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STOCHASTIC INTEGRALS AND PROGRESSIVE

MEASURABILITY -- AN EXAMPLE

by

Edwin Perkins

In this note we construct a measurable set Dc [0,~) x Q , a

3-dimensional Bessel process, X , and a filtration, {FB} , containingt

the canonical filtration, {FXt} , of X satisfying the following prop-t

erties:

(I) x is an - semimartingale.
t

(it) D is an progressively measurable set, , I. e.,t

~~ ~~~~~~~ ~ ~~~~~~~ ~ ~~~ 

(iii) ~o I~ dX = X(t) , , where the left side is interpreted with
respect to lF§I , and ID denotes the indicator func-

tion of D . 
’

(iv) t0 ID dX is an lfll - Brownian motion when the stochastic
integral is taken with respect to .

t

As the local martingale part of X with respect to either filtration

will be a Brownian motion (since lxl(t) =t) , 
. t0 ID dx may be defined

in the obvious way even though D will not be predictable.

Let B be a I-dimensional Brownian motion on a complete (Q,F,p) .

If Mt> = B s> , Y = M - B and x = 2M - B , then Y is a refiecting

Brownian motion, and X is a 3-dimensional Bessel process by a theorem

°f Pitman 14i ifi , respectively {FBt} , will denote the smallest fii-

tration, satisfying the usual conditions, that makes X , respectively

B , adapted. FX.~FB. is clear, and since M(t) = inf X(s), , the inf- 

szt

being assumed at the next zero of Y , we must have FX~FB for
t t .

t>0 . , as M(t) cannot be # t - measurable. Finally, define

D=I(t,w)(lim n 
~ i -X(t+2 ~ ~) >0) =1/21 .

n+m k=1
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Property (i) is immediate and for (ii), fix t ?0 and note that

Dn [[O,t]]=((t}xD(t)) u ,

N=1

lim 1  I(X(s+2 k) -X(s+2 k 1) > 0)=1/2} E Borel([O,t]) x .

~ 
k=N t

Here D(t) is the t-section of D . . To show (iii) choose t > 0 and

note that

X(t+2 k) -X(t+2 k 1) =B(t+2 k 1) -B(t+2 k) for large k a.s.

Therefore the law of large numbers implies that

(1) ED) =1 f or all t > 0 .

The canonical decomposition of X with respect to is (see McKean

[3])

(2) X(t) =W(t) + ,

where W is an (Ft} - Brownian motion. Therefore with respect to {~X}
t t

we have

It ID ID ID Xs (by (1)) . °

It remains only to prove (iv). If

T(t) = > t} , ,
,

we claim that

(3) ED) = 0 for all t ? 0 ..

Choose t ?0 and assume E D) > 0 . . Since X(T(t) +.) - X(T(t))

is equal in law to X(~) , , the 0-1 law implies that

P((T(t),w) ED) = 1 . . The dominated convergence theorem and Brownian

scaling imply
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1/2 =n 1 ~ P(X(2 k) -X(2 k 1) > 0)
k=1

=P(X(2) -X(1) > 0)

= P(B(2) -B(1)  2(M(2) -M(1)))

> 1/2 . .

Therefore (3) holds and, with respect to {FB} , , we have w.p.l

t0 ID dX = 2 t0 ID dM-t0 ID dB

= 2 0 (by (1))

= -B(t) (by (3))

This completes the proof.

It is not hard to see that the above result implies that the optional

projections of ID with respect to and are distinct. In parti-

cular D cannot be {FXt}-optional. In fact, D is not {FBt}-optional and
both optional projections may be computed explicitly.

Proposition (a) The optional projection of ID with respect to {~t}
is 

(b) The optional projection of ID with respect to {~B}
is IZc where Z is the of Y . °

(c) D is not optional.

Proof (a) T >_ E > 0 be an stopping time. The law of large

numbers implies that

(4) lim 1  I(W(T+2 k) -W(T+2 k 1) > 0) =1/2 a.s. on {T  ~} ,
k=1

where W is as in (2). Recall that M(t) = infs~tX(s) . . Therefore

E(|I(W(T+2-k)-W(T+2-k-1) > 0) - I(X(T+2 k) -X(T+2 k 1 > 0)| I(T  ~))

T+2-k
~ P(0~W(T+2- k)- W(T+2- k-1)~T+2-k T+2-k-1 X(s)- 1ds , T  ~)

~P(0 ~ (W(T+2-k)-(W(T+2-k) -W(T+2-k-1))2(-k-1)/2 ~ -2(-k-1)/2M(~)-1 , T  ~)
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 CE(min(l, 2 (k-1)/2M(E)-1))

sC(2 (k 1)~4+P(M{~)  2 (k 1)~4))

 C(e)2 (k 1)~4 . .

The Borel-Cantelli lemma implies that

(5) W(T+2’~) - W(T+2’~~-) > 0 ==> X(T+2’~) -X(T+2’~’~) > 0
for large k a.s. on (T  ~} . .

(4) and (5) imply that (T,w) E D a.s. Moreover by (3) with t = 0 , ,

a. s. Theref ore if T is any {FXt} - stopping time and

T’= T if T > 0~ if T = 0 ,

then

E(ID(T,w) I(T  ~)) = lim  ~))
e+0+

=P(T’  ~) (since by the above E D

a.s. . on (T’~}) 
’

=P(0T~) . .

This proves (a) . .

(b) Let T ~ ~ be any {FBt} - stopping time. Then just as in the deri-

vation of (1) one has

(6) (T,w) E D a.s. . on {Y{T) ~ 0 , T  ~} . .

Moreover just as in the derivation of (3) one has

(7) D a.s. . on {Y(T) = 0 , T  

Therefore

, T°o) ,
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and (b) is proved.

(c) If D is {FBt} - optional then D = ZC (up to indistinguishability)

by the above. Therefore Z is on (FXt} - progressively measurable set.
M(t) is the local time of Z and hence can be constructed from Z as

Lévy’s mesure du voisinage [2, p.225]. . It follows easily from this con-

struction that M(t) is {FXt} - adapted. As M(t) is the future minimum

of X, , this is absurd. D

The above example was suggested by joint work with Michel Emery

[1], in which the predictable set

I( (cM - B) (t-2 k) - (cM - B) (t-2 k 1) > D) =1/2}
k=l

was used to show ~~ B = ~B _> c ~ 2 . .
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