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CENTRAL LIMIT PROBLEM AND INVARIANCE PRINCIPLES ON BANACH SPACES

V. MANDREKAR
O. INTRODUCTION. These notes are based on eight lectures given at the Universi-

ty of Strasbourge The first three sections deal with the Central Limit Problems
The approach taken here is more along the methods developped by Joel Zinn and
myself and distinct from the development in the recent book of Araujo and Giné
(Wiley, New York, 1980). The first Section uses only the finite dimensional
methodse In the second Section we use Le Cam's Theorem, combined with the ideas
of Feller to derive an approximation theorem for a convergent triangular array.
This includes the theorem of Pisier in CLT case. As the major interest here is
to show the relation of the classical conditions to the geometry of Banach sp aces
(done in Section 3), we restrict ourselves to symmetric cases Also in this case,
the techniques being simple, I feel that the material of the first three Sections
should be accessible to graduate studentse

In section 4, we present de Acosta's Invariance Principle with the recent
proof by Dehling, Dobrowski, Philipp. In the last section we present Dudley and
Dudley-Philipp worke I thank these authors for providing me the preprintse I
thank Walter Philipp for enlightemning discussions on the subjecte

As for the references the books by Parthasarathy and Billingsley are
necessary references for understanding the main theme and the basic techniques.
To understand the classical problem, one needs the books by Loéve and Feller,
where Central Limit Problem is defined. Other needed references are embodied in
the texte Remaining references are concerned with Sections 4 and 5 « For those

interested in the complete bibliography, it can be fofind in the book of Arau jo-

Giné.

I want to thank Professor X. Fernique for inviting me to present the
course and the participants of the course for their patience and intereste
Further, I want to thank M. Fernique and M. Heinkel for their hospitality and
help during my stay, as well as discussions on the subject matter of the notese
I also would like to thank M. Ledoux for interesting discussionse.

Finally, I express my gratitude to my wife Veena who patiently gave

me a lot of time to devote to these notes.



426

1. PRELIMINARY RESULTS AND STOCHASTIC BOUNDEDNESS .

Let us denote by B a separable Banach space with u " and (topologi-
cal) dual B' o Let (Q,¥,P) be a probability space and B(B) be the Borel sets
of B . A measurable function on (Q,¥) —> (B,B(B)) will be called a random
variable (reve)s We call its distribution P o X - the law of X and denote
it by £X) .

A sequence {H'n} of finite measures on (B,B(B)) is said to converge
weakly to a finite measure W on (B,B(B)) if J‘ fd“n—*f fdp for all boun-
ded continuous functions f on B . It is said to be relatively compact if the
closure of {u«n} is compact in the topology of weak convergence. By Prohorov
Theorem, we get that a sequence {un] of finite measures is relatively compact
iff for € > O, there exists a compact subset K. of B such that H:n(K:) <e,
for all n and sup_ u«n(B) < ® , A sequence satisfying this condition will
be called tight.

With every finite measure F on B we associate a probability measure

e(F) (the exponential of F) by

e(F) = exp(-F(B)) { = o1 ).
=0 0!

*
where F © denotes the n-fold convolution of F and F*o = 60 s the probabi-

lity measure degenerate at zero.
Remark : Note that the set of all finite (signed) measures form a Banach algebra

under the total variation norm and multiplication given by the convolutione

™ G(A) =‘r F(A-x) G(dx) ; thus the exponential is well-defined and the conver-
B

gence of the series is in the total variation norme

With every cylindrical (probability) measure we associate (uniquely)
its characteristic function (cefe) (Pp.(y) = Iexp(i <y,x>)du for y € B',
Here <> denotes the duality map on (B',B) . We note that 9, determines

b  uniquely on cylinder sets and hence, if W 1is a probability measure, then
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(pp. determines W uniquely on ®(B) , as B 1is separable. It is easy to check

that for y € B' .

tPe(F)(Y) = exp[f(exp (i <y,x>) -1)dF)

for a finite measure. From this, one easily gets
*
1) e(F1+F2) = e(Fl) *e(FZ) and in particular e(F) = e(F/n) n,
2) e(F) = e(G) iff F=G and e(c 60) = 60 for ¢> 0.

Furthemore, if {Fn} is tight then {e(Fn)} is tight, as

r *k @
e(F ) = exp(-Fn(B))[ T F [kt + _z

F*k/k 1] .
k=0 k=r+1 "

For € > 0, choose r large to make the variation

r
“e(Fn) - eXp(Fn) kzo F:k/k Hv <e

and note that under the hypothesis {Fn*k} tight for each k « We also observe
that Fn converges weakly to F implies e(Fn) converges weakly to e(F) for

Fn and F finite measureses This we get as <pe(Fn)(y) ~—-—)(pe(F)(y) in view of

the following theorems (See for example, Parthasarathy, pe 153).

1.1, THEOREM. Let {H-n} and U be probability measures on B such that {Lbn}

is tight and 9, (y) -—)cpl_,‘(y) for y € B' then W~ converges weakly to W
n

(in notation, p:n = We

Let us consider how Poisson theorem results from thise. Let {Xn FEIRD
ied . i eVe 'S¢ = = l= = = .
ees xnn} be ieieds Bernoulli Teve's., 1>{xm1 1} =1 P{xnl 0} P,
Then

n
e( E S(Xn 3 )) = e(np 6 + n(1-p )8,) = e(np 6 )% e(n(1-p )8,)

j_

e(npn 61) .
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Hence as np - A, e(npn 61) = e(M 51) = Poisson with parameter X\ . As

P, - 0 , one can easily check that

lim | n & -9 ()] =0 for yER .

o £
(j=1 X5 e(jﬁ1 x, 0

n
Thus associating lim £( £ X ,) the lim e( £ &£(X .)) is called the
n i=1 nJ n =1 nlJ

principle of Poissonizatione Note that in this case the limit is e(F) , F
finite.

We need some facts on weak convergence and convolution. We associate
with every finite measure F a measure F(a) = F(-A), A € B(B) and say that

F is symmetric if F =F ,

1.2, THEOREM. (Parthasarathy, pe 58)s Let G be a complete separable metric

abelian group and {)\n} s {u«n} s {Vn} be sequences of probability measures such
that A _=u_ *V_  for each n.
— n n n —
a) If {u'n} and {Vn} are tight then so is {)\n} .
b) If )\n is tight then there exists X € G such that {p'n*6x } and
n

{vn * B_X} are tighte Further, if {)\n} s {un} ’ {Vn} are symmetric, then the
n

tightness of {)\n} is equivalent to that of {U»n} and {Vn} .
Let q : B~ [0,°] be a measurable function satisfying q(xty) < q(x) +
q(xty) < q(x) + q(y) and q(A x) = lll q(x) « Then q 1is called a measurable

seminorme An example of such a measurable seminorm we shall use, is the Minkowski

functional of a symmetric convex, compact set K in B defined by

qK(x)=inf{oz;oz>0,oz'1x€K} .

1.3, THEOREM. (Lévy inequality). Let {xj, j = 1,25e0esn} be independant,

symmetric, random variables with values in B and S = z j<k Xj for k =1,

25000 9m, SO =0 o Then for each t > O



429

P{sup <n q(SK) >t} < 2P(q(Sn) > t)

for any measurable seminorm q e

Proof : Let Ek = {q(Sj) <t, j= 1,2,...,k-1,q(Sk) >t} for k= 1,2,e00,n o

Then with E = {sup k<n q(Sk) >t} we have E= U Ek and Ek are disjointe.
Kk

Let Tk = 28k - Sn s then

{q(sn) <N {q(Tk) <t} c{qsp <t
and hence using E, = {q(Sk) >t} , we get

E. =L N {qs) >}l U g 0 {qr) >cl .

Now set
Y, =X, j <k and YJ,=-XJ, for >k,
then by the symmetry and independence
.c(xi,...,xn) = £(Y1,...,Yn)
giving P(E N {q(1) > th =p(g N {q(s) > t}) i.ce. P(E) < 2PN {q(s)

> t) o Summing over k we get the result.

le4. THEOREM. (Feller inequality). Let {Xj, j= 1,2,...,n} be independent

n
symmetric B-valued reve'se. with Sn =% X, ,then for t >0
=t
n
1 -exp(- I P(q(Xj) > t)) < P(q(s) > t/2) .
5=t

Further, for t > 0 , such that P(q(Sn) > t/2) < 1/2

n
T P(a(X)) > e) < - logl1-2P(q(s ) > 1/2)]
§=1

for a mesurable seminorm q on B .

j-1

k| J j-1
Proof : Since X, = T -z we get q(X.) < q( I )+ q(Z )
I = % k=1 % ] k=1 K k=1 K

and hence
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j
P( max q(X,) > t) < P( max q():‘xk)>%t).
1<j<n 1<j<n 1

n
But left hand side equals 1 - T (1 - P(q(XJ,) > t) by independence.
=

As 1 - x<exp (~x), 1 = P(q(Xj) >t) < exp[-P(q(XJ.) > t)] giving

n n
1 -exp(~-Z P(qX,)>¢t)) <1- 7 [1-P(q(X,) > t)]
=t J =1 J

j
< P( max q(T Xk) > t/2) .
1<j<n 1

Using theorem 1.3, we get the first inequalitye. The second follows immediately

from the firste

le5+ LEMMA : (Truncation). E: Xl’XZ""’xn be independent symmetric Teve'!se

Let a,>0 for j =1,2,eeeyn and define X! =X, I(HX H < a)e Let q be
= 7] — —_— 7 it — -
a measurable seminormon B and set S = ¥ X, and S'= ¥ X',

tm T m

Then for t >0, P(q(SI'l) >¢) < 2P(q(Sn) >t) .

Proof : Define Y! =X, = X' then X'+ Y! and X! - Y' have the same distri=-
- J J J ] J J J

bution as Xj o Let

n
3 = ] 1) > = t 4+ 3 L S >
5 jil Y] then {q(Sn) t} {q(sn S +s!-%) 2t}

< lo(sp +3) > ¢} Ulq(s!- 5) >t}
£(st + §n) = &(s! - ”§n) = £(s)
P(q(Sl'i) >t) < 2P(q(Sn) >t) .

We say that a sequence {Yk} of real valued re.ve'se is stochasti-
cally bounded if for every € > O , there exists t finite so that

sup_ P(“Ynn >¢t) <e.,
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1e6, THEOREM, (Hoffman-J#rgensen). Let {Xi s i =1,2,e0e} be independent,

symmetric, B-valued reve'se with q(Xi) in Lp(@,¥,P) for some p and a

measurable seminorm q « Then {q(Sn)} is stochastically bounded and

E sup jlq(Xj)lp < o jimplies
n
sup E|q( Z X)|P < 2.3.P E sup i[q(xi)]p + 1643P tg
n = J

1
8,3 P

n
where t_=inf {t> 0 ; sup P(q( T XJ.)p >t) <
n j=1

Proof : By theorem le4., (more precisely, its proof) we get that under the
hypothesis, sup q(Sn) is finite asee ané sup q(Xi) < 2 sup n q(Sn) « For

n i
ty,s > 0 , we prove

(1e6e1) (P(q(Sk) > 2t + s) < P(sup n q(Sn) >t) + 4[P(q(Sk) > l:)]2

T = inf {n>1;q(sn)>t} where T = if the set is @ . Now
k

a(s,) 7 2t +s implies T <k giving P(q(s) > 2t +5) = T P(q(s) > 2tts,
=
=3j) e« If T=3j , then q(Sj_l) <t and hence for T=j and

q(Sk) ?2t+s , q(sk - Sj) > q(sk) - q(Sj_l) - q(Xj)

>2t+s-t-suqu(Xj)=t+s-N

B(T = j, q(s,) > 2t +s) < P(T =j, W8 ) > t+ s-N)

SP(T=j, N>»s) +PT=j, q(Sk-Sj)>t).

By independence of T = j and Sk - Sj we get summing over j < k
k
P(q(Sk) >2t+s) <P(N” s) + T P(T = j) P(q(sk - sj) Zt) .
=1
Now Y =S =S and Y =S then Y_,Y

17 % "% 2 =% 1
hence by Lévy inequality

o are symmetric independent and

P(q(YI) 7 t) < l?‘(rn.ax(q(Yl),q(Y1 + Y2)) 7 t) < 2P(q(Y1 + Y2) 7 t) e
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This proves (le6e1) o Since {q(Sk)} is stochastically bounded

P(q(Sk) >t) < P(mejix q(XJ.) >t) <2 swp K P(q(xk) >t) .

Hence

P(sup , a(S) > 2t + 5) < P(nax (X)) > &) + 8[P(sup , a(s)) > 1%
i
ieee R(2t + s) < Q(s) + 8R(t)2 (say) «

Choose t, as in the theorem and observe that for a > 3t0

J"a pxp'":l R(x)dx = 3pp J‘a/3 %P R(3x)dx < 3pp.2 J‘a/:’ &£ Q(x)dx
0 0 o

+

8p3p ‘I‘a/3 xp-l Rz(x)dx
0

< 2.3.P &P + 8.3.Pefp + 8p3P j""/3 L1 R(tIR(x)dx
0

A

c+ % 2 Pt Rdx .
0

where C = 2,3P ENP + 8,3P tg o This gives the resoulte.
Let {an s §j = 1,2,...,kn} n=1,2,000 (kn" © as n=®°) bea
row independent triangular array of symmetric B-valued random variables. In

these lectures, we shall consider only these triangular arrays and refer to

them as triangular array, unless otherwise statede For each c¢> 0, let
= < X, =X, -X 3
xnjc Xnj 1<HxnjH ) anc nj njc
k k
n n ~
$.=% X. , S = X, , S =8 -5 .
ny =1 njc n =1 nj n n
|3
n
We shall denote by Fn = I S(an) s ot ={x€ B, \\xu <t .

=1

The following is an extension of Feller's theorem.

1.7. THEOREM, Let {an s Jj = 1,2,...,kn} n =1,2,.es be a triangular array.

Then {Hsn\\} is stochastically bounded iff
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c
a) For every € > O , there exists t large, so that sup n Fn(ot) <e

b) For every ¢ >0 , sup n E“Sn(c)up <@,

Proof : Put q(x) = nxn in theorem l.4., then we get condition a) e

By stochastic boundedness of ”Sn” « Condition (b) follows from

Lemma 1.5. and theorem 1l.6. To prove the converse for t >0

e(lls ) > 20) < 2(lls_ | > o) +2dE [l >e) o Now

=

~

n
5§ = j£1 X 1(|\xnj\l >c) so {\Enc\l >t} € {max ; \Ixnjll > .
Thus by Chebychev's inequality we get
kn
1 P
p(lls || > 2e) < " Ells_ JIP + z 2(llx > o .

Given €& > 0 , choose c, s° that Fn(Oz ) < €/2 and then choose t  so that
)

= sup zallsnc IP<er2.
t o

We now derive some consequences of the above result in special casess

1e8+ Special Examples.

1.8.1. Example B =1L , p >2 and X =xj//n , {xj, = 1,200} ieiede

j

sequence of Lp-valued reve'se Before we study this example we need some gene-

ral facts : We define A(X) = sup £>0 t2 P(“)dl > t) .

