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Predictable Representation of Martingale Spaces
and Changes of Probability Measure

Darrell Duffie

Graduate School of Business

Stanford University

Stanford, California 94305, USA

ABSTRACT

We study the predictable representation of martingale spaces under a change of probability
measure. The canonical decomposition of special semimartingales provides a simple route

to the identity and cardinality of a minimal generating subset of martingales under a change
of probability.

1. Introduction

Certain "high"- dimensional spaces of martingales can be generated by a fixed vector

of martingales via predictable representations. This property has found application, for

example, in stochastic control [1], filtering [11], and more recently in the economics of

security trading [5]. The classic study by Kunita and Watanabe [9] of square-integrable

martingales has been widely extended; a book [8] and paper [7] by Jean Jacod cover much

of the theory I am aware of.

Here we characterize an association between martingale subspaces under different prob-

ability measures, in particular the identity and cardinality of minimal generating subsets

of martingales. This cardinality has been termed multiplicity [2], and more generally,

q-dimension [8]. Under regularity conditions on the change of probability measure, the

q-dimension of the space of q-integrable martingales is invariant. A generating vector of

local martingales under one probability measure maps to a generating vector of local mar-

tingales under a new probability measure via the transformation specified by "Girsanov’s

Theorem" .

This paper was instigated by a study of multiperiod security markets [4], a setting

in which the predictable representation property under a change of probability plays an

important role [6].

I would like to thank Ruth Williams and Jean Jacod for comments. An early draft

appeared as an appendix to my dissertation. For the dissertation in general, I would like

to acknowledge the guidance of David Luenberger, David Kreps, and Kenneth Arrow.
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2. Preliminaries

Let (n, 3, P) be a complete probability space and F = {3t; t E R+} be a filtration

of sub-tribes of 1 satisfying the usual conditions. We work exclusively on the filtered

probability space (ft, 3, F, P) for this section.

It is well known that any special semimartingalei X has a unique decomposition of the

form: X = .X~ + X°, where .X~ denotes the local martingale part and .X~ denotes the pre-

dictable finite variation null-at-zero part. Similarly, if X = (Xi, ... , Xri) is an R"-valued

process whose components are special semimartingales, we write X° for (Xl , ... , Xn ), and
so on. If I is a set of special semimartingales, we use X ° to denote the set of local

martingales ~X°; X e I}. .

The following general conditions for the existence of real-valued stochastic integrals

with respect to R"-valued semimartingales were developed by Jacod [8]. I use a presenta-

tion similar to that of Memin [12].

First, let M be an R"-valued local martingale. Then there is an increasing finite

variation real-valued process C and an optional n x n positive semi-definite matrix valued

process c = (c;; such that = c; J ’ C, where as usual [’,’] denotes quadratic variation

(optional compensator) and the raised dot notation A . B is used for the path-by-path

Stieltjes integral of A with respect to B (and soon for stochastic integrals as well). Let

L(M) denote the set of R"-valued predictable processes H = (Hi, ... , Hn ) such that

((~;~~ is locally integrable. If H E L(M) the stochastic integral H’ M is

defined as the unique local martingale satisfying

[H.M,N] = (03A3HiMi).C,
for every real valued local martingale N, where Ki denotes the optional process satisfying

(M;, N~ = K; . C.

In the case of an R"-valued RCLL finite variation process A = (Al, ... AR), there is an

increasing real-valued finite variation process V and an optional process v = (ui, ..., vn)
such that A; = v; V. If A is predictable, we can choose v and V to be predictable.
Let L(A) denote the set of R"-valued predictable processes H = (Hi, ... Hn) such that

j ~; ’V is a finite variation process. For H E L(A), the stochastic integral 8 ~ A is
defined as the Stieltjes integral H;u;) ’ V.

Finally, let X be an R"-valued semimartingale. Let L(X) denote the set of R"-

valued predictable processes H such that there exists a decomposition of X as the sum

of an R"-valued local martingale M and an R"-valued finite variation process A with

H E L(M) n L(A). . The stochastic integral H X, defined as the sum of H M and H A

1 The definitions of a special semimartingale and other standard concepts used in this
paper may be found in Jacod [8], or Dellacherie and Meyer [3].
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does not depend on the particular decomposition chosen for X. This definition extends

that for the sum of component stochastic integrals ~~ H; X;, which may not exist for all

H E L(X).
For any q E [l,oo) define the positive extended real-valued functional ~~ ’ (~q on the

space of semimartingales by

~X~q = ~supt~0[X,X]1/2t ~Lq(03A9,F,P)

for any semimartingale X. Let denote the subspace of local martingales M such that

Mo = 0 and ~~ M ~~q oo. We restricition our attention to the null-at-zero merely for

convenience. Extensions of our results to the general case are easily deduced from Lemma

4.8 of Jacod [8]. As is well known, .M~ is a Banach space under the norm ~~ ’ ~~Q, taking an

element of .M~ to be an equivalence class of indistinguishable processes. A stable subspace
of Mq is a ~ . ~q-closed vector subspace M of MQ such that IAMT E M for every M E M,

A E 30, and stopping time T. This is equivalent to stability under stochastic integration,

in the sense that .M is a stable subspace of .M~ if and only if, for any vector local martingale

M whose components are elements of M, ,

C9(M) - (H M E H E L(M)} ~ ~l.

