 0 .
$$

Then, for each $(\Gamma, x) \in(0, \infty) \times R^{1}, X(T, x) \in W_{\infty}^{2}\left(R^{1}\right)$. In fact, DX(•,x) satisfies:

$$
\begin{gathered}
\mathrm{DX}(\mathrm{~T}, \mathrm{x})=\int_{0}^{\mathrm{T}} \sigma^{\prime}(\mathrm{X}(\mathrm{t}, \mathrm{x})) \mathrm{DX}(\mathrm{t}, \mathrm{x}) \mathrm{d} \theta(\mathrm{t})+\int_{0}^{\mathrm{T}} \mathrm{~b}^{\prime}(\mathrm{X}(\mathrm{t}, \mathrm{x})) \mathrm{DX}(\mathrm{t}, \mathrm{x}) \mathrm{dt} \\
\\
+\int_{0}^{: \wedge \mathrm{T}} \sigma(\mathrm{X}(\mathrm{t}, \mathrm{x})) \mathrm{dt}
\end{gathered}
$$

an equation which can be easily solved by the method of variation of parameters. Moreover, $D^{m} X(T, x), m \geq 2$, can be found by iteration of the preceding.
(15) Remark: In many ways, the present paper should be viewed as an outgrowth of P. Malliavin's note [4]. Indeed, it was only after reading Malliavin's note that the ideas developed here occurred to the present author.

REFERENCES

[1] Cameron, R. H. and Martin, W. T., "Transformation of Wiener integrals under translations," Ann. Math. 45 (1944), pp. 386396.
[2] Ito, K., "Multiple Wiener integral," J. Math. Soc. Japan 3(1951), pp. 157-164.
[3] Kree, M. and P., "Continuité de la divergence dans les espaces de Sobolev relatif à l'espace de Wiener," Comptes rendus, 296 série I (1983), pp. 833-836.
[4] Malliavin, P., "Calcul de variations, intégrales stochastiques et complexes de Rham sur l'espace de Wiener," Comptes rendus, 299, série I (1984), pp. 347-350.
[5] McKean, H. P.. "Geometry of differential space," Ann. Prob., Vol. 1, No. 2 (1973), pp. 197-206.
[6] Wiener, N.. "The Homogeneous Chaos," Am J. Math., Vol. 60 (1930), pp. 897-936.

[^0]: * During the period of this research, the author was partially supported by NSF DMS-8415211 and ARO DAAG29-84-K-0005.

