SÉminaire de probabilités (Strasbourg)

Edwin A. Perkins
 Stochastic integrals and progressive measurability. An example

Séminaire de probabilités (Strasbourg), tome 17 (1983), p. 67-71
http://www.numdam.org/item?id=SPS_1983_17__67_0
© Springer-Verlag, Berlin Heidelberg New York, 1983, tous droits réservés.
L'accès aux archives du séminaire de probabilités (Strasbourg) (http://portail. mathdoc.fr/SemProba/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numbam

Article numérisé dans le cadre du programme

Edwin Perkins

In this note we construct a measurable set $\mathrm{D} \subset[0, \infty) \times \Omega$, a 3-dimensional Bessel process, X, and a filtration, $\left\{F_{t}^{B}\right\}$, containing the canonical filtration, $\left\{F_{t}^{X}\right\}$, of X satisfying the following properties:
(i) X is an $\left\{F_{t}^{B}\right\}$ - semimartingale.
(ii) D is an $\left\{F_{t}^{X}\right\}$ - progressively measurable set, i.e., $D \cap[[0, t]] \in$ Borel $([0, t]) \times F_{t}^{X}$ for all $t \geq 0$.
(iii) $\int_{0}^{t} I_{D} d X=X(t)$, where the left side is interpreted with respect to $\left\{F_{t}^{X}\right\}$, and I_{D} denotes the indicator function of D.
(iv) $\int_{0}^{t} I_{D} d X$ is an $\left\{F_{t}^{B}\right\}$ - Brownian motion when the stochastic integral is taken with respect to $\left\{F_{t}^{B}\right\}$.

As the local martingale part of X with respect to either filtration will be a Brownian motion (since $[X](t)=t$), $\int_{0}^{t} I_{D} d X$ may be defined in the obvious way even though D will not be predictable.

Let B be a 1-dimensional Brownian motion on a complete (Ω, F, P). If $M(t)=\sup _{s \leq t} B(s), Y=M-B$ and $X=2 M-B$, then Y is a reflecting Brownian motion, and X is a 3-dimensional Bessel process by a theorem of Pitman [4]. $\left\{F_{t}^{X}\right\}$, respectively $\left\{F_{t}^{B}\right\}$, will denote the smallest filtration, satisfying the usual conditions, that makes X, respectively B, adapted. $F_{\bullet \subseteq}^{X} \subseteq F^{B}$ is clear, and since $M(t)=\inf _{s \geq t} X(s)$, the inf being assumed at the next zero of Y, we must have $F_{t}^{X} F_{t}^{B}$ for $t>0$, as $M(t)$ cannot be F_{t}^{X}-measurable. Finally, define

$$
D=\left\{(t, w) \mid \lim _{n \rightarrow \infty} n^{-1} \sum_{k=1}^{n} I\left(X\left(t+2^{-k}\right)-X\left(t+2^{-k-1}\right)>0\right)=1 / 2\right\} .
$$

Property (i) is immediate and for (ii), fix $t \geq 0$ and note that

$$
D \cap[[0, t]]=(\{t\} \times D(t)) \sum_{N=1}^{\infty}\left\{(s, \omega) \mid s \leq t-2^{-N},\right.
$$

$$
\left.\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=N}^{\infty} I\left(X\left(s+2^{-k}\right)-X\left(s+2^{-k-1}\right)>0\right)=1 / 2\right\} \in \operatorname{Borel}([0, t]) \times F_{t}^{X} .
$$

Here $D(t)$ is the t-section of D. To show (iii) choose $t>0$ and note that

$$
X\left(t+2^{-k}\right)-X\left(t+2^{-k-1}\right)=B\left(t+2^{-k-1}\right)-B\left(t+2^{-k}\right) \text { for large } k \text { a.s. }
$$

Therefore the law of large numbers implies that

$$
\begin{equation*}
P((t, \omega) \in D)=1 \text { for all } t>0 . \tag{1}
\end{equation*}
$$