Rosenthal inequalitye. Let 2 < p < ® , then there exists (:p < ® go that for
any sequence {XJ,, j= 1,2,...,11} of independent real-valued random variables

with Ellep <= and EX; =0 (j=1,2,000,n) we have for all n?> 1

n 1/p n 1/2
%max ez elx |, (= glx|dH )
= s

n 1/p n i/p n 1/2
<Elz x|  <c max{cz Elx|P 7, Elx,|> 3.
=t 3 P PR =3
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We also observe that for a B-valued reve X n?> 1, 86>0, 2<p<e

X ! -
el T oadal < e/mlP < 2o s o rle] > w

To see this

ell? el < o /m) < (€ dlxly > /ey

p
<I(C/n) N x)/a?P au
0

Evaluating the integral we get (*) . In this case, we observe that Fn(oz) =
n P(|X|> /n t) « Now if AZ(X) < then

tZn plx] > € /i) o AZQO)

t2 ¢

n P(X|| > £ /) =

Given € > 0, there exists to s so that

c
<
Fn(oto) € for all n .

Conservely, if such a t, exists then sup_ ti n P(”XH > t, /n) <M giving
2
A" (X) < © o Thus condition (b) of theoreme le7. is satisfied iff /\z(X) <o,

Thus {HXI + eee + Xn//nn} is stochastically bounded iff /\2(X) <® and

n
sup_ E “jil Vo 1zl < ¢ /P @ <.

By Rosenthal's inequality the second condition is equivalent to

n
sup T Eﬂx./fn 1zl < ¢ Va)(w|P au <= and
n j=1 J J

n
s = (EE, 1%, < ¢ V) V)P (w)P/? ap <
n j=1 J J

Here one chooses a jointly measurable version of (Xj(u)) o The first term finite

by the observation (*) and the second is finite by the monotone convergence iff
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/2
I(E(Xl(u))z)p du < ® 4 Thus {\\Xl + eee + Xn/fnn} is stochastically bounded
1ff AZ(X1)< © and [(E xl(u)z)l’/2 dp <o,

1e8¢2+ Example : B =H a separable Hilbert spaces Let {ek, k = 1,2,...} be a

a complete orthonormal basis in H. X =Xj/fn , {xj} ieiede Then {x1 + o0

nj
e + Xn//n} stochastically bounded,implies condition (b) of theorem le7. with

n
sup El = X . /Vn izl < ¢ \/n)”2 < ® , But this implies
n =1 J J

sup Ellx, 10l < ¢ /|12 = Bl % <o

From this (a) followse Let M = Projection onto ;{el,u.,ek} « Then by
Chebychev inequality for € > 0

X1+...+X X1+...+X
el B B > e)
n n

< elz E"xl - "Tk(xl)”2 <e for k large as EHXIHZ <o ,

Hence we get {Xl + eee + Xn/fn} is flatly concentrated and, by one-dimensional
central limit theorem, we get that £(X1 + eee + Xn//n) =V where V 1is a

Gaussian measure with covariance E <y,X.> <y ',X1> for y,y' € H' , We thus

1
have the equivalence of :
i) Central Limit Theorem (CLT) holds in H for £(x1) .
2
ii) E”XIH <o and (iii) {Xl + oo +Xn/fn} is stochastically

bounded.

1.8.3. Example : (B = IRk, k <®) o Let {an, j= 1,2,...,kn} be row independent

triangular array of (symmetric) Rk-valued TeVe's satisfying for every € > 0O

*) max P{x ||>¢€} -0
<5<k nJ
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and assume that {Sn} is stochastically bounded. Let for y € B! , ”y” deno-

te the strong norm on B' and M <,
k

n
sup T o () -1}
e T

11 i) I, (708 ) B0+ x> e

Now choose c, so that the second term is <¢€/2 o Use on the first term

inequalities,
(1-cos <y,%) < <y,2% < ||yl ||

to conclude that it does not exceed M2 sup f Hx”z Fn(dx) which is finite

lldl<e

by condition (b) of theorem 7.1¢ Hence for n large log tpnj(y) exists where

YR CIPRIE

k
n
sup |log T @ (y) - log @ (]
EETRRILY o)
ko k_
sup ‘108 y (Y) -9, (y) + ll < Constant sup 2 “P (Y) - 1‘2
Hy\\ <M 3—1 3=l
k
< constant max |9 . (y) - 1| sup 2‘, CR (y) -1)=0 by (% .
1<i<k ™ llyll<es

One can derive easily the following from above,
a) {Sn} is stochastically bounded in ]Rk iff for some c¢ > O (and

hence for every) the finite measures defines by Vn(A) =J‘ min(c,“xHZ)Fn(dx) s

A€ ﬁ(l‘Rk) form a tight sequence «
b) For B = ]Rk , the following are equivalent under (%) .
i) {Sn} is otochastically boundeds

ii) {e(Fn)} is otochastically bounded.
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iii) For each ¢ >0 , {vn} is tight.

c) Every limit law of {Sn} satisfying (*) is infinitely divisible

and converselye.

We note that condition 1.8.3. (*) is valid in general B « We define now infini-

tely divisible lawe

149+ DEFINITION, A probability measure W on B is called infinitely divisible

(iede) if for each integer n , there exists a probability measure W, oon B

such that W = P':n .

We now prove converse part of 1.8+3e¢(c) in generales Let W be iede
and {an, j= 1,2,...,kn} be a row independent triangular array with
S(an) =M, (this may not be symmetric unless W 1is,in latter case, W, can

be chosen so) « Then M = lim S(Sn) « But
n
1

CPU' (y) = [tpu(y)]n e Hence max lCPpl (y) - 1| =0 ieee
n 1<j<n n

{an, j= 1,2,...,kn} satisfy 1e8+3.(*) « We refer to this as the triangular

array being uniformly infinitesimal (UeIl.) «
In view of theorem 1.2, symmetric i.des laws are closed under weak

limitse Hence we get lim e(Fn) is iede But under (¥),
n
k

n
lim e(Fn) = 1lim £&( £ an), giving c¢) above for B = R e This proof fails
n n ji=1

in general B . However 1.8.3. c) survives. To see this, denote for

T = {yl,...,yk} S B! , yT(x) = (<y,x)>,...,<yk,x>) for x€ B,

1,10, LEMMA, .L_et B be a symmetric probability measure on B(B) + Then M is

i.de 1ff W o yo' is i.de for all finite subsets T S B' .

Proof : The "only if " part is obviouse. For the other part, under the assump-

-1
tion, W o y, =[un(T)]*n for each n and T finite subset of B' ,
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Since ¢ _l(u) #0 for ué€ ]Rk s we get that {un(T), T finite
Moy,
T

subset of B'} is a cylinder measure p'n satisfying for each y ,

— n
CPu(y) = [(Pu w1t .

n
Hence by theorem 142, (c), we get b isa probability measure on B(B) i.e.
b is iede

Combining this with 1¢8+¢3e¢ c) we get

lell, THEOREM. The symmetric iede laws on B coincide with the limit laws of

row sums of UL row-independent , symmetric triangular arrayse

We note that by Lemma 1.5., {Sn} is tight iff {Snc} and {'gnc}

are tighte Hence for U.I. triangular arrays 1!iim £(<y,Sn>) = lim e(l"n o y'l) =
n
k k

n n
) with F =T s:(xnjc) and F =71 £&

=1y & /= -1
lim e(Fnc oy ) e(Fnc oy = njc) .

n j=1

Thus lim £(<y,Sn>) = lim S(Snc) * £(§nc) at least for B = ®’E o In fact it
n n

is true in general.

1,12, THEOREM. Let {an, j= 1,2,...,kn} be U.l. triangular array such that
= >V 3 22UV,

£s_) 2w and £ ) =V . Then (£(5_), B ) =

Proof : is by the use of cefes and is left to the readere.

We can observe that all methods used so far are finite-dimensionale
In the next chapter we bring out the methods particular to the infinite dimen=-

sional casee
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2. CENTRAL LIMIT PROBLEM IN BANACH SPACES,

Let {an s J = 1,25000 ,kn} be a (symmetric) row-independent triangular

array of B-valued random variables as before for n = 1,2,¢e0

k k
n n
s =% X and F = % £&(X_,) .
n j=1 nj n j=1 nj

2+1s THEOREM, (Le Cam)e Let {S(Sn)} be tighte Then for every t > O , there

exists a compact, convex symmetric set Kt S Ot such that {Fant(::} is tighte

In particular Fnlo: is tighte

Proof : Use theorem le4e, with q the Minkowski functional of symmetric, com-

pact, convex set 'Ea s given from compactness of {S(Sn)} s to get
k
n ~
(201.1) S:p jf__l P(an q Ks) < § .

Let K_ =ﬁ6 No  (with & fixed)s We claim that

< <
ssp 3‘.‘. P(Xnj EKt) M<o

As ié c Or and P(xnj ¢ Kt) = P(anr g Kt) + P(Hxnj” > r) we assume that
Hxnjll < r aese Let

v, = {x€B; |<y,»| >¢e/2} .

Then {Vy, Hyn <1} 1is a cover of 02 n EG and, hence by compactness there

exists a finite cover {V s9eeg,yV }. By theorem 1e7., sup E<y,,S >2 <o,
"1 Ym n *°n

j = 1,2,...,1‘[[ . Hence,

~ —C ~
)j: 1>(xnj ¢ Kt) <2 ? P(an ¢ KG) + ? P(xnj € o, n Ko .

The second term does not exceed Zj Zi P(|<yi,xnj>| > t/2) « Using (241e1.) and
Chebychev inequality we prove the claime Now define I, = {5 € (1,0005k ) ¢
n

< s —
P(Xn € Kt) 3/4} then by the claim sup card (Jn) < 4M, As {an,_] —1,2..kn}

n

i
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are tight for each j,n, we get using Lemma 1.5. and properties of Kt that

{an 1(Xnj ¢ Kt)} is tighte Thus {J€§ P(X 5 nj ¢ Kt) } s tight. For

~

j€ Jn s take G =?€6 + Kt s then ¢ < Kz since K6 is symmetric convexe

For j € I P(an € Kt) 7 1/4 and hence

1
= v P .90 < zp(x ¢ K,) P(X', €K)
4 4€3 nj JEJ & nj t

where S(an) = S(xx'lj) and they are independente By (2.1.1.) we get the result.

We can derive the following corollaries :

k_
2.2. COROLLARY., For every c >0 , {S(Enc)} tight implies{e( 2 S('
k. =
tight swhich gives {e( Z £(~ ))} tight.
j=1 —

2.3. GOROLLARY. Suppose {S(sn)} is tight. Then there exists a O-finite sym-

metric measure F such that for some subsequence {n'} of integers

F(E) = F(E) where F( ) =F |,c and F(e) = F‘ ¢ o Furthermore, F(E) is
n! nlo; 22 o) - RS ==
finite for each ¢ \r[<y,x> F(dx) <» and F({0}) =0.
Proof : By diagonalization procedure and Corollary 2.2., there exists a subse=
(e)
quence {n'} such that F at converges for all k with ek 0. Let
(e )
— 13 k - . ' -
Fk = lim ot Fn' « Then Fk(Oej) 0 for j 7 k o Clearly, Fk and finite. If
If we define F = lim Kk Fk s then F is 0O-finite, F(e) is finite and F{O} =0,
2
Since {<y,Sn>} is tight we get sup ‘f<y,Snr> dP < » , This gives for
n
0<eg <r
k k
<y, o2 = 1 <y, o> = 2 E <y,(X >2
f yse> dF = lim nj" yse>dF = lim _ RN
orﬂoE orﬂoe j= k

k k

2
< > < o
< SgP Zj E y’anr
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Take limit over k to obtain the resulte

2.4e COROLLARY. Let {S(sn)} be tight, {xnj} be UeI. and 1imn£{§ne) exists

for all € > O o Then e(F(e)) = lim S«(’gns) and F 1is unique.
o a8 i = L5 unrdie.

Proof : Using Corollary 2.2., Theorem lele and arguments as in le8¢3. we get for

- - € -
any other measure G e(G(e)) oy 1. lim S(gns) oy 1. e(F( )) oy ! » Hence
n

(e) -1 (e) -1 (g) (e)

G oy =F oy giving G =F for all € > 0 iceey F =G o
We call F above as the Lévy measure associated with the ie.de law W »
(e)
We denote lim e(F k ) by e(F) for F Lévy measuree
k

2.5. THEOREM. Let {xnj, j = 1,2,...,kn} be UsI. triangular array such that

S(Sn) =2V, E_e_f-l
(&) & (o)

a) There exists a Lévy measure F such that Fn

for each

¢>0 and c continuity point of F . (c € C(F)) »

b) There exists a Gaussian measure <Y with covariance C'Y(yl ,y2) such

that for y € Bt ,

lim
(25.1) lim { } <y,x>2dF_ = lim <y, @2dF = C (y,y)
clo 1lim IHxH<c B clo cEG(F) J"ux”<c n A

c) V==e(F) * Y where F and Y are unique.

Proof : We have proved along a subsequence {n'} of {n} s FI(:) = F(c) for
each c € C(F) , where F 1is a Lévy measure since {S(Sn')} and {S(Sn'c)}
are tight, we can proceeding to the diagonal sequence get a probability measure

v 4
k such that fo‘r ¢ o,

£(s.,) @V and £(S y=v
n n

k .

By theorem 1412, for each k ,
(c)
(:lc ) .

vV=y *
k e(F

(c,)
e(FC'k

)= e(F) , {Vk} is tight by Theorem le2. Since ¢ (e )(y) #0
k
e(F )

As
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for y € B' , (pvk(y) - (P\)o(y) for some cylinder measure Vv, e But V=\’o*e(F)

gives by Theorem le2sthat Yo is a probability measure Y o ieee V = Y¥*e(F) .
Let us assume that Y is Gaussiane (we shall prove it later). Thus every

sequence has a convergent subsequence with limit V =Y * ¢(F) « We now prove

the
that all limit points have same Gaussian and non-Gaussian partse Let Yl*e(Fl) =
Yz*e(Fz) then Y, o y-l *e(F o y-l) =Y, 0 y-1 * e(F, o y-l) giving by the one

dimensional result,

-1

-1 1
Yloy =’Y20y and F

-1 _ -
109 —ony .

Thus a) and c) are proveds Let us now observe that -‘:(Snc) = ‘Y*e(F‘Oc) and

{<y,Snc>2} is uniformly integrable in n by Theorem 1l.7. Hence

. 2 _ 2 2
linm E<y,s_>° = [<y,»"av + [ PO .

<y
n <

Take limit as c¢ € C(F) goes to zero then I <y,x>2dF <® implies that

ll <1

the second term goes to zero, giving b). It remains to prove Y is Gaussian
ieee Y o y-l is Gaussian for y € B' , For this we observe that there exists

t  such that £(8 ) ®Y¥(c, ¢ 0) by the proof. The following Lemma now
e e " Y%

completes the proofe.

