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CENTRAL LIMIT PROBLEM AND INVARIANCE PRINCIPLES ON BANACH SPACES

V. MANDREKAR

0. INTRODUCTION. These notes are based on eight lectures given at the Universi-

ty of Strasbourg. The first three sections deal with the Central Limit Problem

The approach taken here is more along the methods developped by Joel Zinn and

myself and distinct from the development in the recent book of Araujo and Gine

(Wiley, New York, 1980). The first Section uses only the finite dimensional

methods. In the second Section we use Le Cam’s Theorem, combined with the ideas

of Feller to derive an approximation theorem for a convergent triangular array.

This includes the theorem of Pisier in CLT case. As the major interest here is

to show the relation of the classical conditions to the geometry of Banach spaces

(done in Section 3), we restrict ourselves to symmetric case. Also in this case,

the techniques being simple, I feel that the material of the first three Sections

should be accessible to graduate students.

In section 4, we present de Acosta’s Invariance Principle with the recent

proof by Dehling, Dobrowski, Philipp. In the last section we pr esent Dudley and

Dudley-Philipp work. I thank these authors for providing me the preprints. I

thank Walter Philipp for enlightenning discussions on the subject.

As for the references the books by Parthasarathy and Billingsley are

necessary references for understanding the main theme and the basic techniques.

To understand the classi cal problem, one needs the books by Loeve and Feller,

where Central Limit Problem is defined. Other needed references are embodied in

the text. Remaining references are concerned with Sections 4 and 5 . For those

interested in the complete bibliography, it can be found in the book of Araujo-

Gine.

I want to thank Professor X. Fernique for inviting me to present the

course and the participants of the course for their patience and interest.

Further, I want to thank M. Fernique and M. Heinkel for their hospitality and

help during my stay, as well as discussions on the subject matter of the notes.

I also would like to thank M. Ledoux for interesting discussions.

Finally, I express my gratitude to my wife Veena who patiently gave

me a lot of time to devote to these notes.
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1. PRELIMINARY RESULTS AND STOCHASTIC BOUNDEDNESS .

Let us denote by B a separable Banach space with )) )) and (topologi-

cal) dual B’ . Let be a probability space and 8(B) be the Borel sets

of B. A measurable function on {~,~) --~ {B,6~(B)) will be called a random

variable (r.v.). We call its distribution P o X 2 the law of X and denote

it by ~(X) .

A sequence of finite measures on (B,8(B)) is said to converge

weakly to a finite measure  on if S fd n 
~ f fd  for all boun-

ded continuous functions f on B. It is sai d to be relatively compact if the

closure of is compact in the topology of weak convergence. By Prohorov

Theorem, we get that a sequence of finite measures is relatively compact

iff for E > 0, there exists a compact subset K£ of B such  e , ,

for all n and supn  oo . A sequence satisfying this condition will

be called tight.

With every finite measure F on B we asso ciate a probability measure

e(F) (the exponential of F) by

e(F) = exp(-F(B)) ( E F*n}.
n==0 

~*

where F*n denotes the n-fold convolution of F and probabi-

lity measure degenerate at zero.

Remark : : Note that the set of all finite (signed) measures form a Banach algebra

under the total variation norm and multiplication given by the convolution.

F(A-x) G(dx) ; ; thus the exponential is well-defined and the conver-
B

gence of the series is in the total variation norm.

With every cylindrical (probability) measure we associate (uniquely)

its characteristic function (c.f.) for y E B’.

Here  > denotes the duality map on (B’ ,B) . We note that cp determines

w uniquely on cylinder sets and hence, if w is a probability measure, then
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cp~ determines ~ uniquely on ~(B) , , as B is separable. It is easy to check

that f or y E B’ .

= exp[(exp (i 

for a finite measure. From this , one easily gets

1) = e(F1) * e(F2) and in particular * n . °

2) e(F) = e(G) iff F = G and e(c = sG for c > 0 . .

Furthemore, if is tight then is tight, as
n n

e(F ) = exp(-F (B))~ E r + ~ 
n n n 

k=r+1 
n

For £ > 0, choose r large to make the variation

exp (F)  r  E
n n 

k~ 
n

and note that under the hypothesis tight for each k. We also observe
n

that Fn converges weakly to F implies e(Fn) converges weakly to e(F) for

Fn and F finite measures. This we get as )(Y) ~.--~cpe(F)(y) in view of
n

the following theorem (See for example, Parthasarathy, p. 153).

1.1. THEOREM. Let { n} and  be probability measures on B such that 
is tight and (y) ~03C6 (y) for y E B’ then n converges weakly to kk
n

(in notation, w).

Let us consider how Poisson theorem resu lts from this. Let {Xn 1’...
..’ Xn n } be i.i.d. Bernoulli r.v.’s. , , P{Xn 1 = 1} = = 0} = 

Then

n

= e(npn 61 + n(1-pn)8G) = e(npn51)* e(n(1-pn)$G)

- e(npn 03B41).
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Hence as np n - , e(np n 6 ) =~ e(~ 81) = Poisson with parameter X . As

p n -~ 0 , , one can easily check that

lim 
n 

(y) - tp 
n 

(y) I = 0 for y E R .
n 

~( E Xn j ) ~(Xn j ) )j=1 ~~ ~~

’ 

n

Thus associating lim ~(.E X .) the lim e( E t(X j)) is called the
n j=l ~~ 

n j=l ~~

principle of Poissonization. Note that in this case the limit is e(F) , F

finite.

We need some facts on weak convergence and convolution. We associate

with every finite measure F a measure F(A) = F(-A) , A E and say that

F is symmetric if F = F .

1.2. THEOREM. (Parthasarathy, p. 58). Let G be a complete separable metric

abelian group and {03BBn}, { n} , {03BDn} be sequences of probability measures such

that X = n * 03BDn f or each n .

a) are tight then so 

b) If X 
n 

is tight then there exists x n E G such and
n

* 8_x ~ are tight. Further, if ~~n~ , ~~n~ , {v ~ are symmetric, then the
n

tightness of {03BBn} is equivalent to that of 

Let q : : B ~ [0,~] be a measurable function satisfying q(x+y) ~ q(x) +

q(x) + q(y) and q(X x) = I ~.I q(x) . Then q is called a measurable

seminorm. An example of such a measurable seminorm we shall use, is the Minkowski

functional of a symmetric convex, compact set K in B defined by

= ; Of > 0 , , x E ]~} .

1.3. THEOREM. (Levy inequality). Let = 1,2’...’n? be independant, ,

symmetric, random variables with values in B and Sk = Xj for k = 1’ ,

2,...,n, SO = 0 . Then for each t ~ 0
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P{sup kn q(SK) > t}  2P ( q(Sn) > t)

for any measurable seminorm q .

Proof : : Let Ek = t, j = 1,2,...,k-1,q(Sk) > t~ for k = 1,2,...,n .

Then with E = {supkn q(Sk) > t} we have E = U Ek and Ek are disjoint.

Let Tk = 2S k - then

~ q(Sn) ~ t) n t~ ~ ~ q (S k) ~ t )

and hence using Ek ~ ~ q(Sk) > t~ , , we get

Ek = > t~~ U [Ek ~ > t~ .

Now set

y. J = X, J j  k and Y. 
= 

-X J for j > k ,

then by the symmetry and independence

S(x,~~...,Xn) = S(Y1,...,Yn)

giving P(Ek n t~ ) = P(Ek n ~q(Sn) > t} ) i. e. P(Ek) ~ 2P(Ek fl [q(Sn)
> t) . Summing over k we get the result.

