DANIEL W. STROOCK Homogeneous chaos revisited

Séminaire de probabilités (Strasbourg), tome 21 (1987), p. 1-7 <http://www.numdam.org/item?id=SPS_1987_21_1_0>

© Springer-Verlag, Berlin Heidelberg New York, 1987, tous droits réservés.

L'accès aux archives du séminaire de probabilités (Strasbourg) (http://portail. mathdoc.fr/SemProba/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

HOMOGENEOUS CHAOS REVISITED

Daniel W. Stroock*

Let $(\theta, H, \#)$ be an abstract Wiener space. That is: θ is a separable real Banach space with norm $\|\cdot\|_{\theta}$; H is a separable real Hilbert space with norm $\|\cdot\|_{H}$; H $\subseteq \theta$, $\|h\|_{\theta} \leq C\|h\|_{H}$ for some C $\langle \infty$ and all'h \in H, and H is $\|\cdot\|_{\theta}$ - dense in θ ; and # is the probability measure on $(\theta, \mathfrak{B}_{\theta})$ with the property that, for each $\ell \in \theta^{*}$, $\theta \in \theta \rightarrow$ $\langle \ell, \theta \rangle$ under # is a Gaussian random variable with mean zero and variance $\|\ell\|_{H}^{2} \equiv \sup\{\langle \ell, h \rangle^{2} : h \in H \text{ with } \|h\|_{H} = 1\}$. Let $\{\ell^{k} : k \in Z^{+}\} \subseteq \theta^{*}$ be an orthonormal basis in H; set $\mathfrak{A} = \{\alpha \in N^{Z^{+}} : |\alpha| = \sum_{k \in Z^{+}} \alpha_{K} \langle \infty \}$; and for $\alpha \in \mathfrak{A}$, define $\#_{\alpha}(\theta) = \prod_{k \in Z^{+}} H_{\alpha_{k}}(\langle \ell^{k}, \theta \rangle), \theta \in \theta$,

where

$$H_{m}(\xi) = (-1)^{m} e^{\xi^{2}/2} \frac{d^{m}}{d\xi^{m}} (e^{-\xi^{2}/2}), m \in N \text{ and } \xi \in \mathbb{R}^{1}$$

Then, $\{(\alpha!)^{-1/2} \#_{\alpha} : \alpha \in \mathscr{A}\}$ is an orthonormal basis in $L^{2}(\mathscr{W})$. Moreover, if, for $m \in \mathscr{N}$,

$$\underline{Z}(\mathbf{m}) \equiv \overline{\operatorname{span}\{\mathscr{H}_{\alpha} : |\alpha| = \mathbf{m}\}} L^{2}(\mathscr{W})$$

then: $Z^{(m)}$ is independent of the particular choice of the orthonormal basis $\{\ell^k : k \in Z^+\}; Z^{(m)} \perp Z^{(n)}$ for $m \neq n$; and $L^2(\#) = \bigoplus_{m=0}^{\infty} Z^{(m)}$. These facts were first proved by N. Wiener [6] and constitute the foundations on which his theory of <u>homogeneous</u> chaos is based.

The purpose of the present article is to explain how, for given $\phi \in L^2(W)$, one can compute the orthogonal projection $\prod_{Z(m)} \phi$ of ϕ onto $Z^{(m)}$. In order to describe the procedure, it will be necessary to describe the elementary Sobolev theory associated with (θ , H, W).

^{*}During the period of this research, the author was partially supported by NSF DMS-8415211 and ARO DAAG29-84-K-0005.

To this end, let Y be a separable real Hilbert space and set $\mathscr{I}(Y) = \operatorname{span}\{\mathscr{H}_{\alpha} y : \alpha \in \mathscr{A} \text{ and } y \in Y\}$. Then $\mathscr{I}(Y)$ is dense in $L^{2}(\mathscr{W}; Y)$. Next, for $m \in \mathscr{N}$ and $\phi \in \mathscr{I}(Y)$, define $\theta \to D^{m}\phi(\theta) \in \operatorname{H}^{\otimes^{m}} \otimes Y$ by

$$(D^{m}\Phi(\theta), h^{1} \otimes \ldots \otimes h^{m} \otimes y)$$

$$H^{\otimes m} \otimes Y$$

$$= \frac{\partial^{m}}{\partial t_{1} \cdots \partial t_{m}} (\Phi(\theta + \sum_{j=1}^{m} t_{j} h^{j}), y)_{Y} \Big|_{t_{1} = \cdots = t_{m} = 0}$$