20 6. LEMMA, Let {an, j= 1,2,...,kn} n =1,2,ses be a triangular array such

that
a) max ||X n < C aese and C_V+ O .
X nj n — n
J
b) S(Sn) 2Y o Then Y 1is Gaussiane

Proof : Note as before, lim E<y,Sn>2 = C,Y(y,y) by Theorem 1.7 Hence it suf=-
n
fices to prove for y € B! ,

) 1 2
An = E\exp(]. <y,Sn>) - exp(- 7 <Y’Sn> )l -0 .
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But
A <§\Eexp (1'<yx >)-exP..—E<yX >|
n J, ’ nj 2 ’ nj

EexpiY=1--;-EY2+E{expiY-1-iY+-;-Y2] for Y symmetric and

exp(~ % EYZ) =1 - % EY? + {exp(- % EY2) -1+% EYZ} .

Now use inequalities

‘eit -1 -it+% t2| < t3 N lex -1 -x\ < x?'ex(t,x real) to get

A ST {E| <y,xnj>\3 + (E<y,an>2)2 exp (llyll 01)2}

= 0 under the condition establisheds.

2+47. COROLLARY, Every symmetric iede law has unique representation V = Y*e(F)

where Y 1is (centered) Gaussian and F 1is the Lévy measures

2.8. COROLLARY, Let {xnj, j = 1,2,...,kn} (n =1,2,ees) be a triangular array

such that S(Sn) =V , Then the following are equivalent

a) V is Gaussiane k

n
b) For every y € B' and c¢>0, lim T P(|<y,x >|>¢c)=0.
— - n j=1 nJ
c) For every c > 0, lim F!(Ic)
n

‘—o

2.9. COROLLARY, Let {xnj, j = 1,2,...,kn} (n =1,2,eee) be a UsI. triangular

array such that S(Sn) =V *e(F) o Then there exists < { 0 such that

nc
n

£ )=Y and £('§nc ) = e(F) .
n
Proof : Let T be the Prohorov metric then we know that (TT(S(“SJnc), e(F(c)))-' 0.
(
Hence there exists <, { 0 such that 1T(£(’§nc ), e(F ™)) = 0. But
n

(c)
T(e(F ™ ),e(F)) » 0 giving the first conclusion.
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Now lim £(8 ) = lim £(S__ ) * lim S.(Enc ) dees Y¥e(F) = lim £(S__ )*e(F) .
n n n n n n n

Hence 1lim £(5__ ) =Y .
nc
n n

We note that although theorem 2¢5. gives useful necessary conditions,
they are far from satisfactorye In the case an = Xj/fn,{xj} ieieds, these
conditions are t2P(HxH >t)*0 as t~=® and X pregaussiane These are
sufficient in fp , p # 2 but are not so even in ﬁz(ﬂp) « Thus one needs to
sharpen such a theorems In the iesieds case such sharpening was done by Pisier.

We present the following useful theorem in case the limit points are non-Gaussiane

2,10, THEOREM, Let {an, j= 1,2,...,kn} n =1,24,00e be a UsIs triangular arraye

Then {S(Sn)} is tight with all limit points non-Gaussian (i.e. V = e(F)) iff

a) For each ¢ > O, {FI(1C)} is tight 3

b) lim sup E”Snc“p =0 for all p (O < p<® .
c0 n

Proof : Necessity of a) 1is proved in theorem 2.1s and by Lemma le5., {Snc]nc
is tighte Further by one-dimensional result

2
y,x> dF =0 .

lim sup ‘f n

<
c0 =n Hx“<c
P
Hence by Chebychev's inequality <y,Snc> —=30 , for all y € B' . Now
c0
P
{S(Snc)} is tight gives by theorem 1l.le that ”Sncu —>0 uniformly in n

as ¢ 0. Given T > 0 choose <, such that, for c < Cy s

swp Bllls_|| > 2 0tP ety < L5,
n

Then by theorem 1e6.,

sup E”Snc“p < 4,3 CP + N <® i.ee b)
n

ptl

1
To prove the conversee Given ¢ > 0 , choose c¢ so that sup E“Sncnp < 3 € .
n

and K& Oz symmetric compact so that for all n .
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(c),, c 1
(2610.1) Fn (K)<§€ .

Choose a simple function t : B = B such that Hx - t(x)n <M on K and

£(x) =0 off K with TN<c and T sup Fff)(B) < 3 ¢® . Observe that
k_ nkn
(2.10.2) #llls, - & e O > 4ek P{;1 (x s -t ) ]| >2¢}
kn
+ P{lljf::1 X -t 0 > 26}

The second term on the RHS of the above inequality does not exceed
k k

n n
j§1 1>{Hxnj - t(an)n > ¢} = jzl P{Hxnj - t(an)” > ey X g ¢ x}

<ec. =0 of
as N < c . But for an gK, t(an) giving
k

2.10.3)  P{|| zn ({_\—(1 M || > 21 < 7O (%)
(2.10, » =1 nj -t nj’’c n

The first term on the RHS of (2.10.2) does not exceed

K
n
(2410, 4) P{szl I S N T K| > e} +
kn
+ P{H{El SRR 1 SRR Te S | > e} .

The first term above does not exceed
kn
1 p
(2410.5) p{lljzl X C\\> e} < 5 EHSnCH as 0_<k° .

The second term does not exceed
k

n
el . - B D) 1K € x|

1
€ j=l nj

by Chebychev and triangle inequalitye This in turn does not exceed % M Fn(K) <

llFt(f)(B) o From this (2.10¢1), (2.1042),(2,10.3) and (2.10.5) s we get
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{S(Sn)} is flatly concentrateds Now for y € B' , ¢ > 0, p > 1 choose 6 <c¢

so that

| <y,s_> |2y < |y szp(EHSnsup)llp + c[I-‘l(f)(B)]l/p

giving sup E‘ <y,Snc>‘p < ® , Clearly, there exists K , compact so that
n

8
sup Fr(1 )(KC) < € o Hence sup Fn(0:) < €& choosing t so that KC Ot and
n n

t> 84 Now {x : ‘<y,x>| >t} co giving by theorem 1le7. that {<y,Sn>}

c
t

Nisl
is stochastically boundeds Thus we get {S(Sn)} is tight by well-known theorem

of de Acostae

2.11. COROLLARY, Let {xnj, j= 1,2,...,kn} n=1,2,ees be a U.I. triangular

array such that {S(Sn)} is relatively compact with all limit points non-Gaussian

then for every € > 0, there exists a finite-dimensional subspace i and a triangu-

k
lar array {t(an)} UeI. and uniformly bounded such that { I t(xnj)} is tight
=z j=1 =
k

n
P(e(X ) €M =1 and P{\Isn - j—z—-1 t(xnj)\\ >el<e .

2.12. GOROLLARY, Let {xnj, j= 1,2,...,kn} be U.I. triangular array of unifor-

mly bounded Teve'se with £(Sn) VvV , Then for each p> 0 , € > 0 there exists

a symmetric U.I. triangular array {an} such that

i) {an} is a measurable function of {an] only for each n,j «

1i) There exists a finite-dimensional subspace M such that P(an €M =1;
PWW ,.E€EM=1.
nj Kk
n
i11) { ¢ wn.)} is tight in M and
=t N T
iv) sup E“ T X, -z wnjnp<e .

n <k n i<k



447

Proof : Choose c, { 0 as in Corollary 2.9. Then {gnc} converges to a non=-
Gaussian limite By the above corollary for € >0 , p > O there exists t : B~ B

simple symmetric with finite dimensional rauge and n € N such that for n>no
k

n
4 P
E”Snc - E t(xnjc )“ <els .
n j=1

As S(Snc ) ® Y gaussiane Let &£(Z) =Y and Z be written as a.s. convergent

series
o0

Z= I <y. ’z>x.
=1 37T

where {xj} S B and v € B' , Since S(Sncn) = &(2) S(Sncn - ﬂk(sncn)) =

K
£z - T (D)) with T (x) = j>=:1 <yjsx>x; + By theorem 1.7, {“S’“cn - nk(sncn)llp}

is uniformly integrable for p > O . Hence

!‘~:HSnc - ﬂk(snc NP - Elz - nk(z)\\p .

Choose k  so that E“Z - rrk(z)llp <8 and n, so that for n > n,
o

Ellsnc - (s . NP < ere o
n o n

= + > \Y)
Now an t(an) " (an) for n n Von

e Then {an} satisfy the given
o

1

conditions for n 7 (no \ nl) e For n < n V' n, , choose an appropriate simple

1
function approximatione

We now look at this approximation in the case Xn

=Xj/fn and X .o

y

.o Xn eseisiede Let us observe that by the finite-dimensional result, the limit

is Gaussian and by theorem le7., sup n P(”Xln > /nt) < ® giving /\Z(Xl) <o,
n
nk n
Hence E“Xlup <e , p<2, Also A s x =1 < Y(k) where Y(k) are
/nk j=1 i Vn j=1

k
ieigd with S(Y( )) = S‘.(X1 + eee + xk/»/k) e Again stochastic boundedness of
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nk
{/L by xj} implies A x®y <o and for p<2,
nk j=1

el x®)|P =[ Py > e)ae < 1+ [Fu 12 dt =M+ 1 .
0 1t

Hence sup E“X1 + eee + Xk/fk”p <® for p<2., By Lemma 1.5., we get
k

Ells_ 1P <2 gls [P .

Now let Tfk be approximating family so that sup EH(I -TTk)SnCHp < € o+ Choose
n

1<p<2, then E|CI -m(s_ -5 DIP <3 sup EHSan . This implies

{H(I - TTk)(Sn - Snc)u} is uniformly integrable in (n,c) . But ”Sn-snc” -0
uniformly in n as ¢~ ® since

1 2
- > > L
plls, - s I > e <nrdlx || > c/m) < o x) .
P
Thus we get that (I = Tfk)(Sn - Snc) - 0 uniformly in n as c ~ ® and is
uniformly integrable in (mn,c) « Thus E”(I - ﬂk)gncll -0 as c~ ®, In other

words, uniformly in n ,

Efa - m) snc\\ —sE|j - ) snll as c=® .,

In particular,given € > 0 , there exists k0 such that

n
sup E|(T - TTk) T X, Mnll <e for kFk .
n j=1 J °

We thus have

2414 PROPOSITIONs Let X be a symmetric B-valued random variablees Then X

satisfies CLT iff for every € > O there exists a simple random variable Y

+ eee + Yn/\/-nn <E .

satisfying CLT so that sup E“X1 + eee + Xn//n -y

n

Proof : By the construction {ﬂk(xl)} satisfies CLT and hence is square inte-
grable by example 1.8.2s Thus we can approximate TTk(Xl) by Y, in Lz(ﬂk(B))

assuring Y, satisfy CLT. Converse is obvious by Corollary 2.12.

1
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Remark : In order to obtain moment conditions we only use stochastic bounde-

dness of {Xl + eee + Xn/fn} .

2.15, THEOREM, (Le Cam). Let {an} be a triangular array of B-valued random

variablese Then {e(Fn)} is tight implies {x(Sn)} is tighte

n nj
Proof : Note that e(F ) =&£( T L X ..) vwhere {N .} are ieie.de Poisson
—_— n =1 i=0 nji nj

with parameter one, independent of {ani} for all i,n,j and {ani} i=0,1,e¢

are ieiede with S(ani) =£(an) for all i (always S, = 0) . By theorem 1.2.,

n  nj
{e(nn)} is tight for all M\ iff {e(Fn)} is tights Hence {£( T T xn,i)}

j=1 i=0
is tight with above assumptions except with ENnj =\ o Choose A so that
1 n kn Nnj
exp(=\) =3 and let T;’: = S:‘l + = = ani with T* = I Z X 11
1 §nj<i<NnJ. Boy=t 4=0 ™

= * o Q%) — * _ Tk
and gnj min(Nnj,l) e Then we have -Q(Tn Sn) -5:(5n Tn) « Use now an

argument as in Lemma le5. with q , Minkowski functional of a convex, compact

symmetric set K to obtain

c 1 c
P(T;*IGK)>EP(S:EK) .

k k
n n
Thus {£(5*)} is tight. But £(5%) =& £ £ . X ) +&( T (1-E )X .) as
n n j=t nj nj =1 nj’ ‘nj
kn
. . - 1
gnj is Bernoulli with P(§nj =1) = 7 o Hence S(jil an) is tighte

The following theorem is now immediate from Corollary 2.12. and Theorem

24156

2.16. THEOREM, Let {xnj} (3 =1,2,0005k_ , n=1,2,002) be UeI. triangular

arraye Then -C(Sn) V=Y % e(F) iff for some c (and hence for all c > 0)

we have

i) FI(IT) = F(T) for all T>0 . \
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ii) For every p> 0, and € > O , there exists a symmetric UsI.
triangular array {W } such that {W } is a measurable function of {X }

a finite dimensional subspace M such that P(W €EmMm =1, {& Z W )} is

k =1
tight in M and sup E| z &, =W MNP <e.
n j=1 je nJ

1i1) Condition (2.5.1) holdse
We now consider some consequences of this theorems

2.17. Applications :

2,17.1. Example : B =H a Hilbert spaces Then the above theorem implies for

an H-valued triangular array,

S'.(Sn) =Y * e(F) iff
MO
n

i) For each ¢ >0, s ¢ €C(F) o

ii) For € > O and for some complete orthonormal basis {ei}

1im sup‘r - 1TN(x)H2 F (dx) =0 and sup J‘ HTTN(x)Han(dx)

N <1 i Il i<

N
finite, with TYN(x) = T (x,e,)e, o
=1 373

lim
111) lim (), 2 <y,x>> F (d) =G (y,y) .

eto ™o lxl<e

This can be seen by using theorem 1.7. and stochastic boundedness of {ﬁN(Sn 3N .

Let us now define Tn by

2
<1any>=.f <y,x> Fn(dX) .

llll<2

Then conditions (ii) and (iii) imply that {Tn} has finite-trace and {Tn}

under the trace norm is compact i.e., for a complete orthonormal basis, sup n
-]
trace (T ) <® and 1lim sup Z (T e,,e.) =0 o Conversely if {r} is
n N n g B i1 n }
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compact then one can find a complete orthonormal basis satisfying (ii) and
(iii) « Thus we get the following S(Sn) 2y % o(F) iff

H B =@
n

ii) {Tn} is a compact sequence of trace-class operators,

iii) as above holdse

2.17.1. Example : B = L, >2), X s =Xj/fn and {xj} iciede Then

X, + ese + X /Vn=>Y iff
1 n

1) ne(lx |l > /) =0 ,

ii) For € > 0 , p > 0 there exists e such that

| £ X, 1(|lx < cvVnyWn - ( 2 e 1(llx l<cvn)iml <e
j=1 j=

and {S(ﬂk(SnC))] is tighte

iii) X, 1is Pre-Gaussian, iees X, has the same covariance as an

1 1

Lp-valued gaussian r.v.G(Xl) o

We note that (i) @ t2 P("XIH >t)~ 0.

