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On Local Times of a Diffusion

by P. Salminen

Abstract

In this note we consider local time of a regular, transient

diffusion as a density of a occupation measure, on the one hand, and as

a dual predictable projection, on the other hand. The essential tool

in our discussion is the Doob-Meyer decomposition for submartingales.

1. . Introduction

Let X be a regular, canonical, one-dimensional diffusion on an

interval I c (-00,-~) . It is well-known that for every y E I there

exist a local time process By the usual definition Ly is an

integrable, increasing stochastic process defined over the same probability

space as X such that, with probability one,

(1.1) (t,y)  Lyt is continuous,

(1.2) for every A E 6(1) (= Borel subsets of I ) and t > 0

t

J Lt 
o A

where 1A is the indicator function of the set A and m

is the speed measure of X

A classical and elegant proof for the existence of Ly for a

Brownian motion is via Tanaka’s formula (see, for example, [5]). This
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proof extends for an arbitrary regular diffusion by a standard random

time change argument and a scale transformation.

Tanaka’s approach to Brownian local times has been generalized for

semi-martingales by Meyer (see [9]): Let X be a continuous semi-

martingale on 1R. For every y E lR there exists an increasing,

continuous process called local time, such that

(1.3) (Xt - y)+ = (X0 - y)+ 
+ 1{Xs>a}dXs + 1 2 yt.

o

Further the measure dL’ is almost surely supported by {s : X s = y}

and satisfies

t

(1.4) Lt dy ,
o A

where A E and X,X> is the quadratic variational process of

the continuous semi-martingale X .

Meyer’s approach is not directly applicable and always suitable

for diffusions. Firstly a regular diffusion is not in general a semi-

martingale (see [3]). Secondly for a semi-martingale diffusion the local

time Lt given by (1.3) is not in general jointly continuous (see [14]).

Consequently, (1.2) does not hold with L~ , and, if the speed measure

is not absolutely continuous with respect to the Lebesque measure, we

cannot deduce (1.2) from (1.4).

We may consider the existence of in (1.3) as a consequence

of the Doob-Meyer decomposition. The aim of this note is to explore this

connection for a regular diffusion.

2. Preliminaries

We assume that the diffusion X is transient: for all x,y E I

IPx (03BBy  oo) = 1 where
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B= sup(t : X = y} 
if {.} ~0 ,

, 

y 
= L 0 

~ 

otherwise,

and IPx is the probability measure associated with X, Xo - x .

The non-transient case can be treated by killing the diffusion in some

fashion so that it becomes transient. We note that our definition of

transience, in the case there are no absorbing points, is equivalent

with the condition of Ito and McKean (see [6] p. 124 and 134): Let

03C4y = 

inf{t : Xt if {.} ~ ,

+ ~ otherwise.

Then for all x,y E I either

(2.1) IP x (03C4y  ~) IPy(03C4x  ~) = 1

or

(2.2) IPx (03C4y  ~) Py(03C4x  ~) = 1 .

When (2.1) holds X is called recurrent and in the case (2.2) transient.

Let ~ = inf{t : I} . Introduce a f ictiou s state A and extend

X to I U {~} by setting for t > ~ . We use the usual conven-

tion that f(~) - 0 for any function f defined on I . The left- and

right-hand end-point of I are denoted with a and b , respectively.

We assume that a killing boundary does not belong to I. Obviously, if

I is a open, finite interval then a sequence of points in I converges

to A if and only if it converges (in the usual topology) to a , or b ,

"or both".

We remark that X being a Feller process is quasi-left-continuous.

Therefore

(2.3) ~ is not predictable on the set { X 
C- 

E I} , 
.
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Clearly {X~- ~ I} _ = a or b } , and hence ; is predict-

able on {X~- ~ I} and X is quasi-left-continuous in the topology

of I U {b } .