for h^1 , ..., $h^m \in H$ and $y \in Y$. Then D^m maps $\mathscr{P}(Y)$ into $\mathscr{P}(H^{\bigotimes^m} \otimes Y)$ and $D^n = D^m \circ D^{n-m}$ for $0 \leq m \leq n$. Associated with the operator D^m : $\mathscr{P}(Y) \rightarrow \mathscr{P}(H^{\bigotimes^m} \otimes Y)$ is its adjoint operator ∂^m . Using the Cameron-Martin formula [1], one can easily prove the following lemma.

(1) <u>Lemma</u>: The operator ∂^m does not depend on the choice of orthonormal basis $\{e^k : k \in Z^+\}, \ \mathcal{P}(H^{\otimes^m} \otimes Y) \subseteq Dom(\partial^m)$, and $\partial^m : \ \mathcal{P}(H^{\otimes^m} \otimes Y) \rightarrow \mathcal{P}(Y)$. Moreover, if $m \in Z^+, K = (k_1, \ldots, k_m)$ $(Z^+)^m$, and $e^K = e^{k_1} \otimes \ldots \otimes e^{k_m}$, then

(2)
$$\partial^{\mathbf{m}} e^{\mathbf{K}} = \mathbf{x}_{\alpha(\mathbf{K})}$$

where $\alpha(K)$ is the element of \mathscr{A} defined by

$$(\alpha(K))_k = \operatorname{card}\{1 \leq j \leq m : k_j = k\}, k \in Z^+$$

In particular, $H^{\otimes^m} \subseteq Dom(\partial^m)$.

Since ∂^m is densely defined, it has a well-defined adjoint $(\partial^m)^*$. Set $W^2_m(Y) = Dom((\partial^M)^*)$ and use $\|\cdot\|_{W^2_m(Y)}$ to denote the $W^2_m(Y)$ associated graph norm on $W^2_m(Y)$. The following lemma is an easy application of inequalities proved by M and P. Kree [3].

(3) Lemma:
$$W_m^2(H^{\otimes m} \otimes Y) \subseteq Dom(\partial^m)$$
, $\|\partial^m \Psi\|_{L^2(W;Y)} \leq C_m \|\Psi\|_{W_m^2(h^{\otimes m} \otimes Y)}$
and $\partial^m = ((\partial^m)^*)^*$. Moreover, $\mathscr{P}(Y)$ is $\|\cdot\|_{W_m^2(Y)}^2$ -dense in $W_m^2(Y)$.

Finally,
$$W_{m+1}^2(Y) \subseteq W_m^2(Y)$$
 and $\|\cdot\|_{W_m^2(Y)} \leq C_m \|\cdot\|_{W_m^{m+1}(Y)}$ for all $m \ge 0$.
Warning: In view of the preceding, the use of D^m to denote its own closure $(\partial^m)^*$ is only a mild abuse of notation. Because it simplifies the notation, this abuse of notation will be used throughout what follows.

Now set $\mathscr{W}^2_{-m}(Y) = \mathscr{W}^2_{m}(Y)^*$, $m \ge 0$, and $\mathscr{W}^2_{\infty}(Y) = \bigcap_{m=0}^{\infty} \mathscr{W}^2_{m}(Y)$. Then, when $\mathscr{W}^2_{\infty}(Y)$ is given the Fréchet topology determined by $\{\|\cdot\|_{W^2_{m}(Y)}$: $m_{W^2_{m}(Y)}$ $\ge 0\}$. $(\mathscr{W}^2_{\infty}(Y))^*$ is $\mathscr{W}^2_{-\infty}(Y) \equiv \bigcup_{m=0}^{\infty} \mathscr{W}^2_{-m}(Y)$. Moreover, $L^2(\mathscr{W};Y)$ becomes a subspace of $\mathscr{W}^2_{-\infty}(Y)$ when $\phi \in L^2(\mathscr{W};Y)$ is identified with the linear functional $\Psi \in \mathscr{W}^2_{\infty}(Y) \to E^{\mathscr{W}}[(\phi, \Psi)_Y]$; and in this way $\mathscr{W}^2_{\infty}(Y)$ becomes a

dense subspace of $W^2_{-\infty}(Y)$. Finally, D^m has a unique continuous extension as a map from $W^2_{-\infty}(Y)$ into $W^2_{-\infty}(H^{\otimes m} \otimes Y)$. In particular, for $T \in W^2_{-\infty}(R^1)$, there is a unique $D^mT(1) \in H^{\otimes m}$ defined by:

(4)
$$(D^{m}T(1), h) = T(\partial^{m}h), h \in H^{\otimes^{m}}$$

Note that when $\Phi \in W^2_{\omega}(R^1)$,

$$D^{m}\Phi(1) = E^{\#}[D^{m}\Phi].$$

(6) <u>Theorem</u>: Let $\Phi \in L^2(\mathscr{W})$ be given. Then, for each $m \ge 0$: (7) $\Pi_{Z(m)} \Phi = \frac{1}{m!} \partial^m (D^m \Phi(1)).$

Hence,

(8)
$$\Phi = \sum_{m=0}^{\infty} \frac{1}{m!} \partial^m (D^m \Phi(1)) .$$

In particular, when $\Phi \in W^2_{\infty}(\mathbb{R}^1)$:

(7')
$$\Pi_{Z}(\mathbf{m})\Phi = \frac{1}{\mathbf{m}!} \partial^{\mathbf{m}} \mathbf{E}^{\mathbf{W}}[\mathbf{D}^{\mathbf{m}}\Phi]$$

and

(8')
$$\Phi = \sum_{m=0}^{\infty} \frac{1}{m!} \partial^m E^{\#}[D^m \Phi] .$$

$$\partial^{m}(D^{m}\Phi(1)) = \sum_{K \in (Z^{+})^{m}} E^{\#}[\Phi\partial^{m} e^{K}]\partial^{m} e^{K}$$
$$= \sum_{|\alpha|=m} {m \choose \alpha} E^{\#}[\Phi\mathcal{H}_{\alpha}]\mathcal{H}_{\alpha} = m! \frac{\pi}{Z(m)}\Phi$$

The classic abstract Wiener space is the Wiener space associated with a Brownian motion on \mathbb{R}^1 . Namely, define $\mathbb{H}_1(\mathbb{R}^1)$ and $\theta(\mathbb{R}^1)$ to be, respectively, the completion of $C_0^{\infty}((0,\infty); \mathbb{R}^1)$ with respect to

$$\|\psi\|_{H_1(\mathbb{R}^1)} \equiv (\int_0^\infty |\psi'(t)|^2 dt)^{1/2}$$

and

$$\|\psi\|_{\substack{\theta(\mathbb{R}^1) \\ t \geq 0}} \equiv \sup_{t \geq 0} \frac{1}{1+t} |\theta(t)| .$$

Then Wiener's famous existence theorem shows that there is a probability measure on $\theta(\mathbb{R}^1)$ such that $(\theta(\mathbb{R}^1), \mathbb{H}_1(\mathbb{R}^1), \mathbb{W})$ is an abstract Wiener space. For $(\theta(\mathbb{R}^1), \mathbb{H}_1(\mathbb{R}^1), \mathbb{W})$, K. Itô [2] showed how to cast Wiener's theory of homogeneous chaos in a particularly appealing form. To be precise, set $\Box_m = [0, \infty)^m$; and, for $f \in L^2(\Box_m)$, define

$$\int_{\Pi_{m}} f d^{m}\theta = \sum_{\sigma \in \Pi_{m}} \int_{0}^{\infty} d\theta(t_{m}) \int_{0}^{t_{m-1}} d\theta(t_{m-2}) \dots$$
$$\int_{0}^{t_{2}} f(t_{\sigma(1)}, \dots, t_{\sigma(m)}) d\theta(t_{1})$$

where Π_{m} denotes the permutation group on $\{1, \ldots, m\}$ and the $d\theta(t)$ -integrals are taken in the sense of Ito. What Ito discovered is that, for given $\Phi \in L^{2}(W)$, there exists a unique symmetric $f_{\Phi}^{(m)} \in L^{2}(\Pi_{m})$ such that

(9)
$$\Pi_{Z(m)} \Phi = \frac{1}{m!} \int_{\Pi_{m}} f_{\Phi}^{(m)} d^{m} \theta$$