As TTk(Xl) is pregaussian in ﬂk(B) by (iii) it satisfies CLT in ﬂk(B)
by Cramer -Wold devisees Thus (iii) = (ii) , second part. We now show that (i)
and (1ii) imply the existance of T  satisfying the first part of (ii) by

k
Rosenthals inequality. With arguments as in 1l.8.1s we get,

sup n EHX1 1(”X1H < ¢V/n)/Vn - TTk(X1 I(HXIH < c/n)//n)”p
< Constant /\Z(X1 - ﬂk(Xl)) and

p/2
p o JIEG 1dlx I < evm) - mx 1dix |l < e/a)d(e)] aw

p/2
=Jlex, - m xN©]  a .
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1/2
Thus it suffices to show that in the norm /\(Xl) + (E||G(X1)H2) on Ll(ﬂ,g,P),
there is a finite-dimensional approximation. Let {3k} be an increasing subse-
quence of {3} . Define TTk(Xl) = E(X\?rk) s Xo = 0 o Then one has by
A =T (X)) =0 as k= . Lee Y =T (X)-m ), Y} arepregaus-

sian and {G(Yk)} are independent Gaussiane Also,

£( T G(Yk)) =£(G(X1)) « Using Fernique's theorem HG(XI)“2 is
k

k 1/2
integrable giving lim Kk (EHG(X) -z G(YJ,)HZ) = 0 ., Thus we obtain Qy
=t
satisfying (ii)
We thus have the following theorem :Xl satisfies CLT iff
1 t?edx)l>e) =0 and
ii) X1 is pregaussiane
2.17+3+ Example : an =Xj/n B xj ieiede, Y=0,F =0, Let X be a
symmetric B-valued rev. then we say that X satisfies WLLN iff for Xl,Xz,..
n n P
eeo ieiede as X, £( T Xj/n) = 60 or equivalently T XJ,/n - 0.

j=1 j=
We have X satisfies WLIN iff

1) ee(lx| > &) ~ 0,

1, <l =0

-1 n
11) lim _n E| T X
n 1 1

By theorem 2.10., and theorem 2¢5., X satisfies WLILN iff

HVe>0, texl > ) 0 and

n
2) For € > 0, there exists &  such that n-lEH z x 1dlx,|D <6 n)
o = I i o

< g/2 for all n « Now (1) ® (i) and (ii) ® 2) by writing expectation in

terms of tails and using Lemma l.4. Now choose 60 by 2) and observe that

LT sl lacsp<lel < w

Pl Tk s gl <l <7 2
i

=1

<n P(\\xj\\) >8mn) =0
as n—=®, Thus 2) = ii) .
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3. CLASSICAL CLP AND GEOMETRY OF BANACH SPACES.

In this section we relate the validity of classical theorems with the
associated geometry of Banach spacese Our proofs will use freely the geometrical
resultse We shall not prove them but instead refer to the literature where they

can be founde

3.1, Stochastic boundedness implies pregaussian : We first observe that sto-

ieiede sdoes not imply X is

chastic boundedness of {Xl + eee t+ Xn/fn} ’ Xi

pregaussiansas in S with X = {En/flog n} s En ieiede symmetric Bernoullis

it is not true. We, in fact, have the following

3¢1.1., THEOREM, The following are equivalent for any real separable Banach

space B o

i) B does not contain an isomorphic copy of cy

xl + LN ] + x
ii) For every B-valued, integrable r.veX , sup E“ -———B-H <o

/n

implies X 1is pregaussiane

Proof : As we have observed ii) ® i) , we consider now T _ as in example 2417.2;

k
and Xk = nk(x) o Let XII coe X: be ieiede copies of Xk « Then
Xl; + eee + Xk
el B <l + e+ x il

n

) Rt A
Thus Xk is pregaussian and EHG(X )H < lim n EH——/—“H by CLT « Now
n .

, . , k
G(Y) where Y =x' -x'"1, yow % G(Y,) is bounded in L  in

1 i=1 1

G(x) =

i

| M=

B and condition i) ® by Kwapien theorem (Studia Math 52 (1974)) that

© @©
z G(Yk) convergese Clearly G(X) = T G(Yk) o
k=1 k=1

3¢2. Accompanying law theorem.

To start with we define
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3¢2+1s DEFINITION. A Banach space B contains f:: uni formly [gl: <, is

finitely representable (fer.) in B ] if there exists T » 1 such that for

each n € N there are n vectors X seeey X in B satisfying
- 1 n T -

n
max .o ‘ti‘/'f < “E t, X ” < T max i<n lti\ .
i=1 i
By a theorem of Maurey-Pisier (Studia Math 58 45-90) the following are equi-

valent for q > 2 and a sequence {Ei} of i.iede centered real reve'se such

that P(J& | >t) >0 forall t and Elg|T<e .
(1) <y is not fere in B

ii) There exists a constant C = C(B,q,{Eil) finite set. for all
(3¢2.2)

sequences of points {xi} €SB,

sz SULM LR DR R A

Thus we get that if <, is fere B then there exists {xi} S B such that
1 1

=e(> + 35, .
z Ei x; converges but ?Ej xj diverges with Ej e(26-1 28+1 )
There exist kn . Zn - o such that
kn-H/n kn+zn T
30 but X X, 740 .
B L 373

Let us define an = Ej"’f'n Xj"'l?:n o Then {an} is U.l. triangular arraye

k
n
£(Sn) = 60 but {£( Ej %x,)} not tighte. If it were tight by arguments as in
= * k
n _ n
Example 1.8.3. we get that I & x,—30 as £( T €. x.,) = e(F ), where
=t 411 =1 33 n
k
n
F = L S(X .) .
ng nj

Thus accompanying law theorem holds = S is not fere in B o To prove

the converse we neede
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3e2.3. LEMMA, Let {xj} be i.i.de and X be independent of {xj} with

E\lxillq <o (i =0,1) « Then
I £ x|9< g |
El = x||9<Elx +nx .
1=0 i o 1

Proof : By Minkowski inequality,

"'n 1/q n X 1/q
(Eon + )i Xillq) < (el i§1(To + X, Y

X 1/q 1/q
<asdl 2 ax " < alx +axln

3e2.4e LEMMA, The following are equivalent for q 7 2

i) <, is not fere in B &
ii) There exists L = L(B,q) such that for every finite sequence
XI,XZ,...,Xn of independent symmetric B-valued reve'se with E”Xj“q <®

j = 1,2,...,n .
n Nj n
Bl T x in <LElzx|9
=t =1 3 1 3

where S(Nj) =e(8) , {xji, 1 =0,1,00e} is ieiede with £(xj1) =£(xj) and
{Xj i} s {n j} are independent.

Proof : (ii) @ (1) « Let {xj} SB,n€N, {Ej} be i.iede symmetric
Bernoulli, N with EN =1 , Poisson reve independent of {Ej},{gj} s Leiede
Poisson, E 51 =1, and {Ej} , independent symmetrization of {gj} « Then

N N
e(S(xei)) = £(x on Ej) and S(jzo ej) = e(zé_1 + 26_|_1) S(El) .

From (3¢2+2 ) and (ii) this gives ii) = (i) « To prove the converse, By (3+2.2)

and Fubini theorem we get

n
_ e q
Euj§1 X, (NJ, i<t Ellxjejll .
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By Lemma 3e¢2e3s, using E2 for expectation on Nj and E, on X

1 hj
we get N N
n j h]
Blz 2 x 9<e Ells 2 x |9
j=1 i=0 JI* ji=0 I*

q
<E, EI\\ )J: Ny xjH

and this in turn does not exceed

q-1 q q-1 q
2 EzEl\\ §(Nj-1)xj\\ +2 EZEIH §xj\\

n
<29c+ el T x,9 .
=t )

34245 THEOREM. The following are equivalent for any real separable Banach

space B .

i) <, is not fere in B »

ii) For any symmetric U.I. triangular array {an] s S(Sn) converges

= e(Fn) converges. In other words, accompanying law theorem holdse

Proof ¢ As ii) ® i) 1is proved before we move to i) = ii) « Let 8 >0,
8 € C(F) where F is the Lévy measure, associated with lim n-‘:(Sn) o Then by
theorem 2+1. and 2+15. one can assume that {an} are uniformly boundeds Using

Corollary 2.12. and Lemma 3e2¢4e to X . = W . where (X L. =W } are ieiede
nj nj nji nji

as X ,-W_. except X, =W ., =0, We get for every € >0,
nj nj njo njo
k N,
n J
sup En z T X, -W_, )”q <LEe . As (W .} take values in a finite-
n i . nji nji nj
j=1 i=0 k N
n j
dimensional space &£( Z z ani) is tighte Thus by theorem 2.16. we get

j=1 i=0

the resulte

3.2.6. COROLLARY, The following are equivalent for a Banach space B .

i) LR is not fere in B .
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ii) For every B-valued symmetric U.I. triangular array {an, j = 1,66

...,kn} n=1,2,0000

{(s )} tight implies {e(Fn)} tighte

3+43. Lévy-Kinchine representation and type, cotype :

In the classical case the function (with F symmetric)
@(y) = exp (I(cos (y,x) = 1) F(dx)) 1is a cef ¢of a (necessarily) i.de law if
F is a Lévy measure. One knows that, in general, such a functional is not a
cefe we want to examine conditions under which it ise If F has finite varia-
tion then such a function is a cefe of e(F) « Hence without loss of generality,

Fl c=0. Lt F =F|.c and assume variations of F_ converge to ® ,
O1 n |01/n n

Hence F_=k | with W a probability measures If ¢ is not fere in B
n n'n n o
then by theorem 3+2.5., {e(Fn)} converges iff Wy T converges. Denote by
k

- s = . _ o0
an S(”'n) j =1,2,0005k_ o Then by theorem 2.16. we get with s, j£1 an .

(Note that W, = Fn/HFnHV Do

Let R be not fere in B «. Then @ is a cefe of an iede law iff
£(Sn) convergese For this to happen, the necessary and sufficient conditions are
i) For € >0 and q > O there exists a finite dimensional subspace

M and a triangular array W _, , 7e-valued such that

nj
kn .
i) sup n E” E (an - an)u <e
=1
k
n
11) {& £ W )} is tight .
=

Of course, this is not a very good condition but in special cases we can reduce
it to a simple condition.

We need for this the followinge



458

3e3e1e. DEFINITION.

a) Let B , ¥ be separable Banach spaces and v : B~>X be a linear

mape Then (v,B,X) is said to be R-type p if there exists o >0, such

that for X1 seeey Xn symmetric independent B-valued, p-summable TYeve 'se ,

elvesplE <o EelelP

b) If B=% and v=1, then B is called of R-type p »

If B is R-type p , then <, is not fere in B by a result of
Maurey-Pisier (referred earlier). Also, since lim n S(Sn) is non-Gaussian
an = t(an) for a simple function t , “t(x)“ < “x“ o Thus a sufficient
condition for i}, ii) to happen is that for € > O , there exists a simple
function t (theorem 1¢7.), Sete

sup n‘!‘ llx - teolP Fn(dx) =J‘“ ”<1Hx - t(0|[P F(ax)

X

does not exceed €/@ o Thus we have

3e3+2¢. PROPOSITIONs The following are equivalent

i) B is of R-type p

ii) For every Lévy measure F satisfying ﬂ\x\lp F(dx) finite, o(y)

is a cefse 0of a probability measuree

Proof : Under the condition we can choose a simple function t as abovee Thus

{e(Fn)} is tight but q)e(Fn) (y) —9(y) « Hence o(y) = cpu(y) for some

probability measure } and e(Fn) = W o Clearly F 1is the Lévy measure of P .

For the converse implication, suppose Z “xjup <o and write
j

n
F = lim jzl (% ij +% 5_xj) e Then f“xup dF < ©» , Hence tpl(y) = cPp‘(y) .

But ¢(y) = lm Y 4

n
m (y) with {E€,} i.i.d. symmetric Poisson
= i3 J
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n «©
real-valued Teve'se Hence £( £ E.x.) ® W . Giving £ §.x, converges a.e.
=1 33 Pl
[+

But this implies I EJ,xJ, converges a.e. by Contraction Principles
=1

3¢3+3, DEFINITION., We say that B 1is of cotype q (Radmacher) (q > 2) if there

exists ® > 0 , such that for X1 seeey Xn symmetric independent B-valued

p-summable reve'se

EHanq>cx ; EHXin .
1

3e3e4e PROPOSITIONs The following are equivalent

i) B is of cotype q o
ii) Every non-Gaussian i.de law has Lévy measure satisfying ‘man dF
finites

Proof : We note that i) = <, is not fere in B . Hence by the necessary and

sufficient conditions we get that

k
n
El = x |9<=
wo ol 2 xlt<e
kn
Hence by cotype property of B , sup z EHX Hq <o,
n j=1 nj

But this gives ﬂlx“q F(dx) <*® as Fn t F o To prove the converse assume
z 3 Ei converges then it follows by the assumption ii) that T “xi”q

convergese Thus by closed Graph theorem for every sequence {xi} S B

n n
z Hx“q < constant E” T € x” e This implies that ¢_ is not fere in B
j= 1 ; 17 o

(Hamedani and Mandrekar Studia Math 66 (1978)) . Hence by Section 3¢2., I €.x
- J 1]

converges implies T ij"q <® giving cotype q property of B .

3.4 CLP and CLT in Banach spaces of type 2 s

We prove the following result.
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3e4ele THEOREM. The following are equivalent for a real separable Banach space

of infinite dimensione.

a) B is of type 2 »

b) For any Ue.I. symmetric triangular array {an, j= 1,2,...,kn} ’

n= 1,2,e¢s and F o-finite measure,

() 5 (o)

n

i) F for each c € C(F)

ii) For € > 0 , there exists a finite-dimensional subspace m

k
valued reve'se &(X .) such that sup z E\\x N 16 4 )Hz <e.,
nj D njc njc

s 3 P <
iii) 1lim lim n y,Sn

elo &

2
> = CY(y,y) for a cylindrical Gaussian
Y imply £(Sn) =Y * ¢(F) with Y Gaussian «

c) For every UesI. symmetric triangular array {an, ji= 1,2,...,kn}
of B-valued random variables and a O-finite measure F ,

i) FI(1°)=>F(°) for c € C(F) ,

i1) lim lm [

L < \\x\lzan =0 imply £(5) = e(F) .
X C

d) x| < = CLT holds .

e) EHXHZ <o = X is pregaussian .

Proof : In view of theorem 2.16. and type 2 we get a) = b) « Condition ii)
of ¢c) = C,Y(y,y) =0 and by Corollary 2.11. condition ii) of b) . Hence

2
b) ® c) « We show c) @ a) « Suppose I “xJ“ <o but T ijj does not converge

for some {x.} € B o Then there exist £ ,k_ such that (& = ®, k = ®)
j n’ ' n n n

4+ 24 He
n n 2 n n
T lxll"-0 bur £ T ex)?8 .
j=4 +1 J =4 +1 i
n n
k
n
Define X , =€, ,. X j =142500e5k_ o Thenby ¢c) £ T X )= 8
nj ,@n+J £n+j ’ 3590y =1 nj )

reaching a contradiction. Thus I €,x, converges, giving a) o To see

33
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b) ® d) « Clearly, EHX“2 <o = t2 P(“XH >t) 20 as t — =, Hence

FTEC) =aP(xl >cv/n) » o0 for each c— O . Condition b) (iii) is satis-
fied as E <y,x>2 <o, Let q(x) = inf {||x-yll, y € 7} . The given condition
b) (ii) is satisfied if for € > 0 we can find 7N so that

sup  E q( 1(lixll < \/n))2 = E(q(x))z <€ ., Given € > 0, choose simple function
t , such that

Elx - el?<e .