This is a trivial extension of Jacod [8;(4.3)]. For any set .M of local martingales let ,~q(M)

denote the smallest stable subspace of Mq containing for all M E M. In fact, )

is the closure of UMEM C~(M) (8;(4.5)~. Of course is itself a stable subspace of Mq

for any vector M of local martingales.

For any set A of adapted processes let denote the set of processes which are

"locally" in .~. That is, A E if there is an increasing sequence of stopping times (Tn ) )

such that Tn --~ oo a.s. and ATn E ~ for all n.

For any vector M of local martingales, let C(M) _ {H ’ M; He L(M)}.

LEMMA 2.1. . For any vector M of local martingales, = C(M). .

PROOF: , Let X E and (Tn) be an increasing sequence of stopping times converging

to infinity such that there exist Hn E L(M) with XT^ = Hn M for all n > 1. Define a

sequence (Yn) of processes in L(M) as follows. Let Yl = Hi. . Let Yn+i = Yn on ~O, T"~
and Yn+l = Hn+i on DTn, oo(. Since = Yn, the processes (Yn) "paste together" to

form a process Y, which is predictable since Y = limn Yn. Then Y E L(M) and X 
= Y ’ M

since XTn = (y M)Tn for all n. I

.. 

If M is a stable subspace of Mq, a q-generator of M is a vector M of local martingales

whose components are elements of such that M. If M = (Ml, ..., Mn) is

a q-generator of M and there is no q-generator of fewer components, 
the q-dimension of

~l is n and M is a q-basis for M. Many examples are given by Jacod [7,8]. If M has no
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(finite) q-generator, its q-dimension is defined to be innnite. If ~~! = {0}, its q-dimension
is defined to be zero. This covers all cases, although it is possible to distinguish countably

infinite from uncountably infinite q-dimension [8 ;Chapter 4].
The following result shows that the q-dimension of a stable subspace M C ,M9 is in fact

the minimum dimension of a vector of martingales M which generates M (or M C 

whether or not the components of M are in .

LEMMA 2.2. . Suppose, for some q E [1,oo), that J~t is a stable subspace of and M =

(A~i,... ,A~,) is a vector of local martingales such that J~! C ,C(M). . Then _ n.

PROOF: Choose any vector martingale N = (Ni, ... , N~ ) whose components are in M,
with associated dimension process sN, as defined by Jacod [8,p.147]. Let denote the

dimension process associated with M. By assumption, there exists an m x n matrix valued

process K whose rows are elements of L(M) such that N = K ~ M, in the obvious sense.
Since the components of both M and N are elements of Jacod’s Proposition (4.71)
applies for q = 1 and sN  almost surely. Then Jacod’s Theorem (4.74) can be
applied to complete the proof. I

COROLLARY. Suppose 1 S q  p  oo. Then p-dim(Mp)  

PROOF: : This follows from the fact that Mp C Mq. . I

3. . Change of Probability

Let Q be any probability measure on (i~, 3) absolutely continuous with respect to P. When

defining concepts under Q we work on the filtered probability space (H, 3Q, FQ, Q), where
1Q and FQ denote completions for Q. We distinguish definitions for the two filtered

probability spaces (fI, 3, F, P) and (n, 3Q, FQ, Q) by augmenting the notation with "P"
or "Q", as in Lp(X) and LQ(X), (~ . and ~~ . and X~, and

H 9X, l~ p and and so on. Let S(P) and Sp(P) denote the spaces of semimartingales
and special semimartingales, respectively, under P, and similarly define S(Q) and Sp(Q).
We use the facts that S(P) C S(Q) and that the quadratic variation of a semimartingale
under P is a Q-version of its quadratic variation under Q. See, for example, Chapter 7 of

[8].
Let the P-martingale 03BE denote the density process [8, Chapter 7] for the Radon-

Nikodym derivative dQ dP, equating 03BE(t) with the restriction of dQ dP to Ft for all t > 0. For

reference, we identify the mapping and its domain of definition, the P-local
martingales in Sp(Q). This identification is known as Girsanov’s Theorem, due to Lenglart
[10] in this generality. The following form of the theorem is from (8,(7.29)J.