1.4. THEOREM. (Feller inequality). Let i.X., j = 1,2,...,n~ be independent
n ~ i 

’

symmetric B-valued r.v. ~s. with S = E X, ~ then for t > 0
n -

n

1 - P(q(X.) > t))  P(q(S ) > t/2) .j =1 J ~

Further, for t > 0 , such that P(q(S ) > t/2)  1/2

n

E P(q(Xj) > t)  - log[1-2P(q(Sn) > 1/2)J
j=1

for a mesurable seminorm q on B .

Proof : Since Xj =  Xk =  Xk we get q(Xj)  q(  Xk) + q( Xk)

and hence
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P( max q(Xj) > t)  P( max q( Xk) > 1 2 t).

n

But left hand side equals 1 - ’~ (1 - P(q(X.) > t) by independence.
j=l J

As 1 - x  exp (-x), 1 - P(q(Xj) > t) ~ > t)] giving

n n

1 - exp(- I; P ( q (X .) > t))  1 - n [l-P(q(X.) > t)]
j=l J j=l J

j 
,

 P( max q(E Xk) > t/2) .
1 

"

Using theorem 1.3, we get the first inequality. The second follows immediately

from the first.

1.5. LEMMA : (Truncation). Let X1,X2,..., n be independent symmetric r.v.’s.

Let a. > 0 for j = 1,2,...,n and define X! t = X. a.). Let q be
- J - 

a measurable seminorm on B and set S - E X. and S’ = E X! .
. 

20142014201420142014 n j=l J 
" n j=l J

Then for t > 0 , P(q(S’) > t)  2P(q(S ) > t) .

Proof : : Define Y! = X. - X! then X! + Y! and X! - Y! have the same distri-
- 

J J J J J J J

bution as X.. Let
J
n

S = 1: Y! then ~q(S’) > t~ _ ~q(S’ + S + S’ - S ) > 2t~
n j=1 J n n n n n

+ S ) > t) > t)

+ S ) _ (S’ - S) = (S)
n n n n n

> t)  2P(q(Sn) > t) .

We say that a sequence of real valued r.v.’s. is stochasti-

cally bounded if for every E > 0 , there exists t finite so that

supn 
> t)  s ,
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1.6. THEOREM. (Hoffman-J~rgensen). Let (x. , i = 1,2,...) be independent, ,

synmetric, B-valued r.v.’s. with q(X ) in for some p and a

measurable seminorm q. Then is stochastically bounded and

E implies
n

sup 2.3.P E + 16.3p tP

where t = inf {t > 0 ; sup X.)p > t)  - 1 p .201420142014 ~ 
n j=1 J 8.3 P

Proof : : By theorem 1.4., , (more precisely, its proof) we get that under the

hypothesis, sup q(S ) is finite a.e. and sup q(X.) = 2 sup 
n q(S ) . For

t, s > 0 , we prove

(1.6.1) (P(q(Sk) > 2t + s) ~ P(sup n q(Sn) > t) + > 

T = inf {n  1 ; ; q(S ) > t) where T if the set is 0 . Now
q(Sk) > 2t + s implies T  k giving P(q(Sk) > 2t + s) = E P(q(Sk) > 

j=1
T = j) . If T = j , then q(S._ )  t and hence for T = j and

2t + s , ’ q(Sk - S j ) ~ q(Sk) - q(5 - ) - q(X ) 
.

> 2t + s - t - sup , q(X.) = t + s - N

P . (T = j, q(Sk)  2t + s)  P(T = j, , q(Sk) > t + s - N)

By independence of T = j and Sk - we get summing over j ~ k

k

P(q(Sk) > 2t + s)  P(N  s) + E P(T = j) Sj)  t) .

Now Yl = Sk - S j and Y2 = S j then Y1’Y2 are symmetric independent and

hence by Levy inequality

P(q(Y1) ~ t) ~ P(max(q(Y1),q(Y1 + Y2)) ~ t) ~ 2P(q(Y1 + Y2) ~ t) .
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This proves (1.6.1). Since is stochastically bounded

P(q(Sk) > t)  P(max t)  2 sup k P(q(Xk) > t) .

Hence

P(sup k q(Sk) > 2t + s)  P(max q(X.) > s) + q(Sk) > t)]2

i. e. R(2t + s)  Q(s) + 8R(t)2 (say) .

Choose to as in the theorem and observe that for a > 3t0

sa R(x)dx = 3Pp xP R(3x)dx ~ 3Pp.2 xP Q(x)dx
0 0 0

+ 8p3p a/3 xp-1 R2(x)dx
0

 2.3.P ENP + + 8p3P R(t )R(x)dx

C + 1 2 a0 pxp-1 R(x)dx.

where C = 2.3P ENP + 8.3P t~ . This gives the resoult.
Let = 1,2,...,kn} n = 1,2,... (kn ~ ~ as n ~ ~) be a

row independent triangular array of symmetric B-valued random variables. In

these lectures, we shall consider only these triangular arrays and refer to

them as triangular array, unless otherwise stated. For each c > 0 , let

X = X c) , X. = X . - X. ; ;

Snc =  Xnjc , Sn =  Xnj , Snc = Sn - Snc .
k

We shall denote by F = 1: , B, t} .

The following is an extension of Feller’s theorem.

1.7. THEOREM. Let (X., j = 1,2,...,kn? n = 1,2,... be a triangular array.

Then is stochastically bounded iff
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a) For every E > ~ ~ ’ there exists t large~ so that sup 
n 

E

b) For every c > 0 ~ , sup 
n 

 °° ,

Proof : Put q(x) = IIxII in theorem 1.4. , , then we get condition a) .

By stochastic boundedness of IISnII ~ Condition (b) follows from

Lemma 1.5. and theorem 1.6. To prove the converse for t > 0

P(IiS 
n 

II) > 2t) ~ P(IIS 
nc 

II > t) + 
nc 

II > t) . Now

k

Y - ~n X . 1 (IIX . II > ~) so { i~’ II > t~ ~ IIX .II > ~~ .
nc 

j=1 nJ n~ nc ~ nJ

Thus by Chebychev’s inequality we get
k

’ t 1 p > ~) .

Given e > 0 ~ choose c so that F (Oc )  E/2 and then choose t so that
o n c o

0

1 tp sup E~Snco Ilp  E /2 .

0

We now derive some consequences of the above result in special cases.

1.8. Special Examples.

1.8.1. Example B = Lp , p  2 and Xnj . 
= 

Xj /fn , = 1,2,..} i.i. d.

sequence of Lp-valued r.v.’s. Before we study this example we need some gene-

ral facts t We define = sup t>0 
t2 P(~X~ > t) .

Rosenthal inequality. Let 2 ~ p  ~ , , then there exists c  ~ so that for
P

any sequence = 1~2~...~n~ of independent real-valued random variables

with E|Xj|p  ~ and EX J 
= 0 (j = 1,2,...,n) we have for all n  1

2 1 
1/p 

, ( E|Xj|2) 1/2

(EI ) E n C max {( E n (n03A3 E|X,|2)1/2}.
j=I J p j=1 J j=1 J
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We also observe that for a B-valued r.v. X n ~ 1 , , 8 > 0 , , 2 p ~

(*) n  C f n) IIp  p Cp-2 sup u2 P (IIXII > u)In p-2 
u

To see this

E~X~p 1 (~X~  C n)  (Cn)pP (~x~) 
> u1/p) du

0

 du .
0

Evaluating the integral we get (*). In this case, we observe that 

n P(IIXII ’> In t). Now if 039B2 (X)  ~ then

n P(~X~ > t n) = t2n P(~X~ > t n) 2  039B2(X) 2
.

