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WEAK COMPACTNESS IN THE SPACE H1 OF MARTINGALES

Nicolae Dinculeanu

University of Florida
Gainesville, Florida 32611

1. Introduction

Let (Q, ,~’,P) be a probability space and a

filtration satisfying the usual conditions. Let HI be the space of

right continuous martingales M satisfying E(M*)  ". Two martingales

which are indistinguishable will be identified. With the norm

~M~H1 
= E(M*), H is a Banach space.

" 

The classical characterization of weak compactness in has

been extended to the space HI by Dellacherie, Meyer and Yor [2]. In

this note we use [2] to give a new characterization of weak

compactness in H1, in terms of uniform weak convergence of

conditional expectations. This extends results in [1] and I4].

2. The Main Results

Let W be a sub a-algebra of ~. For every martingale M we

denote by E(MJ I ~) or E~ M a right continuous version of the
martingale (E(Mt) ~))t>0 and call it the conditional expectation of M

with respect to . We have (EM)* t ~EM~H1 
1M 

H 
1, 

therefore E ~ is a continuous linear mapping of H1 into itself

and ~E~ I ~ 1.

Here is the main weak compactness criterion:

Theorem 1: Let (n) be an increasing sequence of 03C3-algebras

g~enerating ~’. A set K C H1 is relatively weakly compact iff:

1.) Each K is relatively weakl_y compact;
n

2.) limn Egn M = M weakly in H1, uniformly for M ~ K.
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In case we have a net (rather than a sequence) of a-algebras, we

can still use it to characterize weak compactness in H1:

Theorem 2. Let ( 03B1) be an increasing net of sub 03C3-algebras

generating F. A set K C H1 is relatively weakly compact iff:

1’.) Each K is relatively weakly compact; _

2’.) For each separable subset KO C K there is an increasing

sequence (03B1n) such that limn E g03B1n 
M = M weakly in H1

uniformly for M E Ko.

The proof of the above theorems will follow from lemmas 9 and 10

below.

If a are o-algebras generated by finite partitions, then the

sets E ~ K are finite dimensional, hence, conditions 1) and 1’) in
a

the above theorems are superfluous and we get the following

corollaries:

Corollary 3. Assume F is separable and let ( nn) be an increasing

sequence of finite partitions generating F. For each n let E03C0 be
- 

..- --... 
- 

--. 

-- - 

- 

n 
-

the conditional expectation corresponding to the ~-algebra generated
~ ’~n’ A set K C H1 is relatively weakly compact iff limn E, M = M

weakly in H1, uniformly for M E K. 
n

Corollary 4. A set K C H is relatively weakly compact iff for each

separable subset KO C K, there exists an increasing sequence (nn) of

finite partitions such that lim M = M weakly in H1, uniformly
for M E KO. 

n

3. properties of conditional expectations of martingales

We shall need a few simple properties of H1, in the proof of the
main lemmas 9 and 10.

Lemma 5. Let (Ma) be a net in HI and M E H1 satisfying the following
conditions:
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( i ) lim ston I in L1;
(it) there is f E L1 such that (M~)*  f, a. s. for each g.

Then lim03B1 M03B1 = M strongly in H1.

Proof. Using Doob’s inequality, we deduce from (i) that lim03B1(M03B1)* =
M* in From (ii) we deduce then that = 0

uniformly with respect to a. The conclusion follows by using Vitali’s

convergence theorem.

Lemma 6. The bounded martingales are dense in H1.

Proof. Let M ~ H1 and for every natural number n set Tn =
inf {t; M*t ~  n}., Then Tn is a stopping time and Tn ~ +~ a.s. The

martingale is bounded in absolute valu e by n, and we have

(M - MTn- )* 2M* ~ L1 and (M - MTn- )* = supt > Tn |Mt - MTn- | ~ 0

a. s. as hence ~M - MT
n-

~
H1 

~ 0. ( see also [3], VII, 71).

Lemma 7. If F is separable then H1 is separable.

Proof. L1 is separable. Let R~ be a countable set of bounded random
variables dense in L1. We can assume that f E R~ implies f-n E R~.
for every n. Let R be the set of martingales M E H1 such that
M~ E R~. By the preceding lemma it is enough to prove that R is
dense in the set of bounded martingales of H1,

Let M E H1 be a bounded martingale and let (Mn) be a sequence
from R such that M~ -~ M~ in L1 and pointwise a.s. Replacing
M~ by M~ ^ if necessary, we can assume that  

a.s. for every n. Then (Mn)*  for every n, therefore, by
lemma 5, in H. 
Lemma 8. Let ( ~a) ) be an increasing net of sub o-algebras of 

o-algebra enerated by this net. For every martingale
M we have lim03B1 E M 

= 

E M strongly in H1,

Proof. Let M E H1 be a bounded martingale. We have

lima E(Mj ~a) - strongly in L1 and (E~ M)*  IM I a.s.
for each a. ~ a °° °°

The conclusion follows from lemma 5, for M bounded, and it
remains valid for arbitrary M E H1, by using the Banach-Steinhauss
theorem.