It can be proved (see [6] p 159) that X is transient if and only if

00

G(x,y) := lim Ga(x,y) - p(t;x,y)dt  co ,
a~0 0

where p(t;x,y) , t > 0, x,y E I, is the jointly continuous transition

density (with respect to the speed measure m ) of X and

00

o

Further (see [6] p 160)

G(x,y) = 03C6~(x)03C6~(y) x ~ y03C6~(y)03C6~ (x) x ~ y ,
where 03C6~ (03C6~) is a continuous, positive, increasing (decreasing)

solution of the equation

(2.4) u~(y) - u~(x) = j u(z)k(dz)

(x,y]
with a  x  y  b , and on I

(2.5) 03C6~ 03C6~ - 03C6~03C6~ ~ 1 .

Here k is the killing measure, and

(2.6) 

where S is the scale function of X . For left derivatives

(2.6) u (x) - lim ~-~- ~S (~ )
(2.4) and (2.5) take the forms
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(2.4)’ u (y) - u (x) = f u(z)k(dz) ,

[x,y)

2.5’ 03C6~ 03C6~ - 03C6~03C6~ ~ 1 respectively.respectively.

Finally we need the following result (see [13] (3.3) Proposition) :

For a ax g  b

+

(2.7) 
> S) - -~~ (x)~~ (g) , 

. 

R x (X -  a) - ~~ (x)~~ (a) .

In fact, in [13] this result is only proved in the case k E 0 ;

however it is easily seen that it is valid also in the general transient

case.

Example: Let I = R , m(dx) = 2dx, S(x) = x , and k(dx) = 

(= Dirac’s measure at 0 ). Then

1 x ~ 0

03C6~(x) =x + 1 x ~ 0

and

1 - x x ~ 0

03C6~(x)  1 x ~ 0.
This process is a Brownian motion which is killed "elastically" at 0.

Note that for all x G(x,0) = 1 . Further § is not predictable, and

ç Px-a.s.

3. Existence of local time as a density of a occupation measure

t

and A E let ~ f 1A(Xs)ds and G(x,A) =

G(x,y)m(dy) . Introduce for t > 0 
0

A

~ = G(x,A) - L~ .
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Recall the convention G(A,A) = 0 . . We have the following easy

(3.1) Proposition. The process M is a (IP ,F )-martingale, where

(Ft)t>0 are the natural, completed filtrations of X . .

Proof. Let 03BEs be a Fs -measurable, bounded, and positive random variable.

We have for t > s

E~(G(X~A) - 

= E~(~(G(X~,A) - E(G(X~,A)(F~)))

= IE~(~(G(X~,A) - E~ (G(X~_~,A)))

= Ex (03BEs( PXs (Xu ~ A)dn - IPXs (Xu ~ A)dn))

s 
(X,~A)dn)

 ’t-s

=~(~X (~A~u~)
=~s~u~ ~x~s~-~) ’ ’

S

where we used the Markov property and the convention ~ A ) = 0

for all t and A ~ 8(1) . .

Note that t ~ L is continuous and, hence, we have

(3.2) Corollary. The process L is the unique increasing, and integrable

process associated with the (IPx,Ft)-sub-martingale SAt = G(x,A)
by the Doob-Meyer decomposition.

let A~ = (y - + e) , ~t = 1 m{A~} LA~t,
G(x,A~) = 1 G(x,A~) and ~ = 2014L- sA~t. The following lemma allows’ ~ ~ ~ m{A~} ~
us (roughly speaking) to take the limit of L as e ~ 0 . .
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(3.3) Lemma . The fami ly ( ill/ ; e > 0 ) of r andom variables is uni fo rml y

integrable (~~ = lim ~L).

t~~

Proof. Ue shall argue as M. Rao in [11] p. 70. For X > 0 let

= inf(t : > X) . Then is a F 
t 
-stopping time ’ and T~03BB = i nf{ t: 

~t 
> 03BB} . Ten T~03BB i s a F

t 
- s topp ing t ime, an 

~~ 
> 03BB 1

and only if ’£§  ~. BY the Doob-Meyer decomposition We have

(we drop "e" from our notation)