~ t t

Given E > 0, there exists to , , so that

 e for all n .

o

Conservely, if such a t exists then sup t2 n P(IIXII > t fn)  M giving
o n o 0

112(X)  ~ . Thus condition (b) of theoreme 1.7. is satisfied iff ~2(X)  ~ .
Thus {~X1 + ... + is stochastically bounded iff 039B2(X)  ~ and

n

sup E | ,E X./n |(~Xj~  C  °° .
~ 

J_1 J J

By Rosenthal’s inequality the second condition is equivalent to

n

sup E E|Xj/n 1(~Xj~  C d   °° and

n j=1 J J

sup ((E(Xj (1(~Xj~  C dW  °°

n j=1 J J

Here one chooses a jointly measurable version of (Xj(u)) . The first term finite
by the observation (*) and the second is finite by the monotone convergence iff
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(u) ) ) 2 P/2 d   °° . Thus {~X1 + ... + is stochastically bounded

iff and (E X (u)2)p/2 d   ~.

1.8.2. Example : : B = H a separable Hilbert space. Let k = 1,2,...) be a

a complete orthonormal basis in H. Xnj i.i.d. Then ~X1 + ..
.. + X stochastically bounded,implies condition (b) of theorem 1.7. with

n

p = 2 i.e.

sup Xj/n 1(~Xj~  C  ~. But this inplies
n j=l J J

sup  C =  co .

From this (a) follows. Let 03C0k = Projection onto Then by

Chebychev inequality for e > 0

f~l Xi+...+Xn ~ _ k( X1+...+Xn )I~ > ~i/n k /n

~ e 12  E for k large as .

Hence we get ~X1 + ... + is flatly concentrated and, by one-dimensional

central limit theorem, we get that £(Xl + ... + V where V is a

Gaussian measure with covariance  y for y,y’ E H~ . We thus

have the equivalence of : :

i) Central Limit Theorem (C LT) holds in H for ~(X1) ,
ii) Ellxlll2 and (iii) + ... + is stochastically

bounded.

1.8.3. Example : (B k  co) . Let = 1,2,...,kn} be row independent

triangular array of (symmetric) Rk -valued r.v.’s satisfying for every E > 0

(*) max > ~} ’’ 0
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and assume that {Sn} is stochastically bounded. Let for y E B’, , ))y)) deno-

te the strong norm on B’ ’ and M  oo .

k
n 
..

sup sup 03A3 |03C6(Xnj)(y) - 1|

sup sup { (1-cos F (dx) + 2F (BBxll > c) .
n 

~ ~

Now choose c so that the second term is  e/2 . Use on the first term

inequalities,

(1-cos y,x>)  y,x>2  ~y~2 ~x~2

to conclude that it does not exceed M2 sup n F n (dx) which is finite

by condition (b) of theorem 7.1. Hence for n large log cp .(y) exists where

= 03C6(Xnj)(y) . Now

k
n

~y~supM |log  03C6nj (y) - 
- (y) I

k k

sup M Z 03C6 
. 
(y) + 1 I Constant sup  |03C6nj (y) - 1 I 2

constant max |03C6nj (y) - 1| sup (03C6nj (y) - 1) ~ 0 by (*) .

One can derive easily the following from above,

a) ~S ? is stochastically bounded in IRk iff for some c > 0 (and
n

hence for every) the finite measures defines 

A E form a tight sequence.

b) For B = TR , the f ollowing are equivalent under (*) .

i) is otochastically bounded.

ii) (e(F )) is otochastically bounded.
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iii) For each c > 0 ~ , is tight.

c) Every limit law of satisfying (*) is infinitely divisible

and conversely.

We note that condition 1.8.3. (*) is valid in general B. We define now infini-

tely divisible law.

1.9, DEFINITION. A probability measure W on B is called infinitely divisible

(i.d.) if for each integer n , , there exists a probability measure wn on B

such that  = *nn.

We now prove converse part of 1.8.3.(c) in general. Let  be i.d.

and = 1,2,...,kn~ be a row independent triangular array with

~(X 
n~ 
,) _ ~ 

n 
(this may not be symmetric unless ~ is,in latter case, ~ 

n 
can

be chosen so). Then w = lim ~(S ) . But
n

1 
n

~Q~ (y) 
= C~p~(y)~n . Hence max (y) - 1 I -’ 0 i. e.

n n

f Xnj, j = 1,2,...,kn~ satisfy 1.8.3.(*) . We refer to this as the triangular

array being uniformly infinitesimal (U.I.) .

In view of theorem 1.2 ~ symmetric i.d. laws are closed under weak

limits. Hence we get lim e(Fn) is i.d. But under (*),
n

k
n

lim e(F) = Xnj), giving c) above for B = IRk . This proof fails
n 

~ 
n j=1 ~J

in general B. However 1.8.3. c) survives. To see this, denote for

T = ~yl,...,yk~ ~ B’ ~ «y,x»’...’Yk’~) for x E B .

1.10. LEMMA. Let  be a symmetric probability measure on (B) . Then  is

i.d. iff w o is i.d. for all finite subsets T ~ B’ .

Proof : The "only if " 
part is obvious. For the other part, under the assump-

W o yT -1 = for each n and T finite subset of B’ .



438

Since 0 for u E IRk , we get that " n (T), , T finite

subset of B’~ is a cylinder measure wn sati sfying for each y ,

03C6 (y) = [03C6 n(y)]n .
Hence by theorem 1.2. (c) , we get n is a probability measure on (B) i.e.

W is i.d.

Combining this with 1.8.3. c) we get

1.11. THEOREM. The symnetric I,d, laws on B coincide with the limit laws of

row sums of UI row-indep endent , symnetric triangular arrays.

We note that by Lemma 1.5., {S} is tight iff and {Snc}

are tight. Hence for U.I, triangular arrays lim (y,Sn>) = lim e(F o y . 1) _
k k

lim e(F o y-1) * e(F o y _ 1) with F = E n ~(X , ) and ? = E n ~(~X . ) .
n 

’ 
nc 

’’ ’ 
nc 

j=~ n~c nc 
j~ njc’

Thus lim ~(y,S n ) > = lim * at least for B = ntk . In fact it
n n

is true in general.

1.12. THEOREM. Let = 1,2,...,kn~ be U.I. triangular array such that

~(S ) ~ ~ and ~(fs ) =~ ~ . Then (~(S ), ~(S ) ~ ~ ® v .
nc 20142014 nc .- nc nc

Proof : : i s by the use of c.f . s and i s left to the reader.

We can observe that all methods used so far are finite-dimensional.

In the next chapter we bring out the methods particular to the infinite dimen-

sional case.
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2. CENTRAL LIMIT PROBLEM IN BANACH SPAC ES.

Let = 1,2,...,kn} be a (symmetric) row-independent triangular

array of B-valued random variables as before f or n = 1,2,...

k k
n n

S - E X , ~ and F - ~ ~ (X , ) .

n 
J=1 nJ n 

J=1 nJ

2.1. THEOREM. (Le Cam). Let ~~(S )~ be tight. Then for every t > 0, there
- n -

exists a compact, convex symmetric set Ot suc^ h that is tight.

In particular is_ tight.

Proof : Use theorem 1.4~. ~ , with q the Minkowski functional of synmetric, com-

pact, convex set given from compactness of ~S(Sn)~ ~ to get
k
n _

(2.1.1) sup 03A3 P(Xnj ~ K03B4)  6 .

n J-1 ~J

Let Kt = Ka ~ Ot (with 8 fixed). We claim that

sup E P(X . ~ E K )  M  ~ .
n j nJ t

As Or and Kt) = Kt) + > r) we assume that

~XnjII r a. s. Let

V = ~x E B ; > t/2} .
Y

Then f Vy , ~y~  1} is a cover of Ot fl and, hence by compactness there

exists a finite cover ~V ,~..~,V } . By theorem 1.7., , sup Ey,,S >2  ~ ~
Y1 Ym n 

J n

j = 1,2,...,m . Hence ,

03A3 P(Xnj ~ Kt)  2 03A3 P(Xnj ~ K03B4) + 03A3 P(Xnj ~ ct ~ K03B4) .