In order to interpret Itô's result in terms of Theorem (5), let $\{\psi^k : k \in Z^+\} \subseteq C_0^{\infty}$ ((0, ∞); R¹) be an orthonormal basis in L²(\Box_1) and

define $\ell^k \in \Box (\mathbb{R}^1)^*$ by $\ell^k(dt) = (\int_{-\infty}^t \psi^k(s)ds)dt$. Then $\langle \ell^k, \theta \rangle = \int_{\Box_1}$ $\psi^{k} d^{1} \theta$. Moreover, by using, on the one hand, the generating function for the Hermite polynomials and, on the other hand, the uniqueness of solutions to linear stochastic integral equations (cf. H. P. McKean [5]), one finds that for $K = (k_1, \ldots, k_m) \in (Z^+)^m$: $\int_{\Box_m} \psi^k d^m \theta = \mathcal{H}_{\alpha(K)}$ where $\psi^{K} = \psi^{K} \otimes \ldots \otimes \psi^{m}$ and $\alpha(K) \in \mathscr{A}$ is defined as in Lemma (1). Hence, by Lemma (1): $\partial^{\mathbf{m}} \boldsymbol{\ell}^{\mathbf{K}} = \int_{\boldsymbol{\Pi}} \boldsymbol{\psi}^{\mathbf{K}} d^{\mathbf{m}} \boldsymbol{\theta} , \quad \mathbf{K} \in (\mathbf{Z}^{+})^{\mathbf{m}} .$ (10)Finally, for $(t_1, \ldots, t_n) \in \square_m$, define $h_{(t_1, \ldots, t_m)}(s_1, \ldots, s_m) =$ $(s_1 \wedge t_1) \dots (s_m \wedge t_m)$. Then, for each $h \in H_1(\mathbb{R}^1)^{\otimes m}$, there is a unique $h' \in L^2(\square_m)$ such that $(h, h_{(t_1, \dots, t_m)})_{H_1(\mathbb{R}^1)}^{\otimes^m}$ $\int_{-\infty}^{t_m} \dots \int_{-\infty}^{t_r} h'(s_1, \dots, s_m) ds_1, \dots, ds_m \text{ for all } (t_1, \dots, t_m) \in \square_m$ (11) <u>Theorem</u>: Given $\phi \in L^2(\mathcal{W})$ and $m \geq 1$, the $f_{\phi}^{(m)}$ in (9) is $(D^{m} \Phi(1))'$. Proof: By (9): $\partial^{m}(D^{m}\Phi(1)) = \partial^{m}\left[\sum_{K \in (Z^{+})^{m}} (D^{m}\Phi(1), e^{K}) \right]_{H_{1}(R^{1})^{\otimes m}} e^{K}$ $= \sum_{K \in (Z^+)^m} ((D^m \Phi(1))', \psi^K) \int_{D_m} \psi^K d^m \theta$ $= \int_{\Box_m} (D^m \Phi(1))' d^m \theta .$ Thus, by (7):

$$\Pi_{Z(m)} = \frac{1}{m!} \int_{\Pi_{m}} (D^{m} \Phi(1)) \cdot d^{m} \theta .$$

(12) <u>Remark</u>: It is intuitively clear that the $f_{\phi}^{(m)}$ in (9) must be given by $f_{\phi}^{(m)}(t_1, \ldots, t_m) = E^{\#}[\dot{\Phi\theta}(t_1) \ldots \dot{\theta}(t_m)]$, where $\dot{\theta}(t)$ is white noise. What Theorem (11) does is provide a rigorous meaning for this equation.

(13) <u>Remark</u>: Given $d \ge 2$, define $H_1(\mathbb{R}^d)$ and $\theta(\mathbb{R}^d)$ by analogy with $H_1(\mathbb{R}^1)$ and $\theta(\mathbb{R}^1)$. Then $(\theta(\mathbb{R}^d), H_1(\mathbb{R}^d), \mathbb{W})$ becomes an abstract Wiener space when \mathbb{W} is the Wiener measure associated with the Brownian motion in \mathbb{R}^d . To provide an Itô interpretation in this case, let $\{\Psi^k : k \in \mathbb{Z}^+\} \subset C_0^{\infty}((0,\infty); \mathbb{R}^1)$ be chosen as before and set $e^{(k,i)} = \Psi^k e_i$, $k \in \mathbb{Z}^+$ and $i \in \mathfrak{D} = \{1,\ldots,d\}$, where $\{e_1,\ldots,e_d\}$ is a standard basis for \mathbb{R}^d . Next, for $f = \sum_{I \in \mathfrak{D}^m} f_I e_I \in L^2(\square_1; (\mathbb{R}^d)^{\mathfrak{D}^m})$, define