T03BB 
= E (

~
--
~ |FT03BB)

This implies

T = IE(~|FT - (XT ,A) ,
X X X

and, consequently,

(3. 4) IEx (~;~ > 03BB) = IEx (T03BB; T 03BB 
 ~) + IEx (YT03BB;

T
03BB 

 ~)

= 03BBIPx (~ > 03BB) + IEx(YT03BB ;T03BB  ~) ,

where ~t = ° Further ~’~ obtain

IEx (~ - 03BB;
~ 

> x) = IE x (YT03BB ; T03BB  ~)

and, therefore,

IEx (~ - 03BB;~ > 203BB)  IEx (~ - 03BB;~ > 03BB>

= IEx

(YT03BB;T03BB  ~).

This gives

XIP 
~ (L~ > 2X)  w 

~ 
(y 

’~~ X 
; T ~ 

 m)

and

203BBIPx (~ > 203BB) ~ 2IEx 

(YT03BB;T03BB  ~).

Replacing X by 2X in (3.4) we obtain
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IEx (~;~ > 203BB) = 203BBIPx (~ > 203BB) + IEx (YT203BB ; T
203BB 

 ~)

~ 2IEx (YT03BB;T03BB  ~) + IEx(YT203BB;T203BB  ~).

Further

03BBIPx (T03BB  ~) ~ IEx (~;T03BB  ~)

 1Ex (L ) _ 

We take now "e" back to the notation. Because x ~ G(x,y) is bounded

and jointly continuous we have sup  ~ . Consequently

~ 
E>0

 ~) is uniformly small for large ~ . Also there exists a

constant K such that for all E > 0 and every w we have for all

t > 0 ( = I  K . Hence we obtain

(3.5) IEx (~~;~~ > 203BB) ~ 2K x (T~03BB  ~) + K Px (T~203BB  ~) .

This shows that for every 6 > 0 there exists a a such that the

right hand side of (3.5) is less than 6 for all e > 0 , and the proof

is complete.

(3.6) Remark. Note that for a fixed t > 0 Lt  ~~ , and, therefore,

also the family > 0} is uniformly integrable.

Next we show how the results above can be used to prove the well-known

(3.7) Theorem. For every y E I there exists a process t ~ which

is continuous, increasing, integrable, and F t -adapted. Further

(y,t) ~ Lt is 8(I) x ~([0,~))-measurable and 1P x -a.s. for all t > 0

and A E B(I) 
’

t

(3.8) Lt °

o A

Proof. ° Note that (y,t) ~t is and t  ~t
is predictable. Therefore by the Dunford-Pettis criterion (see [15.] p. 51)
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there exists a family of random variables {Ly;y E I,t > 0} with

the same measurability properties as E I,t > 0} , , and such

that for every y E I and t > 0

(3.8) ~x (~hE) -~ ~ (~Ly)

as 0 along a sub-sequence. Here ~ is an arbitrary bounded

random variable. By the path-continuity and the fact that m is finite

on compact subsets of I it is seen that (3.8) holds in general as

.

Next let My be a right-continuous modification of the martingale

G(x,y) - IEx (Ly~|Ft) .We have

IE (03BE(Myt + Lyt)) = IEx(03BE(G(x,y) - IEx (Ly~|Ft) + Lyt))
= lim IEx (03BE((x,A~) - IEx (~~|Ft) + ~t))°’ t t

= lim IEx 
e~0 

~ ~

’ ~ x (~(G(x~y) - ’

where we used the weak continuity of conditional expectation (see [1~]

p. 55) and (3.3). Consequently for all t > 0 1P -a.s.

(3.9) syt = Myt + Lyt ,

where St = G(x,y) - G(X t ,y) . ° By the right-continuity of t ~ and

(3.9) for all t>0 . 2014 0 . . But is a

and is predictable. Therefore (3.9) is

the unique Doob-Meyer decomposition of Sy . . Further Sy is regular

because the diffusion X is quasi-left-continuous. This implies

(see [11]) that t ~ Lt is in fact continuous.