The second term does not exceed P(Iyl,Xn J >I > t/2). Using (2.1.1.) and
Chebychev inequality we prove the claim. Now define Jn = ~j E (1,...,kn) ; :

E K )  3/4~ then by the claim sup card (J ) ~ 4M. As =1,2..k }n~ t 
n 

n nj n
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are tight for each j,n, we get using Lemma 1.5. and properties of Kt that

{Xnj 1(Xnj ~ Kt)} is tight. Thus { P(Xnj 1(Xnj ~ Kt) } is tight. For

j E Jn , take G + Kt , then Kt since Ks is symmetric convex.

For j ~ Jn , P(Xnj ~ Kt)  1/4 and hence

-~ .J K )

where and they are independent. By (2.1.1.) we get the result.

We can derive the fo llowing corollaries : :
k
n

2.2. COROLLARY. For every c > 0 , , {(S)} tight implies{e( E 

k 
nc 201420142014201420142014201420142014 

J ’=1 njc

n

tight .which gives E ))) tight.2014201420142014201420142014201420142014201420142014 

j=1 
2014201420142014

2.3. COROLLARY. Suppose {(Sn )) is tight. Then there exists a 0-finite sym-

metric measure F such that for some subsequence i.n’) of integers

F(~)n’~F(~) where = F c and = FI c . Furthermore, _is

finite for each E > 0 , , F(dx)  ~ and = 0 .
20142014201420142014201420142014201420142014 20142014

Proof : : By diagonalization procedure and Corollary 2.2., , there exists a subse-

quence such that F converges for all k with 0 . Let

lim nt F(~k)n’. Then Fk(0£,) - 0 k . Clearly, Fk t and finite. If

J

If we define F = lim F ; ; then F is 03C3-finite, F(~) is finite and =0.

Since ~ y ,S n >~ is tight we get sup nr >2 dP  oo . This gives for
n

0Ekr k

0r~0~k ek 
y , .>2 dF = 

n0r~0Ek Ek 
y , . >2 dF

n 

= E  y , >2
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Take limit over k to obtain the result.

2.4. COROLLARY. Let {(Sn )} be tight, i.X be U.I. and lim exists

for all E > 0 . Then e(F(~)) = lim (Sn ~) and F is unique.

Proof : : Using Corollary 2.2., , Theorem 1.1. and arguments as in 1.8.3. we get for

any other measure G e(G~) o y" = lim ~(S’ o y" = e(F~) o y" . Hence

o y 1 = F(£) o y 1 giving = for all £ > 0 i.e., , F = G .

We call F above as the Levy measure associated with the i.d. law ~ .

We denote lim e(F ) by e(F) for F Levy measure. ,

k

2.5. THEOREM. Let fXnj, j = 1,2,...,kn~ be U.I, triangular array such that

~(S ) ~ ~ . Then
n -

a) There exists a Levy measure F such that F(c) ~ F(c) f or each

c > 0 and c continuity point of F. (c E C(F)) .

b) There exists a Gaussian measure ’Y with covariance C (y ,y ) ~su ch
that for y E B’ , ,

(2.5.1) lim ) = lim cEC(F) 
n -C ’ (y , y)

c) v = e(F) * ’~ where F and ’Y are unique.

Proof : We have proved along a subsequence [n’} of {n} , F(c)n’ ~ F(c) for

each c E C(F) , where F is a Levy measure since .)) and ))

are tight, we can proceeding to the diagonal sequence get a probability measure

vk such that for 0 , ,

and (Sn"ck) ~ 03BDk.

By theorem 1.12, for each k , ,

V = B. 
k 
* e(F " ) .

As e(F (ck)) ~ e(F) , {03BDk} i s tight by Theorem 12. Since 03C6e(F) (ck)(y) ~ 0
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for y E B’ , , 03C603BDk (y) -+ 03C603BD
0 
(y) for some cylinder measure 03BDo . But 03BD = 03BDo*e(F)

gives by Theorem 1.2. that B)0 is a probability measure Y . i. e. v = V*e(F) .

Let us assume that Y is Gaussian. (we shall prove it later). Thus every

sequence has a convergent subsequence with limit B~ = Y * e(F) . We now prove
the

that all limit points have same Gau ssian and non-Gaussian parts. Let Y1*e(F1) _
then V1 o y * e(F1 o y 1) = Y2 o y 1 * e(F2 o y 1) giving by the one

dimensional result,

Y1 o y 1 = V2 o y 1 and F1 o y 1 = F2 o Y -1 .

Thus a) and c) are proved. Let us now observe that £(Snc) ~ Y*e(FIOc) and

{.y~S nc >2~ is uniformly integrable in n by Theorem 1.7. Hence

lim n Ey,S nc 
>2 = + ~x~c 

II 

Take limit as c ~ C(F) goes to zero then f  °o implies that

the second term goes to zero, giving b). It remains to prove Y is Gaussian

i. e. Y o y . 1 i s Gaus sian f or y 6 B’ . For thi s we observe that there exists

t such that 2(S 
nkck

) ~ 03B3(ck I 0) by the proof. The following Lemma now

completes the proof.

2.6. LEMMA. Let = 1, 2,... ~kn~ n = 1 ~ 2,.., be a triangular array such

that

a) max .I~ ~ C a. s. and 0 .

nj n - n

b) (Sn) ~ Y. Then Y is Gaussian.

Proof : Note as before, lim Ey,S >2 = CV(y,y) by Theorem 1.7. Hence it suf-
n

fices to prove for y E B’ .

A~ = Elexp(i y,Sri ) - exp(- 2 y,Sn 2)I ’~ 0 .
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But

n  03A3j E exp ( i y,Xnj>) - exp - 1 2 E y,Xnj>2|
E exp i Y = 1 - 1 2 E Y2 + E{exp i Y - 1 - i Y + 2 Y2} f or Y symmetric and

exp(- 1 2 = 1 - 1 2 EY2 + 2 EY2) -1 +2 
Now use inequalities

|eit -1 - it + 2 t2|  t3 , , I ex -1 - xI B  x 2 e x (t,x real) to get

o ~ ~ ~E~ Y~X .>~3 + (E Y~X .>2)2 e )2~
- ~ 0 under the condition established.

2.7. COROLLARY. Every symmetric i.d. law has unique representation V = Y*e(F)

where Y is (centered) Gaussian and F is the Levy measure.

2.8. COROLLARY. Let = 1,2,...,kn} (n = 1,2,...) be a triangular array

such that (Sn) ~ u . Then the following are equivalent

is Gaussian. 
k
n

b) For every y E B t and c > 0, lim E P ( y,X > I > c) = 0 .
nJ

c) For every c > 0, lim F(c)~= 0 .
nn

2.9. COROLLARY. Let = 1,2,...,kn} (n = 1,2,...) be a U.I. triangular

array such that (Sn) ~ v * e(F). Then there exists 0 such that

(Snc) ~ Y and e(F) .