The canonical decomposition of X with respect to $\left\{F_{t}^{X}\right\}$ is (see McKean [3])

$$
\begin{equation*}
X(t)=W(t)+\int_{0}^{t} X(s)^{-1} d s \tag{2}
\end{equation*}
$$

where W is an $\left\{F_{t}^{X}\right\}$ - Brownian motion. Therefore with respect to $\left\{F_{t}^{X}\right\}$ we have

$$
\int_{0}^{t} I_{D} d X=\int_{0}^{t} I_{D} d W+\int_{0}^{t} I_{D} X_{s}^{-1} d s=X(t) \text { a.s. (by (1)) }
$$

It remains only to prove (iv). If

$$
T(t)=\inf \{s \mid M(s)>t\},
$$

we claim that

$$
\begin{equation*}
P((T(t), \omega) \in D)=0 \text { for all } t \geq 0 . \tag{3}
\end{equation*}
$$

Choose $t \geq 0$ and assume $P((T(t), \omega) \in D)>0$. Since $X(T(t)+\cdot)-X(T(t))$
is equal in law to $X(\cdot)$, the $0-1$ law implies that
$P((T(t), \omega) \in D)=1$. The dominated convergence theorem and Brownian scaling imply

$$
\begin{aligned}
1 / 2 & =n^{-1} \sum_{k=1}^{n} P\left(X\left(2^{-k}\right)-X\left(2^{-k-1}\right)>0\right) \\
& =P(X(2)-X(1)>0) \\
& =P(B(2)-B(1)<2(M(2)-M(1))) \\
& >1 / 2 .
\end{aligned}
$$

Therefore (3) holds and, with respect to $\left\{F_{t}^{B}\right\}$, we have w.p.l

$$
\begin{aligned}
\int_{0}^{t} I_{D} d X & =2 \int_{0}^{t} I_{D} d M-\int_{0}^{t} I_{D} d B \\
& =2 \int_{0}^{t} I_{D}(T(s), \omega) d s-B(t) \quad \text { (by (1)) } \\
& =-B(t)
\end{aligned}
$$

This completes the proof.

It is not hard to see that the above result implies that the optional projections of I_{D} with respect to $\left\{F_{t}^{X}\right\}$ and $\left\{F_{t}^{B}\right\}$ are distinct. In particular D cannot be $\left\{F_{t}^{X}\right\}$-optional. In fact, D is not $\left\{F_{t}^{B}\right\}$-optional and both optional projections may be computed explicitly.

Proposition (a) The optional projection of I_{D} with respect to $\left\{F_{t}^{X}\right\}$ is $I_{(0, \infty) \times \Omega}$.
(b) The optional projection of I_{D} with respect to $\left\{F_{t}^{B}\right\}$ is $I_{Z} c$ where Z is the zero-set of Y.
(c) D is not $\left\{F_{t}^{B}\right\}$ - optional.

Proof (a) Let $\infty \geq \mathrm{T} \geq \varepsilon>0$ be an $\left\{\mathrm{F}_{\mathrm{t}}^{\mathrm{X}}\right\}$ stopping time. The law of large numbers implies that
(4) $\quad \lim _{\mathrm{n} \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} I\left(W\left(T+2^{-k}\right)-W\left(T+2^{-k-1}\right)>0\right)=1 / 2$ a.s. on $\{T<\infty\}$,
where W is as in (2). Recall that $M(t)=\inf _{s \geq t} X(s)$. Therefore

$$
\begin{aligned}
& E\left(\mid I\left(W\left(T+2^{-k}\right)-W\left(T+2^{-k-1}\right)>0\right)-I\left(X\left(T+2^{-k}\right)-X\left(T+2^{-k-1}>0\right) \mid I(T<\infty)\right)\right. \\
\leq & P\left(0 \geq W\left(T+2^{-k}\right)-W\left(T+2^{-k-1}\right) \geq \int_{\left.T+2^{-k-1} X(s)^{-1} d s, T<\infty\right)}^{T+2^{-k}}\right. \\
\leq & P\left(0 \geq\left(W\left(T+2^{-k}\right)-W\left(T+2^{-k-1}\right)\right) 2^{\left.(-k-1) / 2 \geq-2^{(-k-1) / 2} M(\varepsilon)^{-1}, T<\infty\right)}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \leq C E\left(\min \left(1,2^{-(k-1) / 2} M(\varepsilon)^{-1}\right)\right) \\
& \leq C\left(2^{-(k-1) / 4}+P\left(M(\varepsilon)<2^{-(k-1) / 4}\right)\right) \\
& \leq C(\varepsilon) 2^{-(k-1) / 4} .
\end{aligned}
$$