$$\int_{\Box_{m}} \mathbf{f} \, \mathbf{d}^{m} \boldsymbol{\theta} = \sum_{\mathbf{I} \in \mathcal{D}^{m}} \int_{\Box_{m}} \mathbf{f}_{\mathbf{I}} \mathbf{d}^{m} \boldsymbol{\theta}_{\mathbf{I}}$$

where

$$\int_{\Pi_{m}} f_{I} d^{m} \theta_{I} =$$

$$\sum_{\sigma \in \Pi_{m}} \int_{0}^{\infty} d\theta_{i_{m}}(t_{m}) \int_{0}^{t_{m}} d\theta_{i_{m-1}}(t_{m-1}) \dots \int_{0}^{t_{2}} f_{I}(t_{\sigma(1)}, \dots, t_{\sigma(m)}) d\theta_{i_{1}}(t_{1})$$

for I = $(i_1, ..., i_m) \in \mathfrak{D}^m$. One can then check that $\partial^m \ell^{(K, I)} = \int_{\Box_m} \Psi^K d^m \theta_I$.

Finally, after associating with each $h \in H_1(\mathbb{R}^d)^{\otimes^m}$ the unique $h' \in L^2(\square_i^m; (\mathbb{R}^d)^{\otimes^m})$ satisfying

$$h(t_1,\ldots,t_m) = \int_0^{t_m} \int_0^{t_1} h'(s_1,\ldots,s_m) ds_1 \ldots ds_m,$$

we again arrive at the equation

$$\Pi_{Z(m)} \Phi = \int_{\Pi_{m}} (D^{m} \Phi(1)) ' d^{m} \theta .$$

(14) <u>Remark</u>: Theorem (11) is little more than an exercise in formalism unless $\Phi \in W^2_{\infty}(\mathbb{R}^1)$. Fortunately, many interesting functions are in $W^2_{\infty}(\mathbb{R}^1)$. For example, let $\sigma : \mathbb{R}^1 \to \mathbb{R}^1$ and $b : \mathbb{R}^1 \to \mathbb{R}^1$ be smooth functions having bounded first derivatives and slowly increasing derivatives of all orders. Define $X(\cdot, x)$, $x \in \mathbb{R}^1$, to be the solution to

$$X(T,x) = x + \int_{0}^{T} \sigma(X(t,x))d\theta(t) + \int_{0}^{T} b(X(t,x))dt, T \ge 0$$

Then, for each $(\Gamma, x) \in (0, \infty) \times \mathbb{R}^{1}$, $X(T, x) \in W_{\infty}^{2}(\mathbb{R}^{1})$. In fact, $DX(\cdot, x)$ satisfies:

$$DX(T,x) = \int_{0}^{T} \sigma'(X(t,x)) DX(t,x) d\theta(t) + \int_{0}^{T} b'(X(t,x))DX(t,x)dt + \int_{0}^{*\Lambda T} \sigma(X(t,x)) dt;$$

an equation which can be easily solved by the method of variation of parameters. Moreover, $D^{m}X(T,x)$, $m \ge 2$, can be found by iteration of the preceding.

(15) <u>Remark</u>: In many ways, the present paper should be viewed as an outgrowth of P. Malliavin's note [4]. Indeed, it was only after reading Malliavin's note that the ideas developed here occurred to the present author.

REFERENCES

[1] Cameron, R. H. and Martin, W. T., "Transformation of Wiener integrals under translations," Ann. Math. 45 (1944), pp. 386-396.

[2] Ito, K., "Multiple Wiener integral," J. Math. Soc. Japan 3(1951), pp. 157-164.

[3] Kree, M. and P., "Continuité de la divergence dans les espaces de Sobolev relatif à l'espace de Wiener," Comptes rendus, 296 série I (1983), pp. 833-836.

[4] Malliavin, P., "Calcul de variations, intégrales stochastiques et complexes de Rham sur l'espace de Wiener," Comptes rendus, 299, série I (1984), pp. 347-350.

[5] McKean, H. P., "Geometry of differential space," Ann. Prob., Vol. 1, No. 2 (1973), pp. 197-206.

[6] Wiener, N., "The Homogeneous Chaos," Am J. Math., Vol. 60 (1930), pp. 897-936.