Proof : Let be the Prohorov metric then we know that , e(F(c)))~ 0.
Hence there exi st s 0 such that , e(F cn))) ~ 0 . But

n

(c )
n 

),e(F)) -~ 0 giving the first conclusion.
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N ow lim = lim ~(S 
nc 

) * lim i.e. Y*e(F) = lim ~(S nc )*e(F).
n 

n 
n n n n n n

Hence lim ~(S ) = Y .
nc

n n

We note that although theorem 2.5. gives useful necessary conditions, ,

they are far from satisfactory. In the case Xnj 
= these

conditions are > t) - 0 as t - °° and X pregaussian. These are

sufficient in , p ~ 2 but are not so even in Thus one needs to

sharpen such a theorenw In the i.i.d. case such sharpening was done by Pisier.

We present the following useful theorem in case the limit points are non-Gaussian.

2.10. THEOREM. Let = 1,2,...,kn~ n = 1,2,.., be a U.I. triangular array.
- nj n

Then ~~(S )~ is tight with all limit points non-Gaussian = e(F)) iff
- n -

a) For each c > 0, {F(c)} is tight ;
- -- n --.-

b) lim sup = 0 for all p (0  p  ~) .
n 

~~ 

Proof : Necessity of a) is proved in theorem 2.1. and by Lemma 1.5., , ~Snc~ nc
is tight. Further by one-dimensional result

lim sup   y x> 
2 

dF = 0 .

n 
n

Hence by Chebychev’ s inequality  y,Sn~ - ~-~0 , , for al l y E B’ . Now
~~ 

~0

nc 
)~ is tight gives by theorem 1.1. that uniformly in n

as c - 0. Given ? > 0 choose co such that, for c ~ Co ’ ,

suP > 1 ~1/p (16) 1/p~  1 3 - p .

n

Then by theorem 1.6., ,

sup 4.3.p Cp + 1~  ~ i.e. b) .
n

To prove the converse. Given e > 0 , choose c so that sup  3 
n

and K ~ 0cc symmetric compact so that for all n.
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(2.10.1)  1 E o

Choose a simple function t : B -~ B such that Ilx - t(x)II  ~ on K and

t(x) = 0 off K with 1~  c and ’~ sup F(c) (B)  3 E 2 . Observe that
n 

n

k k

(2.10.2) E t(X .) II > 4E~~ P~ E (x , -t(x .)) II >2E~
n 

J-1 nJ J=1 nJ nJ c

k

+ ~n (X . -t(X .)) II > 2~~ .
J-1 nJ nJ c

The second term on the RHS of the above inequality does not exceed

03A3 P{~X - t(X .) II > c} =  P{~X - t(X .) II > c, X ~ K}
J=1 nJ nJ J=1 nJ nJ nJ

as ~  c . But for Xnj ~ K , t(Xnj) = 0 giving

(2.10.3) (x . - t(X .» II> 2~ }  F(c)(Kc) .
. ~=1 n J nJ c n

The first term on the RHS of (2.10.2) does not exceed

k
n

(2.10.4) (Xnj - t(Xnj))c 1(Xnj ~ K)II > ~} +

k
n

+ (Xn~ - 1(xn~ E K)II > £~ .

t=1 nJ nJ C nJ

The first term above does not exceed

k

(2.10.5) X . II> ~}  1 E~S Iip as 0 

~_1 nJ c E p nc . c

The second term does not exceed

k

E 1(X . E I

by Chebychev and triangle inequality. This in turn does not exceed 1 ~ ~ F n (K) 
E From this (2.10.1), (2.10.2),(2.10.3) and (2.10.5)~ we get
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~~(Sn)~ is flatly concentrated. Now f or choose 6  c

so that

(EI IIYII + 

n

giving sup EI  0° . Clearly, there exists K ~ compact so that
n

sup  E . Hence sup F (0 c)  E choosing t so that K c: 0 and
n ~ n t t

t > 8 . Now {x : | y,x>| > Ot giving by theorem 1.7. that {y,Sn>}

is stochastically bounded. Thus we get ~~(Sn)~ is tight by well-known theorem

of de Acosta.

2.11. COROLLARY. Let = 1,2,...,kn? n == 1,2~... be a U.I. triangular
20142014 nj n ’’ ,_._ "

array such that {(Sn)} is relatively compact with all limit points non-Gaussian

then f or every s > 0, there exist s a f inite-dimensional subspace and a triangu-

lar array U.I. and uniformly bounded such that is tight
J _1 nj -

k

P(t(Xn ) E = 1 and E > ~}  E .

2.12. COROLLARY. Let == 1,2,...,kn} be U.I. triangular array of unifor-

mly bounded with (Sn) ~ 03BD . Then for each p > 0 , E > 0 there exists

a symmetric U.I. triangular array {Wnj} such that

i) ~ n.~ is a measurab le function of only for each n,j .
nj 2014201420142014201420142014201420142014201420142014-201420142014201420142014 nj 201420142014201420142014201420142014

ii) There exists a finite-dimensional subspace m such that P(Wnj E ?70 =1;

P(Wnj E ?7!) = 1 .

k
E is tight in m and

j=1 ~-~ 20142014201420142014201420142014

iv) sup EI~ 1: Xn, - E  E .

n 
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Proof : Choose 0 as in Corollary 2.9. Then converges to a non-
- n 

n

Gaussian limit. By the above corollary for E > 0 ~ , p > 0 there exists t : : B -~ B

simple symmetric with finite dimensional rauge and no E IN such that for n ~‘no
k
n

EllSnc - E t(X , n~ c )~~p  E/4 .
n j=1 ~J~

As Y gaussian. Let ~(Z) _ Y and Z be written as a. s. convergent
n .

series
m

Z = ~ 

j=1 J J

where ~xj~ ~ Band E B’ . Since ~(Snc ) ~ £(Z) )) ~

k

(Z - 03C0k(z)) with ,x>xj. By theorem 1.7., {~Sncn - 03C0k(Sncn)~p}

is uniformly integrable for p > 0 . Hence

n n

Choose ko so that EIIZ -  6 and nl so that for n > n1
o

E~Snc - 03C0k (S nc  ~/4 .
non

Now nj + for n ~ Then ~W~j~ satisfy the given

conditions for n  (no V n1) . For n  no  n1 , choose an appropriate simple

function approximation.

We now look at this approximation in the case Xnj 
= Xj/n and X1 ..

.. X n ...i.i.d. Let us observe that by the finite-dimensional result, the limit

is Gaussian and by theorem 17. , sup n P(~X1~ > nt)  ~ giving 2(X1)  ~ .

Hence E~X1~p  ~ , p  2. Also 
1 nk E X, _ - 1 E n Y (k ) where Y (k ) are

with ~(Y(k)) _ + ", Again stochastic boundedness of
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1 
nk 

2 (k){ 1 implies 2(Y(k))  ~ and for p  2 , ,

" 

0 0 

> t)dt l + 

1 t 
dt # M + 1 *

Hence sup E~X1 + ... + Xk/k~p ~ for p  2. By Lemma 1.5., , we get
k 

"

’

Now let k be approximating family so that sup  E . Choose
n 

1  p  2 , , then EII(I 3 sup E~Sn~p . This implies
n 

S 
nc 

)))) is uniformly integrable in (n,c) .But )ts 
n 
-S 

nc 
)) - 0

uniformly in n as c "* °° since

> £) ~ n > c,~n) ~ 12 ~2(X1) .
cP

Thus we get that (I - -~ 0 uniformly in n as and is

uniformly integrable in (n,c) . Thus EII(I - -~ 0 as c -~ o° . In other

words, uniformly in n , ,

EII(I - Snc~ ~ E~(I - 03C0k) Sn~ as 

In particular ,given e > 0 , , there exists ko such that

sup E~(I - k) 03A3 Xj/n~  ~ for k  ko .