It remains to prove (3.8). Because (y,t) ~ LY t is 8(I) 
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measurable we can integrate in (3.9) over a set A E 8(1) to obtain

for all t > 0

(3.10) .

f 
A 

. 

A

But t ~ is increasing, integrable, and continuous, and hence

(3.10) is the unique Doob-Meyer decomposition of SA. . This together with

(3.2) gives

t

~ J Li m(dy) , ’
o A

and the proof is complete.

Remark. From (3.8) it follows that for almost all (Lebesque) y we have

for all t > 0 LY = lim L~ . . To extend this statement for all yx - t 
e~0 

"

requires at least right-continuity of y ~ LY . . However it seems to us

that this kind of regularity properties (or Trotter’s theorem) are not

reachable in our framework.

4. Local time as a dual predictable projection

In [1] p. 8 Azema and Yor remark that the local time at the point 0

of a continuous uniformly integrable martingale can be interpreted,

roughly speaking, as a dual predictable projection of the last exit

time from 0 . . In this section we study the local times of a diffusion

from this point of view, and show some applications.

Consider the process Zyt = 1 {03BB_ t} , where 03BB
y 

is the last exit

Y- } Y

time from a point y E I . . By our transience assumption ay  °o IP X -a.s.

the process t ~ Zt is increasing and non-adapted to . We have

(4.1) Proposition. The dual predictable projection of Z is Ly = LY
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where LY is the local time of X constructed in (3.7).

Proof. Denote the optional projection of Xy with °ZY (see [7] (1.23)

p. 14). Then we have for all t > 0 1P -a.s.

(4.2) °Zyt = E(Zyt | Ft)

= IPXt (03C4y = + ~) = 1 - IPXt (03C4y 
 +~)

1 - 03C6~(Xt) 03C6~(y) , Xt ~y

1 
- 03C6~(Xt) 03C6~(y) , Xt~y ,

where we used the Markov property. The right-continuity of Zy implies

the right-continuity of °Zy (see [7] 1.27 p. 14), and, hence, (4.2) is

valid for all t > 0 . Further the right-hand side of (4.2)

is predictable. It follows that

PZyt - PZy0- = Zyt - Zy0 = 1 G(y,y) Syt ,

where pZy is the predictable projection of By (3.9) SY - Ly is

a martingale and L is the only predictable increasing process with

this property. By Dellacherie’s formula (see [4] T30 p. 107) the dual

predictable projection y is such that PZy - PZy0 - Ly is a martingale.

Therefore y = 1 G(y,y) Ly .

The following result (see also [10]p 326 and [12]) is now an easy

consequence of (4.1).

(4.3) Corollary. For x,y E I and t > 0

t

p (0 ~ ~ ~ t) - (s’ x’ ) ds . °
0

Proof. By Dellacherie’s formula we have
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t

]p (0  a  t) = E ( dZs)x y- x s

0
t

= Ex( dL$)o s 

t

- (Ly) - f ds .
G(y,y) x t G(y,y)

0

Remark. Note that E (Ly) - and E (Ly) - G(x,y) . Therefore
- ------ x ~ x 

’

y and Ly may be considered as the local times with the Blwnenthal-

Getoor and Ito-McKean normalizations, respectively (see [2J and [6J).

Next we consider the process Zt = 1{03B6~t} , where 03B6 is the life

time of X . This process is increasing and adapted to (Ft)t>0 . We have

(4.4) Proposition. Let k be the killing measure of X. Then the process

At = Lyt k(dy) + 1 {X03B3- ~I} 
1 
{03B6t}t 

~_ _

I

is the dual predictable projection of the process Z .