Choose M such that t(X) € M a.s. Obviously d) = e) . For e) = a)

(o]
assume Hx”z =1 and choose &£(X) = T %”x,“z(ﬁ + 8 ) o Then
i =t Ny T

©
EHXH2 <« and hence X 1is pregaussian i.es exp(- % z <y,xj >2y = oy (9
=

for y € B' and Y Gaussian measure. By Ito-Nisio theorem this implies that
©

L ¥.x, converges aeSe
=1 33

Remark : A reader is encouraged to state and prove equivalences of a),b),c),d),e),
for a triplet (v,B,X) of R-type 2 o There is not much change in the proofe.
Also one can prove by the same proof equivalence of a), b) and c) for

R-type p with 2 replaced by p .

3e5. Domains of Attraction and Banach Spaces of Stable type p (p < 2) :

We say that a Banach space B 1is of stable type p if for {xj] SB,

satisfying I ij”p <® we have I ij\j converges aeSe, where {'ﬂj} ieiede
j h]

symmetric stable with ¢£(n1)(t) = exp(-|t|P) .

We say that a B-valued revs X is in the domain of attraction of a B-valued r.

Ve Y if there exist bn >0 and X €E (n=1,2,ees) such that

LXK+ ees + X /b - x) = (V)

(We write X € DA(Y)) .
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The domain of attraction problem is to characterize the &£(X) so that

X € DA(Y) o We note that if X € DA (Y) then aX+ x € DA(aY+ x) for a € R,
x € B o Thus the domain of attraction problem is a problem of determination of
type of £(X) .

As in the classical case, one needs @

3e5¢1e Convergence of Type Theorem : Let {Xn, n= 1,2,...} be B-valued

TeVe 'se such that £(Xn) = £(X) and there exist constants {an} S R such
that 55(.31_l X+ xn) = £(Y) then there exists a € R , such that ‘an| - |al
and x 7 X provided there exists y € B' such that o(<y,X>)
and £(<y,Y>) are non-degenerate. In particular, £(aX +x) =&(Y) if a >0«
The proof is exactly as in the one dimensional case and hence is left

to the readere.

Remark : For any x € B and for every sequence {S(Xn)} there exist X and
b #0 such that &b X + x ) = 8 o To see this choose fc} so that
n n'n n x n

P{”Xnn > ¢} <-x1; to obtain P(HXn/ncJ‘ > %) <t1_1 . Hence S(Xn/cnn) = 60 .

|=

n
Choose b b =
n

. and X =X Thus all laws are in the DA of degenerate lawe

0

n

34502, THEOREM, A reve X € DA(Y) with <y,Y> non-degenerate for some y €B',

Then
i) bn"°°, bn/bzrn_'l

and
ii) for all a,b real there exists a c(a,b) € B sete

,Y ieiede as Y.

2

S,(aY1 + sz) = £(c(a,b)Y + x(a,b)) with Yl

In the one-dimensional case, such laws are called stable (as their
type is stable under sums)e. As CPn(t) = exp(~|t|P) for some p in the ome-
dimensional case, we get, c(a,b) = (‘alp + ‘b‘p)l/p and x(a,b) =0 in the
symmetric cases We say that a symmetric reve Y is stable reve of index p 1if
Y satisfied Theorem 3.5.2. (b) with c(a,b) = (\a‘p + \blp)llp and x(a,b) =0.

Note that p < 2 . Using induction on the definition os stable reve with
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a, =a, =eee =a_ =1 we get for x € B
n

-1/p —
(3.503) £(n () +eee + Yn) - xn) =&(Y) .

3e5.4. THEOREM. A non-degenerate Y has non-empty domain of attraction iff

Y 1is stablees

Now (3¢5¢3) with p =2 gives Y is Gaussian. As non-degenerate
Gaussian laws do not satisfy (3e¢5.3) for p <2, we call the laws with
index p < 2 as non-Gaussian stable lawse Also (3.5.3) implies Y 1is i.de
and in the symmetric case X, = 0 . Let F be Lévy measure associated with

£(Y) o Let Fn(.) =F(n-1/p.) » then by (3e5.3), for Y symmetric,
S(nllp Y) = s(Y + eee + Y )
1 n

and hence by uniqueness of Lévy measure, Fn =nF « Let A be Borel subset of

{x‘ ”xn =1} , and M(r,A) =F{x€ B B Hx" >r, X €A} r>0. Then

Il

1

P ay =k M((k/n);,A) .

nM(1,A) = M(n

By monotonicity of M we get for r> 0

M(r,A) =P M(1,A) =P 0(a) (say) .

3¢5.5+ COROLLARY, P (v) (y) = exp {J‘ |<y,s>|p 0(ds)} for a symmetric stable
S '

reve Y of index p . Here 0 is the unique measure on the unit sphere S of

B .

By using (3¢5¢3) and Theorem le7. we have sup &P P(HY“ >c) <o
for Y symmetric stable. Hence EHYﬂB <o for B <p . From Theorem 2,10 we

get that a symmetric B-valued reve X € DA(Y) iff



464

(a) np(||x|| > b, X ¢ A) ~»rPo(A) for r>0 and

|x]|

(@) =0,
(3+5.6)

() lim lim b VE|z, + eee +2||9=0 for some q>0
n n 1 n

€0

with 2, =%, 1dlx,[h <eb) .

B . . -
y elementary calculations, using bn © and bn/bn—l-l -1 and

(3e546) (a) we get

> -
(3.5.7) g_(.uu) - r P , as t~—®

p(llxll > ©

ieee, P(“XH > ,) is regulary varying of index (-p) « Also for A with

c(®A) =0, as t~—®

(3.5.8) p(|xl| > ¢, HE e n/edxl > &) - o@)/os) .

x|

In particular X € DA(Y) implies Elx[|T<® for q<p . To obtain

sufficiency we observe using regular variation

P p(lxll > -
EPAXI>E) L 9P g g e

Ellx]| 91 (l|xl|<e) P

Put t = bnE and multiply the dominator and numerator by n to obtain from

(36547)

(3.5.9) 1lim _nb dE|z|%= B £7% |
n n q-p

It is known that if B is of stable type p then for any family
(W, yeee,W ) of symmetric independent B-valued reve'se with E”W,nq <
1°°°%2"q P i

(i = 1yeeesn 3 q < p) there exists C such that

n n
Elzwlf9<c ¢ E[w||? . (see e.ge Maurey-Pisier) .
1t i=t
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From this, (3¢5e9¢),3(3¢5¢6),(3¢5.7) and (3.5.8)

3¢5410. THEOREMs Let B be of stable type p <2 o Then X € DA(Y) iff Y

is stable and X satisfies (3¢5¢7) and (3¢5¢8) »

In the "if" part one produces bn using (3e5¢7) &

3¢5.11, THEOREM. The following are equivalent for p <2 ,

a) B 1is of stable type p «
b) Conditions (3.5.7) and (3.5.8) for some O are necessary and
sufficient for X € DA(Y) with © being the measure associated with Lévy

measure of Y ,

X1+..-+X P
) tPedx|l>¢e)~0 iff L2—u-— B o g

a1
Proof : We have proved i) = ii) . To prove ii))implies iii) , choose © ,
symmetric, stable, real-valued reve independent of X and e € B sote
He“ =1 o Then it is easy to check that P(”X + 6 e” > o) 1is regularly varying
of index (~p) . Note that nP(n-llP B e )=d X r-<1+p)dr with T'(+1) =
I'(-1) >0 and supp T = {+1,-1} o Hence for A > 0 , there exists a closed
symmetric interval J with interior of J 2 [-A,\] and & > 0 such that
(Jc)6 € [-A,\] and n.P(eln‘-l/p € (Jc)ﬁ) <€ , Here (JC)6 denotes § mneigh-
bourhood of J€ . Now choose 60 Sete [(Je)c]6° NRec (JC)6 e « Then since
tP p(lx]| > t) =0 s there exists n°(€,6°) =n, such that for n > n

ne(|lxl| > &_ 2Py < ¢ . Thus

nl’(ﬂnl/p Y € Je) < nP(n-llp Y ¢ Je, |lx|| < 50 nl/p) * nP(HX”> 6o nl/P)
=1/, c 6o
<nP(n" P o€ [(Je)%] %)+
< P 6 €0 e =2e

-1
Thus {nP(n /e Ye o)} is tight outside every neighbourhood of zero. By one-
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n (X, +6_e)

dimensional result &[<y,z —=->] = £(<y,8 e>) for all y € B' .

1 n1/p

Here {91 s i =1,2,00e,n} are ieieds, with £(8) o This implies
n 1’(<y,Y>/n1/p €.)>Fo y-l(.) .
Here dF = dI' X r-(H—p)dr , supp I'= f-e,e} , T(e) =T(-e) equals T(1) . Hence

n I’(n-llp YEJN>F .
1

This gives (3¢5.7) and (3.5.8) for Y . Also by (ii) we get bn/n -

constant and

n
T X +G,e/n1/p 20e .

j=1 ] J

This gives the resulte For (iii) ® (i) observe that exactly as in the proof

1

for Proposition 2.14. we get sup EHX1 T eee + Xn/n/pur <o for r <p . Let

CL(X) = sup_ glln~1/P & + oo +3Zm)l|r where X eesX  are f.ieds B-valued
TeVes with E\\xl\lr <o and (3(‘1,...,?(;1) is independent symmetrization of (Xl,..

eeesX ) o Let CL(p,r) = {X ; X B-valued reve and CL(X) <®} and

Lg’“’ ={X ; X B-valued reve and P P(||x|| > C) = 0,6~} .
On Lz’m define Ap(X) = sup c cP P(“Xn >¢) for p<1 or [sup c cP

P(“X“ > C)ll/p for p> 1 . Under (iii) , we can define T on Lg’m = CL(p,r) »
T is defined everywhere and closede Thus by closed graph theorem CL < Constant
Ap(X) « Let K = constant « As in example 2.17.2. we can approximate X € Lg’m

by simple functions in Ap-norme Now if Y is a simple function then finite-

n
dimensional CLT , lim E\ln-]'/p z YjHr =0 since p <2 . Hence range of T
n 1

n
is included in the X 1is satisfying 1lim E“n-llp z Xjnr =0, giving (iii)
n j=1

is a super property of B . By Maurey-Pisier-Krivine result (see Maurey-Pisier

cited earlier) one has to show lp is not fere in B to get (i) «
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It suffices to show that (iii) fails in !'p o Let {Ej},{Nj} be ieiede

1

sequence with {€,} ieiede symmetric Bernoulli and P(Nj 7 n) =

i n log log n

+
for n” 27 and 1 otherwise, {Nj} IN -valuede Define

x=8j z &

N2N <k<w? + N
i3 j j

{e.k} natural basis of Lp e One can check that nP(HXHp > (2n)1/P) -0 and

{X.} ietede but {X, + oo +X /nllp} is not stochastically bounded.
j 1 n

3e5011. COROLLARY, Let B be of stable type one (B-convex)s Then X satisfies

WLIN iff ee(lx|l > )~ 0.

3e6e Results in the space of continuous functions : These results are special

case of results in type 2 spacese Let {an s j = 1,2,...,kn} be a symmetric

k
triangular array of B-valued reve'se Then {Ft(ll)} is tight iff &£( X )

njl
=
k'l'l
tighte Thus one wants to consider I anl; ieee, without loss of generality,
j=1
@

HanH <1 ¢ If we assume that B= U n K with “x”K = inf{d : x € W for
n=1

K compact and the injection i : B - BK is continuous , ie.es, if B is com=

pactly generated, and R-type 2 , then

k
n 2 n 2
Ell1( I %y tllg < ol < = elle 17
k k
. n (o2 n
Since  P( j£1 X g1 €O = P("i(jil xnjl)nK >N,

by Chebychev's inequality, we get

3e6e1s THEOREM. Let {an, j= 1,2,.-.,kn} n = 1,2,0ee be a triangular array

of B-valued reve'se with B compactly generated and R-type 2 « If {Fx(ll)}
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is tight and sup I ”an Fn(dX) is finitee Then {S(Sn)} is tighte

lIxll<1

Remark :

1) A similar proof shows that e(Fn) is tight as on type 2 space,

Il e ycan < [ lxl? 7 o) )

n
2) By one-dimensional result {(1AHX”2)Fn(dx)} tight ® {£( “xnjnz)}
=
is tighte
3) We note that the above result holds for triplet (v,B,%X) of

k
R-type 2 if v(B) 1is compactly generatede In this case, {e¢ =" “annz)} tight
. =1
k J

n
implies &£( T v(X_,)) tighte
=W

We shall use the last fact to obtain results on the space of continuous
functionse.
Let (S,d) be a compact metric space and p a continuous metric on

S o Define

el =lel, + sup o V2O - £ /pCes D o
On C(S) , the space of continuous functions with respect to d « Let

c’(s) = (£ €cs) , llelll) <=

cPes) ={f€cPs) ;5 1im le(e)-£¢o| /e, =0, ¥V a} .
° (t, 9~(asa)

34642, LEMMA, (Cp(S), H‘.lnp) is a Banach space and Cg(S) is a(closed) sepa-

rable subspace of cPes) .

Proof : As other parts are standard, only proof needed is to show Cg(S) is

closede Define T on cz(s) by

£(t)-£(s)/p(t,s) if t# s
(Tf)(t,S) =

V] if t=s
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Then T 1is continuous linear operator on Cz(S) to C(S X 8) and Sf = (Tf,f)

is an isometry on Cg(S) into GC(S X S8) X C(S) with H(f,g)nc(s X8)X G(S) =

] .
”f“°° + Hg“ao « Hence CO(S) is separable.
A continuous metric p 1is called pregaussian if for a centered Gaussian

process {Xt s t € s}
E‘X(t)-X(s)l2 < Cp(t,s) ® X has continuous sample paths .

If on (S,p) there exists a probability measure ) satisfying

1
(36663) 1lim sup € Is [log(1 + 1/A{t €5 : e(s,t) < u}]z du =0 .
€-0 stS 0

or for metric entropy H(S,p,x) of (S,p) , and some « > 0

(3.6.31) ¥ u%s,0,0) ax <o
0

Then it is known (Fernique : Lecture notes in Math 480 or Dudley :

Jo Functional Anale 1 (1967)) that p is pre-Gaussiane

3e604. LEMMA, Let B be a Banach space and v a contimuous operagtor on B into

Cc(s) . If v(B) € Cp(S) for some pregaussian metric p , then (B, C(S),v) is

of R-type 2 .

Proof : Let v : B~ (Cp(S),\H lup) is continuous by the closed graph theorem.

Let T ijHz <o for {xj} S B o Then with v(xj) = fj s we have

£ e - (%< = p%t, d|£. 1% < constant (e, 9 = |lx.|?.