We thus have

2.14. PROPOSITION. Let X be a symmetric B-valued random variable. Then X

satisfies CLT iff for every E > 0 there exists a simple random variable Y

satisfying CLT so that sup E~X1 + ... + X n lln - Y1 + ... + Ynllnll  E .

n

Proof : By the construction {03C0k(X1)} satisfies CLT and hence is square inte-

grable by example 1.8.2. Thus we can approximate by Y1 in 

assuring Y1 satisfy CLT. Converse is obvious by Corollary 2,12.
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Remark : : In order to obtain moment conditions we only use stochastic bounde-

dness of ~X1 + ,.. + 

2.15. THEOREM. (Le Cam). Let be a triangular array of B-valued random

variables. Then is tight implies {(Sn)} is tight.

k N . 
n nj

Proof : Not e that e (F) = ( 03A3 E X i ) where {N} are I,I,d. Poisson
2014201420142014 ~ 

j=1 1=0 ~~ ~

with parameter one , independent of for all and i=0,1,..

are I.I.d, with (Xnji ) = ) for all I (always o ° = 0) . 

By theorem 
1.2. 

is tight for all X iff is tight. Hence ~~( E n 
n n nji

is tight with above assumptions except with EN ~ = X . Choose X so that

exp(-03BB) = 2 and let n = n + 
1 

With T*n = j =-1 i=C 

Then we have ~{Tn - Sn) == ~(S* - Tn) . Use now an

argument as in Lemma 1.5. with q , Minkowski functional of a convex, compact

symmetric set K to obtain

P (Tn E Kc) > ~- 2 P (Sn E 
k k

Thus f~(S*)~ is tight. But ~(S*) _ ~( E ~ , X ,) ~ S( ~ (1-~ ,)X ) as
n n nJ j=1 nJ nJ

k

03BEnj is Bernoulli with P(03BEnj = 1) = 2 . Hence ( Xnj) is tight.

The following theorem is now imnediate from Corollary 2.12. and Theorem

2.15.

2.16. THEOREM. Let {j = 1,2,...,kn , ’ n = 1,2,...) be U.I. triangular

array. Then ~(S ) v = ’Y * e~(F) iff for some c (and hence for all c > 0)

we have

i) for all T > 0 , 
’
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ii) For every p > 0, and E > 0 , , there exists a symmetric U.I.

triangular array {Wnj} such is a measurable function k of ;

a finite dimensional subspace m such that P(Wnj E m) = 1 , {( En W .)) is

tight in % and sup E~I ~ (X. - W .)))P  e .

n j=~ J J

iii) Condition (2.5.1) holds.

We now consider some consequences of this theorem.

2.17. Applications : :

2.17.1. Example : : B = H a Hilbert space. Then the above theorem implies for

an H-valued triangular array,

~(S ) =~ Y * e(F) iff
n

i) For each c > 0 , , F(c)n ~ F{c) , c E C(F) .
ii) For E > 0 and for some complete orthonormal basis 

lim sup 
= 0 and 

finite, with " 
j=l 

x, 
-’ 

.

iii) ~x~~ y,x>2 Fn(dx) = C03B3(y,y) .

This can be seen by using theorem 1.7. and stochastic boundedness 

Let us now define T by

 i Y~x>2 F n (~) .

Then conditions (ii) and (iii) imply that has finite -trace and 

under the trace norm is compact i.e., , for a complete orthonormal basis, sup

trace (T ) and lim sup 
n 

E (T e.,e.) = 0 . Conversely if {Tn} is
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compact then one can find a complete orthonormal basis satisfying (ii) and

(iii) . Thus we get the Y * e( F) iff

i) F(c)n ~ F(c) ,

ii) is a compact sequence of trace-class operators,

iii) as above holds.

2.17.1. Example : : B = Lp (p  2 ) , Xnj = Xj/n and {Xj} i.i.d. Then

X1 + ... + Y iff

i) nP(~X1~ > fn) -’ 0 ,
ii) For E > 0 , , p > 0 there exists k such that

J i 
J 

ii  C /n> /n - 
J 

i 
J 

ii  C /n > /n~  E

and is tight.

iii) X1 is Pre-Gaussian, i.e. X1 has the same covariance as an

L -valued gaussian r.v.G(X1) ,
We note that (i) a t2 > t) -~ 0 .

As ’~k(X1) is pregaussian in ’~k(B) by (iii) it satisfies CLT in ’~k(B)
by Cramer -Wold devise. Thus (iii) =~ (ii) ~ second part. We now show that (i)