THEOREM 3.1. ° Let M E . Then M e Sp(Q) if and only if (M, £J is locally of
integrable variation, in which case M~Q = (03BE-1)-.M, 03BE~P and = M 
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The condition on [A~f, $] may be difficult to verify. The following sumcient condition
is a trivial consequence of [3;yil.39]. As usual, Mp denotes the space of P-essentially
bounded martingales.

LEMMA 3.1. ° Let q E (1, oo) and q~ E (1, oo] + Q~ = 1. then

C Sp (Q).

The following result is due to Memin [12].

PROPOSITION 3.1. . Let X be any R"-valued P-semimartingale. If H ~ Lp(X) then

H E LQ(X and H PX is a Q-version of H 9X.
’ 

The next lemma is a technical aid. We write for whenever the

operations are defined, and so on for other combinations.

LEMMA 3.2. . For any M E Q Sp (P), both and are in ~p(Q), and:

(a) = M

(&#x26;) 

(c) = ~P

(d) = 0

PROOF: : Since is predictable, finite variation, and null-at-zero under P, and Q -~ P,
the same properties hold under Q, proving E Sp ( Q) as well as (c) and (d). Since

M°P = M - forms the canonical decomposition of M4P under Q, the remaining
claims follow immediately. I

PROPOSITION 3.2. . Suppose the components of M = (Mi, ... Mn) are elements of

Sp(Q) and H E Lp(M). If H PM E Sp(Q) then HE LQ(M°Q) and (H 
is a Q-version .

PROOF: : For the case n = 1, [8,(7.26(a))] shows that H e and that (H PM) -
(03BE-1)- . (H P.M,03BE~ is a Q-version of H . A proof of this result for n > 1 is a

straightforward extension of Jacod’s proof of [8, (7.26(a))]. Then the result follows from
Theorem 3.1. I

We have a preliminary result showing the basic relationship between stable subspaces
under a change of probability.

PROPOSITION 3.3. . Suppose ~ is essentially bounded. For any q E (1, oo) and any set
N of local martingales, £qP(M)Q C If, in addition, dP dQ exists and is essentially

~ 

bounded, then = CQ(,M°~). 
’

PROOF: : Only the first assertion is proved here. The proof of the second is clear given the

proof below.
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Let X E implying a sequence (Xn) converging to X in f I and thus also

converging in II . such that, for all n, Xn = E MP, where Mn E .M, and
Hn E By Proposition 3.2 and Lemma 3.1, Hn E LQ(Mn) and (Hn =

~ By Dellacherie and Meyer [3], (VIL95, Remark (c)),

~ X~Q - Hn ~qQ  x9 II X - Hri Q.Mn ~qQ (A)

for a given constant Kq depending only on q. Thus Hn ~M~ -+ in f . Since

is IIqQ-closed, X~ E I

The following may be considered the main result. As a reminder, necessary and suf- 
’

ficient conditions for a local martingale to be a special semimartingale under a change of

measure are given by Theorem 3.1, with convenient sufficient conditions for a q-generator

given by Lemma 3.1. . It may be worth noting that a semimartingale with locally bounded

jumps is a special semimartingale under any absolutely continuous change of probability

measure.

THEOREM 3 . 2. . Suppose M = (M1, ...,Mm) ) is a q-generator of M p wbose components
are Q-special semimartingales, and t is locally (P-essentially) bounded, then:

(a) MQ
(&#x26;)   m.

PROOF : {Part (a)1 By definition, C MQ. Suppose X E MQ. Let (Tn ) be an
increasing sequence of stopping times such that T,~ --~ oo P-almost surely and ( ~ )T^ is (P-
essentially) bounded for all n. Then E Sp(P) for all n, and by X E Sp(P). .
For any n, the quadratic variation (X, X~Q is a P-version of (X, X~p on (0, TnD. Thus, for
any n,

K9 II XT^ ~qP ~ B II XT ~qQ m
where B is an essential upper bound on ( ~ )T^ and I~q is as given in relation (A). (We have
not assumed P -~ Q, but for the last claim we can restrict ourselves to (H, and apply
the results of Jacod jsJ, Chapter ?, in particular Theorem ?.2.) Thus X~ E M p~~o~, and
by Lemma 2.2 there exists H E L(M) such that X~* = H By Proposition 3.2 and
Lemm a 3.2 we have X = proving part (a).

{Part (b)} This follows from Lemma 2.2. I

Remark: For the case q = 1, the assumption that 1/~ is locally bounded may be
replaced by the assumption that MQ C Sp(P). .

The following corollary is verified by applying symmetry and the bound Ifq used in

expression (A).
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COROLLARY 1. . Suppose Q and P are equivalent and ~ as well as t are locally (essentially)
bounded. Then = If ~ is a q-generator (q-basis) for then
M°Q is a q-generator (q-basis) for .
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