Proof. Let A - N Ly k(d ) , and t = 1{T03B6-~I} 1{03B6~t} . Then Ãt ls

the unique, increasing, and predictable process associated with the sub-

martingale

I I

by the Doob-Meyer decomposition. Consequently, if for every bounded,

positive, and Fs-measurable variable 03BEs we have (t > s)

(4.5) E (E; ~ - ~ )) - ~ (~ (Sk - Sk))(4.5) t s x s s t

then A is the dual predictable projection of Z by the uniqueness of

the Doob-Meyer decomposition. To prove (4.5) we note that for I

and x E 
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J G(x,y)k(dy) = f 
[a,S] [a,x)

+ f 
= ~(x)(~’(x) - ~’(a)) 

+ ~ (x) (~~ ( ~) - ~~+(x) )

= F x (a  X _  x) +

+ Px (x  X03B6- ~ 03B2) ,

where we have used (2.4), (2.4)’, and (2.7). This implies

(4.6) J fc(x,y)k(dy) = 1P x (X~ ~- E I) ,
I

and we obtain (4.5):

= Ex(03BEs(sks - skt)) .
Next consider the process t = 1{X03B6-~I}1{03B6~t} ; but on the set

I} the life time § equals to the first hitting time of the set

{a,b} . Therefore Z is predictable, and because it is increasing its

dual predictable projection coincides with it (by the uniqueness of the

Doob-Meyer decomposition). Because Z = Z + Z the proof is complete.

Now we apply (4.4) and Dellacherie’s formula to prove

(4.7) Corollary (see [6] p. 184). Let f be a measurable, positive, and

bounded function on I . Then
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t

IEx(f(X03B6-)1{X03B6-~I};’ 03B6 ~ t) = f(y)p(s;x,y)k(dy)ds .
Proof. By Dellacherie’s formula we have

t

~ o

t

= IEx ( f(Xs)dÃs)
t

f 
Io

where we used Fubini’s theorem. But dLys is supported by {s : Xs = y} .

Therefore

t t

Ex(f(Xs)dLysk(dy)) = IEx (f(y)  dLysk(dy))

= f(y) Ex(Lyt)k(dy)
t

= ~ k(dy) ,
I o

which is the desired result.

As our final application we prove the following well-known representa-

tion theorem for continuous additive functionals. For simplicity we assume

that k(I) = 0 .

(4.8) Theorem. Let A be a continuous additive funtional of a transient

diffusion X with k(I) = 0 . Then there exists a measure P finite on

compact subsets of I such that IP -a.s. for all t > 0

At = Lyt (dy) ,

where LY is the local time for X .

proof. Let T be an exponentially distributed random variable, which is
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independent of X and has a parameter S > 0 . Introduce

= 

inf{t : At > T} if {.} ~  ,

03B6 if {.} =  ,

and consider the process

Z - 
t ~ ~

t 
~ t>~.

The process Z is a diffusion. Denote its killing measure with k ,
and let k = kl . The claim is that k has the required properties.

To prove this note first that k~ = S k, and, therefore, (4.7) gives us

(4.9) Ex(Z03B2- ~ I ;  ~ t) = Ex (Lyt^ 03B2  (dy)) , 

because Lyt^ is the local time for Z03B2 . But

E (Z03B2 E I ;   t) = E (A > T)x ~- - x t

=E (1 - e -SAt) ’

and so (4.9) takes the form

Ex(1 - e-03B2At) = IEx(Lyt^03B2(dy)) .
i.e.

~x ~x ( k(dy) ) .
I

As S ~ 0 ~ fi ~ IPx -a.s. , , and by monotone convergence we obtain

I

This implies that the process

G(x,y)(dy) - G(z03B2t ,y)(dy) - 

At^
is a Px-martingale, where G is the Green function for the process Z03B2 .
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Because t ~ A is continuous we obtain by the uniqueness of the

Doob-Meyer decomposition that IP -a.s. for t > 0

At^  = Lyt^(dy) .

Letting S ~ 0 gives

A - j L y - k(dy) ,
I

and the proof is complete.

Remark. The results in (4.1) and (4.4) (for a killed Brownian motion)

may also be found in a recent paper by Jeulin (see [8]). Techniques in [8]

are however quite different.
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