and (iii) imply the existance of ’~k satisfying the first part of (ii) by

Rosenthals inequality. With arguments as in 1.8.1. we get,

supn n E~X1 1(~X1~  c f n)/fn - k(X1 1(~X1~  cn)/n)~p

~ Constant ~2 (X1 - ’~ (X ) ) and

sup n c f n) - c f n) ) (t )~ p/2 dw

k(X1))(t)~ p/2 
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Thus it suffices to show that in the norm A(X ) + (E))c(X ))) ) 
~~~ 

on L (Q~P)~ ,
there is a finite-dimensional approximation. Let ~~k~ be an increasing subse-

quence of M . Define = Xo = 0 . Then one has by
0 as k -’ ~ . Let Yk are pregaus-

sian and ~G(Yk)} are independent Gaussian. Also,

( k E G(Y k )) = (G(X1)) . Using Fernique’s theorem is

integrable giving lim 
k G(Y,)I) ) 2 

1/Z 
= 0 . Thus we obtain k

satisfying (ii) .

We thus have the following theorem ;X1 satisfies CLT iff

i) t2 t) -’ 0 and

ii) X1 is pregaussian.

2.17.3. Exa le : X. = X./n ; Xj i.i.d., , Y = 0 , F = 0. Let X be a

symmetric B-valued r.v. then we say that X satisfies WLLN iff for 

n n P

... i.i.d. as X, , ( E X,/n) = 6 
0 

or equivalently E X./n - 0 .

We have X satisfies WLLN iff

i) tP(IIXII > t) ~ ~ , ,

ii) lim X 1  n))) = 0 .

By theorem 2.10., and theorem 2.5., X satisfies WLLN iff

1) V c > 0 , and

2) For e > 0, there exists 6 such that X. 1(~Xi~)  6 n)o 
j=1 

~- ’- o

 e/2 for all n. Now (1) ~ (i) and (ii) ~ 2) by writing expectation in

terms of tails and using Lemma 1.4. Now choose 6 by 2) and observe that

n-1 E~ X. (6 n ~Xj~  n)~  n 1 E E~Xj~1(03B4on~Xj~  n)

 n > 0

as n -’ ~° . Thus 2 ) ~ ii ) .
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3. CLASSICAL CLP AND GEOMETRY OF BANACH SPACES.

In this section we relate the validity of classical theorems with the

associated geometry of Banach spaces. Our proofs will use freely the geometrical

results. We shall not prove them but instead refer to the literature where they

can be found.

3.1. Stochastic boundedness implies pregaussian : We first observe that sto-

chastic boundedness of ~X1 + ... + Xi i. i. d. ~does not imp ly X is

pregaussian ,as in co with X = /f log n} , En i.i.d. symmetric Bernoulli ,

it is not true. We, in fact, have the following

3.1.1. THEOREM. The following are equivalent for any real separable Banach

space B .

i) B does not contain an isomorphic copy of 

co. + ... + X
ii) For every B-valued, integrable r.v.X , ~ sup E~I 

~ 
 ~

inplies X is pregaussian.

Proof : As we have observed ii) ~ i) , , we consider now TT as in example 2.17.2;

and Xk = Let Xk1 ... xf be i.i.d. copies of Then

EII 1 

In 

n I)  E~X1 + ... + X n /f nIl .

Thus is pregaussian and lim I by > 
CLT . Now

G(Y) where G(Y.) is bounded in L in
i=l i=l 

’- 1

B and condition i) ~ by Kwapien theorem (Studia Math 52 (1974)) that

E G(Yk) converges. Clearly G(X) = 1: G(Yk) .
k=1 k=1

3.2. Accompanying law theorem.

To start with we define
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3.2.1. DEFINITION. A Banach space B contains ;~ uniformly [or c is
- n .-- - o -

finitely representable (f.r.) in B ] if there exists T  1 such that for

each n E IN there are n vectors xn ,..., x in B satisfying
~ ~ 1 n °°°°°°

n

max I ti /T ~ ti xni II  T max in l ti I .

By a theorem of Maurey-Pisier (Studia Math 58 45-90) the following are equi-

valent for q  2 and a sequence {03BEi} of i.i.d. centered real r.v.’s. such

that > t) > 0 for all t and  ~ .

(i) c is not f.r. in B

ii) There exists a constant C = finite s.t. for all

(3. 2.2 )
sequences of points B ,

n n

C xi 

Thus we get that if co is f. r. B then there exists B such that

~ E i x i converges j diverges with ~, J = e(26- 1 + ZS+ ) . 1
There exist k , ~n - °° such that

k +;~ k +;~

03A3nln nxj~j ~ 0 but 03A3nln 
n 0 .

Let us define Xn, = xj+l . Then 
is U.I. triangular array.

J J 
n 

J 
n 

nJ

k
n

(Sn) ~ 8o but {( E 03BEjxj)} not tight. If it were tight by arguments as in

Example 1.8.3. we get that ,E 03BEj xj ~ 0 as (03BEj xj) = where

n

Fn = .E S(XnJ) .~ 
J~ ~J

Thus accompanying law theorem holds ~ co is not f.r. in B. To prove

the converse we need.
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3.2.3. LEMMA. Let {Xj} be i.i.d. and X be independent of with

(i = 0,1 ) . Then

EII Xi~q  E~Xo + n X1~q

Proof : : By Minkowski inequality,

(E))X 
1/q 

 (E)) n Xo + Xi)~q)
1/q

+ X1~q)1/q  (E~Xo + n 
I/q 

.

3.2.4. LEMMA. The following are equivalent for q ~ 2 .

i) c is not f.r. in B.

ii) There exists L = L(B,q) such that for every finite sequence

X1,X2,..., n of independent symmetric B-valued ~s. with  ~

j = 1,2,...,n .

E~ Xji~q  L E~ Xj~q

where (Nj) = e(8 ) , i = O,l,...j is i.i.d. with (Xji) = (Xj) and

’ are independent.

Proof : (ii) ~ (i) . Let B , n E be i.i.d. symmetric

Bernoulli, N with E N = 1 , , Poisson r.v. independent of {~j},{03BEj}, i.i.d.
Poisson, E 03BE1 = 1, and {03BEj} , independent symmetrization of {03BEj}. Then

s ) and E ) = e(ZS-1 + 1 203B4+1) = (03BE1).

From (3.2.2 ) and (ii) this gives ii) ~ (i) . To prove the converse, By (3.2.2)

and Fubini theorem we get

E~ Xj (Nj - 1)~q  L E~Xj~j~q .
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By Lemma 3.2.3., using E2 ° expectation on Nj and E1 on Xj
we get N ~ N .

Eil E EJ Xji~q  E E1~ 03A3 03A3j X .. Il q
i~ 

~ 2 1 
j i~ 

~ E2 

and this in turn does not exceed

E 2 E ~I + 
, X.IIq

j~ J

3.2.5. THEOREM. The following are equivalent for any real separable Banach

space B.

i) c is not f.r. in B.

ii) For any symmetric U.I. triangular array --- ~(Sn) converges

~ e(Fn) converges. In other words, , accompanying law theorem holds.

Proof : As ii) ~ i) is proved before we move to i) ~ ii) . Let 6 > 0 ,

6 E C(F) where F is the Levy measure, associated with lim ri (Sn) . Then by
theorem 2.1. and 2.15. one can assume that are uniformly bounded. Using

Corollary 2.12. and Lemna 3.2.4. to Xn, - nj , where {Xnji - are i.i.d.
J nj nji nji

as nj ~ except X. - njo - 0 . We get for every 
E > 0 ,

k N, 

sup E E 
n 

E 
J 
(X - W LE . As {Wn j} take values in a finite-

n j
dimensional space ~( ~ E W ..) is tight. Thus by theorem 2.16. we get

j=1 i~ ~J~

the result.

3.2.6. COROLLARY. The following are equivalent for a Banach space B.

i) c is not f.r. in B .
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ii) For every B-valued symmetric U.I. triangular array {Xnj, j = 1,..

...,kn} n = 1,2,....

{(Sn)} tight implies tight.

3.3. Lévy-Kinchine representation and type, cotype :

In the classical case the function (with F symmetric)

cp(y) = exp (f (cos (y,x) - 1) F(dx)) is a c.f.of a (necessarily) i.d. law if

F is a Levy measure. One knows that, , in general, such a functional is not a

c.f. we want to examine conditions under which it is. If F has finite varia-

tion then such a function is a c.f. of e(F) . Hence without loss of generality,

FBOC 1 = 0 . Let Fn = F|0c1/n and assume variations of Fn converge to ~ .

Hence Fn = kn n with » n a probability measure. 
If co is not f.r. in B

then by theorem 3.2.5., (e(F )) converges iff n*kn converges. Denote by

Xnj 
= 

n 
) j = 1,2,... 

n 
. Then by theorem 2,16, we get with S

n 
j=l Xnj 

.

(Note that wn = 

Let co be not f. r. in B. Then cp i s a c.f. o f an i. d. law iff

converges. For this to happen, the necessary and sufficient conditions are

i) For E > 0 and q > 0 there exists a finite dimensional subspace

m and a triangular array W., , m-valued such that

i) sup {Xn. - Wnj)~q  E

k
n

ii) {( E is tight .

Of course, this is not a very good condition but in special cases we can reduce

it to a simple condition.

We need for this the following.
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3.3.1. DEFINITION.