By p being pregaussian we get T ijj converges asse in GC(S) iff
@

z |fj(t) - fj(S)lz <C Pz(t, s) o Hence we get T ij
=

converges asSe in

]

C(S) completing the proof.
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We now recall some factse Under (3¢643) (or (3+6¢3')), there exists

p' satisfying (3.643) (or (3.6.3')) and p(t,s) < a p'(t,s) with
1im Pp(tys)/pt(tys) =0 ieeey, if a reve lies in Cp(s) , it lies in
(t,S)"(a’a)

p'
Co (s) « Also,

czzs) =UnK with K= {x; ”x“p < 1} compact
n

1
Thus Cg (8) is compactly generateds We can thus use the remark following

Theorem 346e1e to get

3¢6+5. THEOREM. lLet (S,p) be a compact pseudo-metric space satisfying (3+6e3)

(or (3e643'))e Let {an} be a G(S)=-valued triangular array of row independent

TeVe 'se Assume

i) S(Sn(tl),...,sn(tk)) converges in (C(S),p) weakly for each

finite subset (tl,...,t )ES.
k

ii) HX “ < ® g.se for j,n and 3(2 “X “) is tighte Then
=

a) {e(Fn)} converges and {S(Sn)} converges o

If in addition {xnj, j = o,...,kn} are UsI. then lim e(F ) = lim £(5 ) «
n n

b) As c, is fore in C(S) , we can find a triangular array, U.Il.

such that the above conditions are not necessarye

3.606. COROLLARY, Let (S,p) be a compact pseudo-metric space satisfying (3.6.3)

(or (3e6e631'))e If E”XH§<°° and X symmetric, then X satisfies CLT

Proof : X .=xMn, T Ix J2=% znxn2
Proof : X j“’jﬁl njle T m .

Hence by WLIN in IR we get the result.
One can, of course, study CLP and CLT in cotype 2 spacese. Analogue
of theorem 3e4el. holds for cotype 2 spaces (involving necessary conditions)e

It therefore suffices to study CLT only in cotype 2 spaces. We refer the reader
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for this to (Chobanian and Tarieladze (1977) J. Mult. Analysis 7).

One should note that original motivation (from the probabilistic point
of view !) for probability on Banach spaces was to study Donsker's invariance

principle. However theorem 3.6.5. does not include this because in this case,

with
0 0<¢t<j-i/n
xnj(t) = 1 jln<t<1
linear between j=-1/n and j/n .
n
and § satisfying OLT, one needs to show &£( T an §jﬁ/h) = L(W) , W being

=
the Brownian motion on [0,1] . Take p(t,s) = lt-sl « Then %ng xnﬁ|>‘§i‘2 .

n
Hence &£( T Hxnjﬂs) is not tight with X

=€ x_.Mn . Thus, what is the
j=1 j "mj

nj
influence of such CLT on classical probability theory ?

Je Kuelbs observed that CLT holds in B iff the invariance principle
holds in B , for B separable. However such invariance principles are of inte-
rest in non-separable case (empirical processes)s Recently, Dudley-Phillips cir-
cumvented the theory on Banach space except for the finite-dimensional approxi-
mation to construct Invariance Principle in probability (to be defined !)o In

the meantine , de Acosta extended Kuelbs result and obtained ana.s. Invariance
Principle for non-Gaussian limite We shall present it next for row ieiede trian-
gular arraye The theorem is due to de Acosta and the proof is due to Dehling-~

Dobrowski~Philippe
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4, INVARIANCE PRINCIPLES IN SEPARABLE BANACH SPACES.

Given an iede law W on B , we can write it as Y¥e(F) if it is
symmetric, with VY symmetric Gaussian, F a Lévy measure. In general, if

is not symmetric, ome can write for T >0, W =Y*_ e(F)* 6X for x €B
T
and S_ e(F) denotes the probability measure whose cefe is of the form

j‘exp(i <y,x>) =1 - i<y,x 1(“::” < 1)> F(dx) .

¥

= * * = =
Let W 'Yt S, e(tF) 6tx,r where Yt Y(t “(e)) o Then {p't’ t » 0} is

well defined (and is in fact a convolution semigroup). Here My = 60 o If

k
{an} T isa triangular array of row-independent B-valued reve'se with

lim £(Sn) =W (i.d.) then we get the following :
n

4e1, LEMMA. &( T ) 2 k = 0,1,000,2"
Eqp <l 157
Zf n 21‘

Proof : The proof is by inductionon r . If r =0 , k =0 then the Lemma
reduces to 51(3n ) = By =W, which is given. Assume the conclusion holds for

r =1 and k be fixed = 0,1,000,2°-1 o« Then k or ktl is divisible by 2 »

1

First assume k =2i , i = 0,1,...,2r- -1 « Then by induction hypothesis

£( = X )=p as n—® o
. Rl PR
- L]
2
Let
)\n = &( = an) and vo= £( z an) o
k/25<5/% <ktl 1f_"l(j/k <kt2
n,r T n,r
2 2 2
Then
(4ele1) A *V = &( o X)) 2 R
n n . r-1<j/k¢+l ni’ e 1/2r 1
i/2 n ,r-1

Hence there exists a sequence {x )} such that (A*6 3} and v *8 1}
n noox n x_
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R - =\ * =y %
is tights But A =V , Vv =)\ £(an) or A v, S(an) and

n
X .,) @ 8§ . lim A *¥ 8§ = 1lim Vv_* § exists over a subsequencee
nl n X n X
m® n n n n
But lim A * 8§ = 1lim(v_ * & )* § o« Hence 1lim & exists and is equal
n X n -X 2x X
n n n n n n n

to 6x « Hence 1lim )\n = lim Vn s all this over the same subsequences Using
o n n

(4elel) , we get using linear functionals that

lim A=W 2
n 1/2r
. =
le€Ce £( . Z . xn.) ull 21. .
k/2 <j/kn<k/2

Let us now denote by (for r to chosen)
n, =1 k/2t < il < k+1/27} (0 <k < 2%)

and by tnk = min an s P = carde an « Then we have proved that with

by =S s 1= L2k

*pnk

4.2+ COROLLARY, p:n =W .

oz

Let us denote b T the Prohorov distance and Sn =z X., w

have the continuity of u.t at zeroe

4e3. LEMMA, 1lim lim sup (s ,),6) =0 .
0 e k<<:kn nk o

Proof : If the Lemma were not true we can find a sequence {jn, n > 1} of inte=-

*j
gers such that j /k — 0 but S_, + 0in probability, Let o =p * and
n n nj n n
*(kn-jn)
n = M s then @ *B_ = w ., Hence there exists an (x } € B such that
n n n n

k
{an * 6x } s tighte Now [cpu‘ ] n——)cpp(y) uniformly for HyH <M M<x),
n “n
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j
Hence [tpp‘ ()1 " —>1 uniformly on “}’H < M, noting that log of all cefe
n
*j
involved existe Hence My no= 60 contraditione

We also note the

ik P
loke GOROLLARY. If j fk =0 , then W ™28 . 4 .._“E-_lr -0
It then e
n

we get that

pnk/kn 1/21' r
(4e5) (W s )20 as n~—® 0<k<2 .,

Thus we get for n2 nos

¥, /k

P P
(4e6) ﬂ(p.nnk, n nk 'n) <go°f 0< k< T .

Re : In view of Strassen's theorem,this would say that on each block the points
on the process given by {p't’ t » 0} are close to the partial sumse But the

process may have jumpse.
To take care of this we need the followinge

4o7o LEMMAs Let X and Y be independent B-valued random variables, with Y

Gaussiane Then
p(llx + vl < ©)
is continuouse

Proof : Since X can be approximated arbitrary closely in norm by discrete reve

we can assume X discretes It is enough to show

T P(X=x,) P(t-e < |x, +¥]l < tte) 0 as €-0.
i=1 1 1

It suffice to prove P(t-€ < “xi. + Y“ < t+€) # 0 , But “xi + ﬂ\ = sup {<yj,

X, + Y>3 “yj“ <1, v € B} . Hence this is knowne
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408, LEMMA. Let {Zi s 1= 1,2,...,n} be a finite sequence of independent

identically distributed reve's. and with distribution of ”Zi“ continuous.

Then L , defined by “ZL“ = max "Zin is a well defined reve asee, uniform
1< j<n

n
on {1,2 ,...,n} and independent of Sn =X Z, .
-_— =1

n
Proof : 1>(sn €A)= ¢ P(sn €A L=j) = nl>(sn € A, L=1) as the distribu-
=1

tion of Sn is permutation invariant. Now

BL=3) =P ¢ llzll > llz)]l , V5 #0 .

8=

Hence the P(L = j) is independent of j ; i.ee P(L =3j) = giving the result.

Let Tnk be probability measure on integers so that to each integer
r
< .
in H,  , it assigns mass 1/pnk and zero otherwise then Tk O0O<k<2 ;
n = 1,ees) is the distribution of Lnk such that XL = max “X “ (if
nj
nk jénnk

Hxnk” has continuous distribution)s Now we observe that V n > n,

*pnk upnk /kn

49 m x T, x T ) <e/2" 0< k<2,

Using Strassen's Theorem, we obtain, for each n , triangular arrays
{xnj’ ji= 1,2,...,kn} and {ynj’ ji= 1,2,...,1(“} n =1,2,eee o0f row-wise
ieiede Teve's. and triangular arrays {Lnj’ 0< ;i< Zr} and {Mnj .

. r 143 .
0<3j<2"} n=1,2,0es with S =4 s SGy) =pdlky 5= 1250005k

S = = < r
nk jEH xnj Tnk .EH ynj 0<k <2 for n>n°.
nk 3= Sk
- > - < r r
(4+10) Pllsnk 'rnkll €27, or L, #M }<ef2 0<k<2" ,

We have shown that the sums over the block are closee The assumption of continui-

ty of the distribution of the norm is removed by convolution u-n and W with
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a Gaussian measure of small variance (Lemma 4.7)

Theorem we want to prove is the following

*k

4e11s THEOREM. Let {un} be a sequence of probe. measures such that un D=y

(kn = ® as n ™ ®), There exists a probability space and two row-wise indepen=-

dent triangular arrays of B-valued random variables {xnj’ 1< i< kn} and

{ynj, 1< < kn} such that

1/k
— = n s
(4e1141) S(xnj) =KW S(ynj) W 1<3<%k)
and
(4e11.2) max “ T x,- T vy "'—30 eSe
K<k gk Mg ™
(n) (n)
Let s =3 x W= T y. .
k <k ™ k <k ™

Define Xn(t) = SlEn) t = k/kn 0<k< kn and linear in between and

Y (t) = T(n) t = k/k (0<k <k ) and linear in between.
n k n n

Then Zn = Xn - Yn are ¢(lo,1],B) and Znﬁo in distributione Therefore
by Skorokhod's theorem 3 Zr'l 2 £(Zt'l) = S:(Zn) and Zl'_l-—)O aese Thus it

P
suffices to prove (4.11.2) with—=> 0

To do this on the same probability space one needs the following lemma.

4e124 LEMMA, Let S,Sl,Sz,.... be Polish spaces with distribution )\n on

S X Sn such that marginals of )\n on S8 are identicale Then there exists a

sequence of random variables X,XI,XZ,... taking values in S X S1 X eee

such that £((x,xn)) = ln .

Proof : Let Qm= S X S1 X eee X Sm o First we observe that for m = 2 we have
the measure

v, (A X A, X &) =j“A Ay (8,100 A, (a1 & ()
1
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where A is the marginal on S and Kl(.lx) and ?\(.lx) are conditional
distributions (which exist)e Suppose that the lemma is proved for & (j <m .

Apply the case m=2 to Qm and )\m+1 on S X Sm_'_1 to get the resulte.

Reduction of the theorem : It suffices to prove that given € > 0¥ two trian-

gular array's {xnj] and {ynj} satisfying (4e.11.1) such that

(4013)  lim sup P( max |s™ - (“)H>e)<e .
P 2k |k T

n -
Suppose for each m , we can find two triangular arrays {xl?;) s j = kn} s

(m) .
({ynj s j = kn} such that for n = n

(n) (n) 1 1
P( 8. (m) - T (mf >=) <=,
:::: ” k k m” m m

We can and do assume that that for different m's {(xr(x?)’ yz(z?))’ 1<j< kn}

. (m) (m)
= = < <
are independente The arrays defined by an. xnj s ynj ynj nSsn<mn.,

satisfy (4e1lel) and (4e1142) with —P—)O e Thus the problem is to prove
(4e13) o This is what we have essentially shown except the maximum is within
blockse To get maximum otherwise we need Shorokhod's inequality,

Let D([O,l] 3B) be the space of "cadllag" functions on [0,1] into
B and & be a process with independent increments which with probability one

is D 0,1];B)-valued
87(e,8) = sup min((E(e)£(e) > 85 B(llECe,) ()] > &)

and

A(e) = sup min ([lECe) - €ce Il 5 llgce,) - gl

the supremum is taken over all (t,tl,tz) 0<t=<1, t-c St1<t<t2 <ttc .

The following lemma can be found in (Theory of Prob. Appl. 1956)

SKOROHOD LEMMA, Let O < c < 1 be such that AF(c,5/20) < 1. Then for any
positive integer 4 = 3/c

P(ACL/0) < 10° AP(3/8,8/12)/c .
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P(A(1/8) > §) < 100 AT(3/4,8/12)/c

Let En(t) = ZiSk X4 and Ap(c,S,n) and A(cyn) be defined as
t
n

above for §n e Lemma 4¢3

4414, COROLLARY, Let € > O o Then

1lim 1lim sup n Ap(c,e,n) =0,
c*0

Now using Skorohod Lemma we get for ¢ > 0¥ r =r(e) =2 1 such that for
nz n1(€)
(4e15) P{AC2F,n) > e} se
Using this r we can define H and from (4.10) and (4e15) we get
get with S(m) = I x s T(m) = I Yni and n2 max(no,nl) ,

g=m ™ i<m

max k<2r’tnk<mstn;k-l-1 min(||s (m) - s(tn,k)“’ns(m)'s(tn,k-l—l)) <e

max o, . anep  madlra - e Ollr@ere o <.
’ n’k n,k+1 ’ »

— r
p) \\snk-rnk\\<e, L =M, 0<sk<2
k<2®

except on a set E of probability < 3¢ .
c
w < <m <
Let €E and m kn be given choose k sotthat t g <m tn,ld'l
we want to show that

lIs(m) - T <8 .

Suppose first that “Snk(w)“ < 5¢ o If for all (m“T(m) - T(tnk)“ < ¢ , then

s -z@ll < 5 b, -1l + lscmy -sce ll + lremd ~1¢e Ol «

Note 3 “S(m)-S(tnk) < “S(m)-s(tnkll)“ + "nk“ such similary for T(m) but

It <e as Il (m) - T(tnk)“ <e)ese+etls [l +esse .
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If jump in the 1st process at is tn,k+1 and the second at t then
there is problem ! »
)“< €, then we can write

1t ||T(m) - ¢ €t

s (-t = llsm-sce, 4l + HT(m)-T(tn,kﬂ)“
+ ‘\T(tn,k-l'l) - S(tn,k+1)“ < 8¢

as aboves (Here S has jump at t_ .) «
nyk
It remains to prove the above if “Xnk“ > 5¢ ¢ By (4e15) and

sup kn p.n(“x“ >¢€) =c(e) <= , which follows from Theorem 2.16., we get

L Lz Plmtnllx, il ) > ) < 2" (o ) s cte)

osk<2” 1,5€H

< o(e) 2F (pnj/kn)z < c(e) 2 < ¢

(by choosing r in (4.15) large) .