The Borel-Cantelli lemma implies that
(5) $\quad \mathrm{W}\left(\mathrm{T}+2^{-\mathrm{k}}\right)-\mathrm{W}\left(\mathrm{T}+2^{-\mathrm{k}-1}\right)>0 \Leftrightarrow \mathrm{X}\left(\mathrm{T}+2^{-\mathrm{k}}\right)-\mathrm{X}\left(\mathrm{T}+2^{-\mathrm{k}-1}\right)>0$ for large k a.s. on $\{T<\infty\}$.
(4) and (5) imply that (T, ω) $\in \mathrm{D}$ a.s. Moreover by (3) with $t=0$, $(0, \omega) \notin D$ a.s. Therefore if T is any $\left\{F_{t}^{X}\right\}$ - stopping time and

$$
T^{\prime}=\left\{\begin{array}{lll}
& \text { if } & T>0 \\
\infty & \text { if } & T=0
\end{array}\right.
$$

then

$$
\begin{aligned}
E\left(I_{D}(T, \omega) I(T<\infty)\right)= & \lim _{\varepsilon \rightarrow 0^{+}} E\left(I_{D}\left(T^{\prime} \vee \varepsilon, \omega\right) I\left(T^{\prime}<\infty\right)\right) \\
= & P\left(T^{\prime}<\infty\right) \quad \text { (since by the above } \quad\left(T^{\prime} v \varepsilon, \omega\right) \in D \\
& \text { a.s. on } \left.\left\{T^{\prime}<\infty\right\}\right) \\
= & P(0<T<\infty) .
\end{aligned}
$$

This proves (a) .
(b) Let $T \leq \infty$ be any $\left\{F_{t}^{B}\right\}$ - stopping time. Then just as in the derivation of (1) one has

$$
\begin{equation*}
(T, \omega) \in D \text { a.s. on }\{Y(T) \neq 0, T<\infty\} . \tag{6}
\end{equation*}
$$

Moreover just as in the derivation of (3) one has

$$
\begin{equation*}
(T, \omega) \notin D \text { a.s. on }\{Y(T)=0, T<\infty\} . \tag{7}
\end{equation*}
$$

Therefore

$$
E\left(I_{D}(T, \omega) I(T<\infty)\right)=P(Y(T) \neq 0, T<\infty)
$$

and (b) is proved.
(c) If D is $\left\{F_{t}^{B}\right\}$ - optional then $D=Z^{C}$ (up to indistinguishability) by the above. Therefore Z is on $\left\{F_{t}^{X}\right\}$ - progressively measurable set. $M(t)$ is the local time of Z and hence can be constructed from Z as Lévy's mesure du voisinage [2, p.225] . It follows easily from this construction that $M(t)$ is $\left\{F_{t}^{X}\right\}$ - adapted. As $M(t)$ is the future minimum of X, this is absurd.

The above example was suggested by joint work with Michel Emery [1], in which the predictable set

$$
\left\{(t, \omega) \mid \lim _{n \rightarrow \infty} n^{-1} \sum_{k=1}^{n} I\left((c M-B)\left(t-2^{-k}\right)-(c M-B)\left(t-2^{-k-1}\right)>0\right)=1 / 2\right\}
$$

was used to show $F^{c M-B}=F^{B} \Leftrightarrow c \neq 2$.

List of References

1. Emery, M. and Perkins, E. La filtration de B+L.
Z.f. Wahrscheinlichkeitstheorie 59, 383-390 (1982).
2. Lévy, P. Processus Stochastiques et Mouvement Brownien. GauthierVillars, Paris, 1948.
3. McKean, M.P. The Bessel motion and a singular integral equation.

Mem. Coll. Sci. Univ. Kyoto. Ser. A Math. 33, 317-322 (1960).
4. Pitman, J. One-dimensional Brownian motion and the three-dimensional Bessel process. Adv. App1. Prob. 7, 511-526 (1975).

Edwin Perkins
Mathematics Department
U.B.C.

Vancouver, B.C.
Canada V6T 1 Y4