288

Remark. Consider the increasing net (~c) of all finite partitions of

~. The corresponding increasing net (E ) of conditional

expectations consists of finite rank operators and lim E ~ M = M
strongly in H1. By Phillips’ lemma ([5], IV.5.2) the limit is

uniform on every compact subset of H1. It follows that HI has the
bounded approximation property. Corollary 3 states that if F is

separable, then H1 has the "weak approximation property".

Lemma 9. Let ( be an increasing net of sub 03C3-algebras of F and

W the 03C3-algebra generated by this net. Let K C H1 be a relatively

weakly compact set. Then:

1. Each E 03B1 

K is relatively weakly compact;

2. lim03B1 E 03B1 
M = EgM weakly in H1, uniformly for M ~ K;

3. for every separable subset K~ C K there is an increasing

sequence (an) ) such that limn E % 
an 

M = E M weakly in H1,
n

uniformly for M E K~.

Proof. The first assertion follows from the continuity of E 03B1.

To prove the second assertion, consider the set Kb consisting of
all bounded martingales M E H1 such that M*  N* for some N E K.

Since the set K* = ~M*; M E K} is uniformly integrable ([2], theorem

1), we deduce that the set Kb = (M*; M E Kb} is uniformly integrable.

The set Kb is dense in K for the strong topology of H1. We shall

first prove assertion 2 for Kb. Let  be a continuous linear

functional on H1 and let Y E BMO be a martingale such that

E(M Y~) ) for any bounded martingale M E H1 ([3], VII, 77).

For M £ Kb the martingales E ~ a M and E ’fJ M are bounded, therefore,

M - lE 
a 
M)m - I =

= ) ~) - ) I = ) ~) - E(Yj? ))]) I 

 
1 
E(Y~I ~ )J ~ +
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+ |E[M~I{M*~03BB} (E(Y~|g03B1) - E(Y~|))] I t 20 ~Y~BMO1 E[M*I{M*>03BB}] 
+

+ ~ E j .

Given e > 0, we first choose 1~ such that the first term is smaller

than 1 (À is independent of M E Kb since Kb is uniformly integrable),

then we take a£ such that for a > 03B1~ the second term 
is smaller

than 2. This proves 2) for M ~ Kb. Then 2) remains valid for M E K,

by the Banach Steinhauss theorem, since Kb is dense in K

and sup03B1 ~E I  1.
a

To prove 3) let KO be a separable subset of K, and let LO be a

separable sub a-algebra of ~, such that for every martingale 
’

M = (Mt) from K0, each Mt is We can consider the

probability space with the filtration 03A3t = LO for

t > 0, and denote by the subspace of HI consisting of the

martingales adapted to (E t ). The space is separable and

contains By a diagonal process we can find an increasing

sequence (an) ) such that limn E 
M = EM strongly, for M in a

countable dense set of H1(LO)’ and then, by the Banach-Steinhauss

theorem, for all M E If we denote Q = and

H = G ~ 03A30 we have E03B1 M = E03B1 M and E M 
= 

EM 
for M 

~ H1(03A30),
therefore, limn E03B1n M = EM, strongly, for M ~ H1(03A30).

It follows that ~is the a-algebra generated by the sequence

(03B1n ). By 2) we have then lim03B1 E03B1n M = EM, weakly in H1(03A30)

uniformly for M ~ K0 and 3) follows by noticing that the weak

topology of is equal to that induced by the weak topology of

H1.

Lemma 10. Let ( &#x26; ) be an increasing sequence of sub 03C3-algebras of

~ and ~ the o-algebra generated by this sequence. Let K 

each K relatively weakly compact and if 
n 

M = E~ M,
weakly in H1, uniformly for M E K, then E K is relatively weakly

compact.
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Proof. Let S be a positive random variable on Q. The mapping M ~ MS
of H1 into L1 is linear and continuous: E|MS| E(M*). Then, for

each n, the set (En K)S: = {(En M)S; M ~ K} is relatively weakly

compact in Ll and limn M)S = (E ~ M)S weakly in Ll, uniformly

for M E K. By lemma 6 in [1], and since L1 is weakly sequentially

complete, the set (E~ K)S is relatively weakly compact in Ll. Then,

by lemma 5 in [2], the set E K is relatively weakly compact in H1.
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Note. In the proof of lemma 6, we denoted Mt - supst |Ms|; then

(M*t)t~0 is left continuous, hence Tn is predictable, therefore

MTn- is a martingale.