Thus we can discard the set E1 on which at least two “xnin or “yni“ with

in an exceed 2¢ o Thus if w € E‘l: then in each block exactly one of uxni“
exceeds 2¢ and this happens at i = Lnk and similary for “yni“ at i = Mnk .

Hence on EcﬂE: we have for all k , 0=k < 2%

“S(tnk) -S(tnk+h)|| <e 1<hsi

and
“S(tn’k_l_l -8t + | <e if Lie<h<p, =

Analogously for T(tnk +h) ¢« Hence 1<ms kn s> 4 k such that
lstm - Tl =llsce, + B - 2 + | <3¢
using “S(tnk) - T(tnk)u <e on wWEESN E;' for n= max(no',nl) o Hence we

have proved (4e13) « By the reduction of the problem we get (4e11e2) holds

with 250,
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4e16e COROLLARY. Let {xnj s § = 1;...,kn} be triangular array of row wise

jeiede TeVe'se Let X (t) = T X . t =k/k 0<ksk (X (0)=0)
— mn j<k nj n n n

with linearly interpolated in betweene Then {Xn(t)} converges to a process

{Y(t)} of stationary independent increments associated with the semigroup {p.t}

on D(0,1],8) iff (S ) = .

In particular, CLT holds in B iff invariance Principle holdse

We note that necessary and sufficient condition for CLT to hold is
that X be approximated by a simple function in CL(X) norm (Proposition 2¢14)e
Hence if one assumes that in non-separable case one has finite-dimensional ap-
proximation in outer measure P* , then does the CLT hold ? We shall amnswer this
in the next section, but we first want to show that in separable case CLT holds
in outer measure implies measurability of X (at least under completion)e
Thus the problem studied next is a proper generalization of the work on separa-
ble case and reduces to it under such hypothesise

Let us first explain the set up in the non-separable case. Let (A,G,
Q) be a probability space and (Am,Gm,Qm) , the countable product of (A,G,Q)

with elements {xj} and denote by
-] @© @
©@3,p) = ({0,1],800,1],Lebe) X (A ,G ,Q) &

Here G is assumed to be included in the completion under Q of a countably

generated O-algebra of G o Let

I

p*(A) = inf{P(C), C= A, CE ¥}

P, (A) = sup{P(C), CS A, CE 3} .
Let -‘10(0,3,1’) ={fefeQ-[-o, 4], £ measurable} o For any
£:0-[-o, 4] , define

£ = ess inf {j € £°(0,5,P), j = £}

-((-f)*) = ess suplg 3 g<f, g €£°(0,3,p)} .

h
I
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4el17« 1IEMMAe The function f*¥ exists ans is &-measurablee Moreover, we can

* * *
take f* =2 f everywhere, for all g: Q9[- ,+=7], (ftg) <f + g aese

*
and (f-g)* = f* - g aese if both sides are defined aese

Proof : Define LO(Q,K‘ sP) , the equivalence classes in IO(Q,'J,P) with metric
d(f,g) = inf{e >0 ; P(|tan”lf - tan"lg| >e) < e} .

Then (LO(Q,ZF,P),d) is a separable metric space and hence ess inf (J) for
dc LO(Q,'J,P) can be written as min k=n i ! ess inf (J) with {jk} dense
subset of LO(Q,ZF sP) o Thus f* is measurgble and by construction, the other
properties followe

Let (S,|| 1) be a Banach space and h be a map (not necessarly mea-
suragble) of (Am,Gm,Qm) into S « We call Xj = h(xj) a sequence of independent

identically formed (ieiefe) elements e

4418+ THEOREM, Let X = h(xn) N = 1,2,ee¢ be ieiefe elementse Let

lim P¥(X, + oo+ X /n S t) =lim P (X, + eee+ X //n S t)
1 *° 1 n  ® 1 n

=Y(-°°,t] V tER .

where Y is N(0,1) reve Then h is measurable for the completion of G

2
i

under £(x1) e So X. are measurable and EX, =0 , EX; =1 .

i i

For this we need the following lemmae Its proof is presented in the

appendixe

4419+ LEMMA. Let (Aj,Gj ’Pj) be probability spaces such that Gj is the comple~

tion of a contably generated O-algebrae Let fj H Aj—-y[(),“’] be any functions

T
j = 1,2,e0esn o Then on m (AJ.,Gj,Pj) with co-ordinate functions (Xj)
—_— o

.

n
(™ o£(x N =
=0 3

13z

) fjf(xj) aese

where 0 =0 , If n=2, ¢

1 = 1 then the same holds for f2 .



482

Proof of theorem 4¢18¢ As Xn are non-measuragble we consider

*
< < .
X o Xn Xn

*
Let D={xX ==} then D ismeasurables If P(D) >0 then p|, is ron-

atomic, as

{Xi*' eoe + X:/fns t} < {X1+ ...+Xn/fn5 t} .

Nl

Define on D , Yl 2 0 (finite-valued) such that P(Y1 =M +2n) 2 n .
* -
where Mn t © are chosen so that P(X1 < - Mn) <n 3 o This is possible as

* * =2
> - . P < o) < -
X ® o Since P(min i<n xj Mn) n s by Borel-Cantelli we get for
% *
n large, Xj = -Mn for all j S n o Thus z Xj = -nMn o We define off D ,
1<jsn
*
Y1 = X1 - 1 o Repeatedly s we can define YJ. from Xj , then they are indepen-
dent e

Y,z M + on}= 1-(1-n"’) —31 .

P{max 15j%n

Hence for n large, there exists a j with Yj z nMn + 2n o Thus on D (by

noox
non-negatively) and off D (as T Xj = -rMn) we get
=

n
z Y.Z2n o
= 3

*
But YJ, < Xj and hence by Lemma 4e19¢ and independence

P*(Xj 2 Yj s J = 1,2,.00) =1

) =1 , contraditing the assumption unless

Hence P (—1——-%———11 = n

P(D) = 0 o Let D(j) = {x = xJ -2y, Then P (D(j)) =1, Apply Lemma 4e19

= = o Th ﬂ D « O ﬂ
with Pj (xj) s fj 1n¢s) en P (j 0 (j)) =1 ¢ 0n 2 n(j)

* *
X +...+X/fn$X +...+X/fn$X +.-.+X/fn+ 1/\/11. .
1 n 1 n n 1 n

%*

%*
Hence X, satisfies CLT giving EX1 =0 o Similar arguments give EXI* =0 .

[y

* *
Now X1 - Xl* 2 0 gives X1 = Xl* = X1 aeee completing the proofe
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4420 COROLLARYs If S =B is a separable Banach space and Xj = h(xj) satisfy

CLT as above then {Xj} are completinn measurable for Borel subsets of B »

2
Proof : Since <y,Xj> satisfies CLT with VY =N(0,0’§) s (cy> 0) for

y € B' we get that <y,e> are measurgble with respect to

3‘0 ={c ; n"1(G) 1is measurable for I(xl) completion of G } o

But B is separable, B(B) = o{<y,e> 3 y € B}, giving the conclusione

APPENDIX

n * nog
Proof of Lemma 4¢19¢ Clearly, ( 7 fj) < m fj e For the converse, take
=1 =

n =2 and suppose g 1is measurgble on A1 X A2 and for ¢ >0

c(e) = {(x,y) 5 gx,y) + ¢ < ft(X) f;(y)} .

Suppose (1’1 X P2) (G(0))> 0 ¢ Then for some ¢ > O (P1 X P2) (c(e)) >0 &
*
Fix such € o For m = 1,2,eee, let Bm = {y st m< fz(y) < ®} , Then for some

> =
m, P X PZ(C(G)\AI XB)>0.Fix such m and let D C(e)\(A1 XB),

D ={y s (xy) €0} and H={x 3 2,(0) >0} . suppose £ (X)E,(y) = gx,y)

everywheree Let x € H , if f£f(x) =+ ® , then f_ = 0 and Pz-a'lmust all

2
*
yE€D , £ (x) £ (y) < f*(x) £(y) so £(y)=0= f*(y) sa contradictione If
b 1 2 1 2 2 2

0< fl(x) < @ , then for Pz-almost all y € Dx . f;(y) < g(x’y)/fl(x) so
£33 < (£100) £(y) - e)/£ ()

* * *
Then fz(y) <+ @, s fz(y) <m o If fz(y) <0, we get a contrad’ction since
* * *
fl(x) = fl(x) > 0 o So for any such y, 0< fz(y) <m and fl(x) < fl(x) -c/m
If f1 = 1 this is a contradiction and finishes proof for this casee In case

fj 20, j = 1325000 4 Wwe have

£,() < max(0, f’;<x> - &/m)

*
for all x € H o If f1>0 on some subset J of H with PI(J)>0,this

* *
allows f1 to be chosen smaller, a contradictione So f1 =f =0 aeee on H,

1
but then 0<g<0 on D again a contradictione For n = 3 s use indutione
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5e¢ CLT AND INVARIANCE PRINCIPIES FOR SUMS OF BANACH SPACE VALUED RANDOM ELEMENTS
AND EMPIRICAL PROCESSESe

* S
Throughout the section we shall use the notations £ ,f,,P sP, as in
the 1ast Sectione In order to induce the reader to familiarise with these, we

state the following Lemma whis is immediate from lemma 4e17e

5ele LEMMA. Let (S,“ \\) be a vector space with norm “.“ e Then for,

X,Y: Q—s ,

lx+ o < clxdl + JD® < IR + el aese
and
T le®lF = el [KI* aese for all cE€R .

Also we state the following consequence of Lemma 4e19

5e2¢ LEMMAe let (Q,3,P) = (Q1 X 02 X 03, 'Jl X 32 X 33, P1 X P2 X P3) and denote

the projections m, o Q-—)Qi(i = 1,243) o Then for any Younded non-negative

function £ ,

B{£" (0,001 ;1)@ x 3 )Y =Bl @ 0| Tt @)}

aese P
*
Proof : By Lemma 419 (with fZ(wZ) =1), f (wl,w3) equals P-aece a measurable

function not depending on ®_ and thus is independent of 11;1(32) .

2
For not necessarily measurable real-valued functions g, on Q, we

%
say that gz—Pv,O i1f lim P'(lg |>€)=0, Ye>0 and g-—>0 in L
m*®

> —
if there exists {fn, nz 1}, fn me asurab le fn \gn\ and fn 0 in Lp .

5e3 e LEMMAe let X:Q—’R e Then for 3ll tER and € >0 o

% * *
P(X2t)SP(X 2t) SP (X2 t=€) o

P * P
In particular, for any Xn : Q—R , Xn——> 0 or in Lp iff \Xn\ —_—0

or in Lp srespectivellye
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*
Proof : Since {(X=t} < {X = t}, it remains to prove the last inequalitye Let
for j € 2

C, =1w : X2 je nd D, 2C,
=t je} and Dy 20

*
be measurable such that P (Cj) = P(Dj) e« W log , Dj in non-increasinge Since
X(w) > -« weget U D, = UC, =Q, Let
| . 3
J J
- . . e
Y(w) (j + 1)e on Dj\Dj+1 for j Z e

=4 on ND .

We claim that X*((D) < Y(®w) o To prove the claim,we observe that the result is
true for {0 : Y(W) =+ o} . If wE€ Dj\Dj+1 for some j , then ® £ Cj+1 .
Hence Y(W) = (j+1)e exceeds X(®) < (j+1)e¢ o Thus X(®) < Y(®) and Y measu=
rable giving X*(w) S Y(®) o Given t € R, there exists unique j € Z such
that

jest<(jt1) e o

Thus % *
P(X =2 t) SP(X = je) < P(Y = je) o

But {Y = je} =Dj-1 e Thus
— * — * I3
P(D, ) =B (D, ) =B (X> (j=1e)

*
SP(XZ2t = 2€).

The following lemma is an immediate extension of the classical theoreme Hence
we indicate only the changes needed in the classical proof as is given for

exgmple in Breimane

5ehe LEMMAe (Ottaviani Inequality) Let {Xj s 13 = n} be an indep endent

sequence of random elements where XJ. takes values in a normed-vector space

(S,“ “) e Write S = Z X, and suppose that max
Jrite n ;]

jsn P(“Sn-sj“* >C{) =Cc < le

* -1 *
Then P(max s%n \\sj\\ > 2a) £ (1-C) P(\\sn\\ >a) .



486

Proof : In the classical proof, replace \ | by ” ”* using Lemmas 4176 and
5ele One really needs ||Sj||* < ”Sn”* + “Sn - Sj”* o To complete the argument
involving independence we argue as followse

Let ® =(Xj+1,o-0,xn) and ®

1 = (xl,...,xj)- Then F(ml,wz) = Sn-S

2 j

1 and by Lemma 4421, “Sn - Sj”* depends only on wl and

* *
is thus independent of {ij - j} (j stopping time in the usual way)e The remai-

depends only on ®

ning parts are as beforee

The following lemma is also technical and hence we defer the proof to

the gppendixe.

5e5¢ IEMMA. Let S and T be Polish spaces and A be a lawon S5 X T with

marginal b on S o let (Q,8,P) be a probability space and X a Treve on £

with values in S and £(X) =P o Assume that & 4 reve U on ( independent

of X with values in a separable metric space R and £(U) on R being atom-

lesse Then there exists Y : Q—>T a reve such that £(X,Y) =X .

5460 THEOREM. Let {Xj, j = 1} be a sequence of independent identically formed

S=valued random elements Xj = h(xj) s(j 2 1)e Suppose that for each

m =2 1 there is a mapping Am : S—»S with the following properties

(5¢6e1) The linear span LmS of /\mS is finite-dimensional
(56e2) For each m=21 , & n = no(m) so that for all n=n

ko ¥ 1 1
P in~* || jin x - Amxj)\\ 211<2

(5¢6e3) For each m= 1 , the mapping Apoh is measurable from (A,G) into
LS e
m
2
(5.644) EA X =0, E“/\m(xl)“ <o ,¥Ym=z1.

let T be the completion of the linear span of U /\m(S) s so that
=1

T 1is a separable Banach spacee Then there exists a sequence {Yj, j= 1} of
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ieiede T=valued Gaussian reve'se defined on (Q,%,P) such that

1
%
(54606) E<y,¥ ><ynY,> =lim E<yA (X)><yL,A(x)>, Vyyrer
m-am
as n - ® .
(54647) ¥ max | © (X, - ¥)|| -0 in Probability and inI’ for p <2 .
kén sk 1

Proof : We first show the desired Gaussian limite Let k,my,r = 1 o Consider
1
R 5 > < < = °
ielede vectors {(/\(xj,/\mxj,/\rxj), j 1} o Let 0<¢ 5 fixed by (54642)

we get for kymn= 6/¢ and V n= no(k) \ no(m)

(5.6.8) Pn~% | T nx = A X > e/t <ef2
j<n J o mj

LA jzn (INXGA KA KD
and for (u,v,w) € Ls x Lms XLS,
New, vyl = lull + lvll + Il

By CLT there exists Piemr 00 !.ks X Lms X LrS centered Gaussian so that

(5+649) n(£(UIkmt) )<e/2, n= nl(e,k,m,r) o

’ p‘kmr

Let “’km,’ Mer 2 B * W o Boos Wy be the marginalsof p'kmr o Now
e o u'km s p'kmr can be regarded as Borel probaility measures on T,T X T and
TXTXT e Now (5¢6e8) for m,r implies

(506010)  p_ {vywerxtsllv-wl>el<e, mr >§ .

On T X T we take “(u,v)" = “u“ + “V“ o We rewrite the above as

Mg LCsvs@) 2llCu,v) = (uw|l > €} < eymyr = 6/¢ , k21
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and obtain that

ﬂ(ujm,ukr) Se, mr=6/e k=1

Hence {p‘km} =1 and each k 2 1 is a Cauchy seuqence for the Prohorov metrice

Hence & Mo o1 T X T such that

p‘km:u'km as m~—"® o
By (5.6.10) .

(5¢6011) B {(u,v); “u-v“ >e}se, Vk=z6le o

As marginal of Mem is u’m s Wwe get that there exists [, on T such that

p.mﬂl-'»m as m~—® o

Further, p;km has marginals My and p.m we conclude that p'k"’ is
Gaussian with marginals My and W, o
For k= 1 , fixed, let [(ij,zj) j = 1} be a sequence of ieiede

random vectors on ' with values in T X T

S(ij,zj) = M jz1 (Note {Zj} depends on €)

Now 1 o, 1is centered Gaussian gives by (5e6e11)

1’{n"js “ = (ij - Zj)“ >e}<e k= 6/e o

jsn
By Lévy inequality n =1

X
p{ I ¢z.-2z)>e}s2
i r:;a}:; j<m g %

let k > 6/e , then {/\kxj, j = 1} satisfies CIT with limit W, o Hence by
Section 4, there exists (" and a sequence {ij, j= 1} of indep endent
TeVe'se, having the same distribution as {/\kXJ, s j= 1} and a sequence

{wkj} 0f ieiede Teve'se with common distribution P such that
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P
n-'}é max “ z (ij 'Wk-)||——§° .
mn  jm J
By Lemma 412 (m = 2), We can assume Qf=0Q" and ij =ij for all j «
Hence we get for some nz(e,k) = no(k) and n=2 nz(e,k) s
1:{;{";j max || T (Vk‘ -z >3¢} <3¢ o
wn  jsm 3 ]
(Note that Zj depends on k 2 6/¢ , 1ece On €)e
Let us overcome this probleme Choose € = €p = 2"9';3 P= 1525000

and k =k(p) = F > 6/ep + 1 « By what has been proved we obtain two sequences

{vgp), j2 1} ana (P

j’jzl}

with the following properties

vgf’) Ve I 1o s({zgp), §2 D =2z, §2 1) and for
some n3(p) 2 n2(2-p-6, k(p)) and n= ny
(5:6012)  Bln max | = Pl PN > 2P} <P
msn j<m I ]
We can assume V=-sequences are independent of each others and Z-sequencese

Put r(p) =z (qQ .
qsp E
Define

(5 e6013) Vj_ = Vgp) and Z:; = Z§P) if r(p) < js= r(p+1) °

Then {Vj s j 2 1} ’ {ZJ' s j2 1} are seqwences of independent Tevelse
Moreover, for € > 0 , there exists n4(€) such that

% maX“z 4

(5.6.14) P(n
msn  jSm 3

- Zj')“ > he) <lbe

We now prove (5e6e14) to get rid of dependence of Zj on € o
Let s be such that 2™ < e and N = No(e) be so large that for

all n=2 No s Cas s 1is fixed)
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&

P{n max H z V,“ > 6} <e
msr(s) jem 3
and
Pn¥ max ||Z 2zl >e}<e .

msr(s) jsm 3

Let n = max (No,n3(s)) = n4(€) e Choose M so that r(M) <n < r(M+1)e.

Then n 2 n3(p) s P S M by définition of r(M) e By (5e6e12) and (5e6e13) ,

we get
max || T v, - 2| s nax | T v,
m<n j<m i wsr(s) jsm 3
+ max H z Z!”
m<r(s) jsm 1
me=1

m
+ ):p=s mw{r(p)ﬁlﬁr(p+1)"zj#(9+1)(Vj - Z_‘;)H

m
+ max r(M) <m <n ”2j=r(M+1) (Vj - Z_';)"

' - X X
< z =
2¢ n° + s2 n 4be n

by (5e6e12) o This holds except on a set of measure < 4e¢ giving (5e6e14) o

Now we want to show that {Xj , 32 1} and {Z'j, j = 1} are defined on
on the same probability spacee For this we need Lemma 5¢5¢ For j =1 , define

p(j) such that j € (x(p)sx(p+1)] and p(j) = 2p(j)+6 e Then

£({A s 21D = :t(ivj s j 21D

X
P(3) 73
by constructione In Lemma Se5e

A=E({V,,j=1 2!y 215 X=HA 4 X j=1
({JsJ }’{J’J })s {P(J)j’J }
and U uniforme Then by the above equality of the 1aw and independence of uni-
form [0,1] and X, we getexistence of {Yj , j = 1} defined on Q such that

S =£({Ap(j) Xj, j= 1} s {Yj s j 2 1) .
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Thus by (5e¢6e14) we get as n =
X P
(506015) 10?2 max || = (A X, =t)| ——0.
mn  jsm p(i) 73 j
Since n3(p) 2 nz(ep » k(p)) = n°(2p+6) for p= 1 ¢ By (5e6e2) we have

P T ox -A
j=n

~p=6 =6
5 Mep) xj\l 2 2P} <2 .

By Ottavani Inequality and Lemma 5e¢3e, for n 2 na(p)

P{n-% max || T (X > 2P} < 2P,

ksn  j<k j-Ak(P))“

This is analogue of (5e6e12) o Following proof as for (5e6e14), we get for

€ >0 and some ns(e) and n = ns(e)

2 max || % = Aypy %I 2 50, as n-® .

mSn  jSm

Combining with (5.6e15) we get the result in terms of convergence in probabilitye

% *
As in the proof of Proposition 2el4e, sup, A 2 P{n S ” > A} <w
P Py n

Since

p(lln® s I >13 = 2l max o7 [I5 1" >3

n k
ksn
with Sk = Zk Xj s, We get for p < 2 o Using Fernique's theorem
i<
n-% max “ T (X, - Y.)“*p
ksn jsk J J

is uniformly integrablee Hence convergence in Lp follows for p < 2

Also I:‘.{<s,/\c X >2} =E{ <s,2 >2} s s €T as /\kX satisfies

CLT with limit W_ e As 4, = b, Gaussian, we have E<s,Z >2 o E<s,21>2 as
k1

k= © o But E<s,21>2 = E<s-,Y1>2 proving (5¢6e5) and (5+646) e

Let us now gpply the theorem to empirical processese Let {xj} be a

sequence of ieiede uniform reve'!se and h be a map on [0,1] - (D([O,ﬂ,no“)
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given by 1[0’51(-) - s for 05 s <1 e Then XJ.(S) = 1(Xj < s) = s and

n
Fn(s) =n"1 ¥ 1«x, £s) is called empirical distribution functione We get
=1

n
n'k T X.(s) = nlj (F.(s) =s) e
=t 7 i

The classical result says that £(n;i(Fn( ) = o)) @ £(W0) in the supremum norm
on D[0,1] where Wo(S) =W(s) - s W(1) , the Brownian Bridge, W being Wiener
processe

In general, if {xj} are ieiede Teve and B € G , we can define empi-

rical measure by

n
(B) = 2l s 1(x, € B)
Q, = 3

and the following gives analogue of the above resulte

5e7¢ THEOREM, let G S SZ(A,G,Q) be a class of functions so that

(5¢7¢1) G 1is totally bounded in -‘32 .

For every € > 0 , there exists & > 0 such that for all n2mn ,
*
(567¢2) P (sup{\‘r(f-g)dvnl} : f,6€G , I(f-g)zdl’ < 62} >e)<e o

Then there exists a sequence {Yj s j = 1} of ieiede Gaussian processes defined

on Q indexed by f € G and sample functions of Y1 are aese uniformly conti-

muous on G in £2-norm such that

a) EYl(f)=0 for all £ €G »

b) EE Y,(£) ¥,(g) =[ fgdq - [ £dQ [ gdq for all £,6€G =

and as N ® e

% P
¢) n ° max sup \ 2 [f(x,) - | £dQ = Y,(f)]\-—-) \]
K<n 6 3 I 3

as well as in Lp s P <2
We observe now how Theorem 5e7e can be put in the form of Theorem 5e6e

let m=1 and ¢ =$ . Choose & and n_ according to (5e742) o lLet
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\\f-g\\z’Q ={f (f-g)ZdQ]% s £,8€G .

2 2 3 = < <
Since G is totally bounded in || HZ,Q there exist fk fkm €G , 1<k <N()
such that for f € G , there exists a k(f) , with \\f-fk\\z Q <8 Choose
’
k =k(f) minimale Hence by (5¢7¢2) and definition of empirical measure, we

get
*o i 1
Pn™ swp oo \jzn (E-£)(x)) = [ (£-£) aql > 1/m} <1,
Now set S as the space of all bounded real-valued functions on G .

Define for Y € s
lell = {leeoy) 5 £eqy

Then (S,\\.H) is a Banach space (mot necessarily separable)e.
Define h : A—3S by h(x)(f) = £(x) -I fdQ for x € A and

/\m :t S—»S by setting

Let Xj = h(xj) o Then

Ny XP(E) = (A B(x)E) = £ (%)) -l g4 , £eq .

Now  dim Lm(S) =N(8) < and WLOG assume 6(c) ! as e | Clearly as-
sumptions of Theorem 5e6e are satisfiede Now (T,|ls||) be as in that theorem.
Then there exist ieiede Gaussian T=valued Yj satisfying a),b),c), of
Theorem 5¢7¢ by Theorem 5+6e, if we show Y1 has uniformly continuous sample
paths on G for “ “2,p (for a),b)) .

Let Zn = n-% (Y1 + eee + Yn) s then S(Zn) =£(Y1) on T and

P
\\Zn - vn"-——)o e Given € >0, take 8(e) >0 and n from (5e742) sete

for n=2n
o
%*
Pz, - vl >0 <o .
For Y €5, let

ps(¥) = supl|¥(e) - ¥(e)|, £, g €0 s \\f-g\\z Q< 6}
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Then Py is a semimorm on S with pa(‘l’) < 2“‘1’“ for all Y €S and by

(5.7 .2) .
P {_P ( ) > G} € for nzn .
& vn [s)

Thus
P*{p6(zn) >3¢} <2

But pg 1is continuous and hence measurzdble on T o As £(zn) = I(Yl) s

Plpg(X) > 36) < 26 o Let g =6(27) and ¥ ={¥€s;p (1)< 3.2%)

Then *

l-k(

P(Yliwk)<2 c=2%),

et W= U N W, o Then W is a Borel set in T , consisting of functions
jz1 k=)

uniformly contimuous on G and 1’(Y1 € W) =1 by Borel-Cantelli lemmae

Aclass G of functions satisfying (5e71) and (5e7¢2) 1is called
a Donsker Class of sets for Q o In case G = {10 s C EC}, we call C a
Donsker Class of sets e Our purpose now is to give conditions on C and Q in
order that C 1is a Donsker Class o

For 6§ >0 and C <SG , aclass of sets, we define, NI(B) = NI(5,C,Q)

to be the smallest number d of sets Ajeee Ay € G satisfyinge

For each C €C , there exist A and Al (1< rys <d) such that
A, CCC A and P(AS\ A) <5 oWe call log(N;(8) a metric entropy with

inclusione It is shown by Dudley (Anne Probe 6 (1978)) that
(548)  [! (log NI(xz));i dx < @

[\]
implies (5e7¢1) and (5e7e2) o Hence we get

5.9, THEOREMe Let C be a class of sets for which (58) holdse Then there

exists a sequence {YJ. s j 2 1} of ieiede Gaussian processes defined on the

same probability space indexed by C €C with sample functions of Y, aese
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uniformly contimious on C in the dQ(C,D) = Q(C A D) on G o The processes

Yj have following propertiese

a) EY1(C) =0 for all CEC
b) EYl(c) YI(D) =P(C N D) - P(C)P(D) for all C,DEC and as n— = 4

c) n-% max sup\ z ux

€C) - Qo) - Y, (&)~ 0
ksn C&  j& 3 3

in probability as well as L2 .

Note 1.5 1 , one gets uniformm integrability “ “ in the proof of

C
Theorem Sebe

A collection C is called Vapnik-Cervonerkis class (VCC) if for
some n<®, m set D with n elements has all its subsets of the form

C N D o The Vapnik~Cervonenkis mummber V(C) demotes smallest such n .

5410+ DEFINITION.

a) If (A,G) and (C,8) are measurasble spaces with C S G , we call

(A,G' Sc,\s) a chaire

b) A chair is called admissible iff {(x,0) : x € C} €G®8 for all

ceC .

¢) A chair is called a-Suslin iff it is admissible and (4,3) , (C,3)

are Suslin spacese

d) A chair is called Qa-Suslin iff it is a=-Suslin and dQ-open

subsets of C belong to 8 »

If C is a VCC and for some O=-glgebra G' 2C and O=-algebra.
8 of C sete (AG' 3C,8) is Qa=-Suslin then C satisfies (5e7¢1) and
(5e702) o

For proof see Dudley (cited before)e.

Thus one can produce large class of examples for which agpproximation

condition (5e6e¢2) holds and also Theorem 5e9e holdse
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Appendix : Proof of Lemma 5e5e ¢

Proof : We may assume R complete, hence Polishe Any uncountable Polish space is
Borel isomorphic to [0,1) (Parthasarathy, pe 14)e Every Polish space is Borel-
isomorphic to some compact subset of [0,1] o Thus there is no loss of generality
in assuming S =T =R =[0,1] with the usual topology, metric and Borel
structuree Next, we take disintegration of A on [0,1] x [0,1] (Ne Bourbaki,
VI, Integration pe 58=59)e There exists a map )\s from s into the set of all
probability measures on T sete ‘f f(syt)d = J’l‘fl f(s,t)d)\sdu. for all bounded,
Borel measure functions £ on [0,1] x [0,1]) .oFgr each s, let F_ be the
distribution function of )Ls . F;l(t) =inf{ z ; Fs(z) =t} for 0st<1.

We may assume U has uniform distribution over [0,1] o For each t , the map

s —)F;I(t) is measuragblee Since F;l( 1) 1is non-decreasing and left-contimiouse

n
Fio)=1im ___ T F-}j/n) 1{j/nst < j#1/n} .
S n j=0 S

Hence F'S'l(t) is jointly measurable in (s,t) o Let Y(®) = F;{(lm)(U(w)) ,

then Y is a reve Moreover, for any bounded Borel function g on [0,1] x[0,1]

using Fubini Theorem and the fact leb.O(F'S'l)-1 =)‘S
| sa =f1 Ilg(s,t)d)\ S _—_fl J‘l oCs, F-1(e)) dt du
00 00 S
=fl fl g(s,F'l(t)) d(w ® lebe)
0 00 s

= E g(X,Fr (1)) = Eg(X,¥) »
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