a) Let be separable Banach spaces and v : : be a linear

map. Then (v,B,I) is said to be R-type p if there exists a > 0 , such

that for X1 ,..., X symmetric independent B-valued, p-summable r.v.’s. , ,

n

cY E .

b) If B = ~ and v = I , then B is called of R-type p .

If B is R-type p , then co is not f.r. in B by a result of

Maurey-Pisier (referred earlier). Also, since lim is non-Gaussian

Wnj

= t(X .) for a simple function t , , ~t(x)~  ))x)) . Thus a sufficient

condition for i), , ii) to happen is that for E > 0 , there exists a simple

function t (theorem 1.7.), , s.t.

sup F (dx) =f ))x - F(dx)

does not exceed Thus we have

3.3.2. PROPOSITION. The following are equivalent

i) B is of R-type p .

ii) For every Levy measure F satisfying F(dx) finite, cp(y)

is a c.f. of a probability measure.

Proof : : Under the condition we can choose a simple function t as above. Thus

is tight but Hence cp(y) = for some

probability measure  and e(Fn) ~  . Clearly F is the Levy measure of  .

For the converse implication, suppose E j 
 ~ and write

F = Iim E n (2 03B4xj + 1 2 6_x ) . Then dF  o° . Hence cp (y) 
= 

But cp(y) = lim 
n rr (y) i.i.d. symmetric Poisson
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n °°

real-valued r.v.’s. Hence ( 03BEjxj) ~  . Giving  03BEjxj converges a.e.

But this implies E E.x. converges a.e. by Contraction Principle.
j=1 J J

3.3.3. DEFINITION. We say that B is of cotype q (Radmacher) (q ~ 2) if there

exists « > 0 , such that for X1 ,..., X symmetric independent B-valued

p-summable r.v.’s.

n

a E 1 
3.3.4. PROPOSITION. The following are equivalent

i) B is of cotype q.

ii) Every non-Gaussian i.d. law has Levy measure satisfying dF

finite.

Proof : We note that i) ~ co is not f.r, in B. Hence by the necessary and

sufficient conditions we get that

k
n

sup  E~ I ,E ~ 
J-1 J

k
n

Hence by cotype property of B , , sup 
n 

03A3 E~X~q  ~ .~ 
j =1 ~J

But this gives F(dx)  ~ as F 
n 

t F. To prove the converse assume

E xi ~i converges then it follows by the assumption ii) that E 

converges. Thus by closed Graph theorem for every sequence fx.~ ~ B ; ;
1

E constant E~ j xj~ . This implies that c is not f.r. in B
i~. 

1 
1 

1 1 
mp 

° 
.. m .

(Hamedani and Mandrekar Studia Math 66 (1978)). Hence by Section 3.2., E e,x,

converges implies E ~xj~q  ~ giving cotype q property of B.

3.4. CLP and CLT in Banach spaces of type 2 :

We prove the following result.
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3.4.1. THEOREM. The following are equivalent for a real separable Banach space

of infinite dimension.

a) B is of type 2 .

b) For any U.I, symmetric triangular array = 1,2,...,kn} ,
n= 1,2,... and F 03C3-finite measure,

i) F(c) ~ for each c E C(F) .
n

ii) For E > 0 , , there exists a finite-dimensional subspace m

valued r,v. ’ s. .) such that su . - 03A6(Xnjc )~2  ~ .

iii) lim 0 lim 
n 

> = CY(y,y) for a cylindrical Gaussian

Y imply (Sn) ~ Y * e(F) with Y Gaussian .

c) For every U.I, symmetric triangular array = 1,2,...,kn~
of B-valued random variables and a ~-finite measure F , ,

i) F(c) ~ for c E C(F) , ,
n

ii) lim limn ))x))c 
= 0 imply (Sn) ~ e(F) .

d)  ~ ~ CLT holds .

e)  ~ ~ X is pregaussian.

Proof : , In view of theorem 2.16. and type 2 we get a) ~ b) . Condition ii)

of c) ~ = 0 and by Corollary 2.11. condition ii) of b) . Hence

b) ~ c) . We show c) ~ a) . Suppose E ~~x.~~2  °° but E E .x, does not converge

j J JJ

for ~ B . Then there exist ln ,k n such that (ln ’’ °°, k n 
’’ °°)

l +k l +lc

nE 
n 

-~ o but ~( n~ 
n 

£.x.) ~ s .

j-;~ n +1 
J j=~ n +1 

J J °
k
n

Define Xnj = ~ln+j xln+j , j = 1,2,...,kn . 
Then by c) ( Xnj) ~ 03B4o

reaching a contradiction. Thus E converges, giving a) . To see
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b) =~ d) . Clearly,  ~° =~ t2 P(IIXII > t) - 0 as t -’ ~° . Hence

F(c) = n P(IIXII > c /n) -’ 0 for each c -’ 0. Condition b) (iii) is satis-
n

fied as E y,X> 2  °° . Let q(x) = inf y E ~{ . The given condition

b) (ii) is satisfied if f or E > 0 we can find m so that

sup n E q( = E(q(X))2 ~ e . Given E > 0 , , choose sinple function

t , , such that

C hoose m such that a.s. Obviously d) => e) . For e) =~ a)
00

assume E 1 and choose (X) = 2 1 2~xj~2(03B4xj + 6_ ) . Then 
.

and hence X is pregaussian i.e. exp(- 1 E y,x,>2 ) = cp (y)"- 
j=1 J ’Y

for y E B’ and Y Gaussian measure. By Ito-Nisio theorem this inplies that
00

E1 ’Y.x. , converges a. s.

j=l J J

Remark : : A reader is encouraged to state and prove equivalences of a),b),c),d),e),

for a triplet (v,B,I) of R-type 2 . There is not much change in the proof.

Also one can prove by the same proof equivalence of a), , b) and c) for

R-type p with 2 replaced by p .

3.5. Domains of Attraction and Banach Spaces of Stable type p (p  2) :

We say that a Banach space B is of stable type p if for ~x~~ ~ B , ,
satisfying 03A3~xj~p  ~ we have E xj~j converges a.s., , where {~j} i.i.d.

symmetric stable with 
1 
)(t) = 

We say that a B-valued r~v~ X is in the domain of attraction of a B-valued r.

v. Y if there exist b~ > 0 and x n E E (n = 1,2,...) such that

+ ... + xn) ~ (Y)

(We write X E DA(Y)) .
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The domain of attraction problem is to characterize the so that

X E DA(Y) . We note that if X E DA (Y) then aX + x E DA(a Y + x) for a E 1R,

x E B. Thus the domain of attraction problem is a problem of determination of

type of ~(X) .

As in the classical case, one needs : :

3.5.1. Convergence of Type Theorem : : Let , n = 1,2,...} be B-valued

r.v.’s. such that (Xn) ~ (X) and there exist constants (a ) S 1R such

that (an X + xn) ~ (Y) then there exists a E 1R , , such that a , ) -’ I al
and x 

-’ x provide d there exists y E B’ such that a(  

and (  y,Y >) are non-degenerate. In particular, + x) = S(Y) if an 
> 0 .

The proof is exactly as in the one dimensional case and hence is left

to the reader.

Remark : : For any x E B and for every sequence {(Xn)} there exist x and

b ~ 0 such that (b X + x) ~ 03B4 . To see this choose so that
n n n n x n

n II > c n )  1 n to obtain P(IIX 
n 

> n)  n . Hence 80 .
Choose b b = 1 and x = x . Thus all laws are in the DA of degenerate law.

n nc n
n

3.5.2. THEOREM. A r. v. X E DA(Y) with  y,Y > non-degenerate f or some y E B’ .

Then

i) bn -’ °° , ’ 
-~ 1

and

ii) for all a,b real there exists a B s.t.

+ bY2) _ + x(a,b)) with Y1,Y2 i.i.d. as Y.

In the one-dimensional case, such laws are called stable (as their

type is stable under sums). As = for some p in the one-

dimensional case, we get, c(a,b) = + and x(a,b) = 0 in the

symmetric case. We say that a symmetric r.v. Y is stable r.v. of index p if

Y satisfied Theorem 3.5.2. (b) with c(a,b) = + and x(a,b) =0.

Note that p  2 . Using induction on the definition os stable r.v. with



463

al = a2 = ... = an = 1 we get for x n E B

(3.5.3) ... + Y ) - xn) = (Y) .

3.5.4. THEOREM. A non-degenerate Y has non-empty domain of attraction iff

Y is stable.

Now (3.5.3) with p = 2 gives Y is Gaussian. As non-degenerate

Gaussian laws do not satisfy (3.5.3) for p  2, we call the laws with

index p  2 as non-Gaussian stable laws. Also (3.5.3) implies Y is i.d.

and in the symmetric case xn 
= 0 . Let F be Levy measure associated with

~(Y) . Let F n (.) then by (3.5.3), for Y symmetric,

Y) _ ... + Y )
and hence by uniqueness of Levy measure, F = nF . Let A be Borel subset of

{xl = 1} , and M(r,A) = F{x E B ; > r , X E A) r > 0 . Then

= = k M((kJn)p,A) .

By monotonicity of M we get for r > 0

M(r,A) = r-P M(1,A) = r p o’(A) (say) .

3.5.5. COROLLARY, = exp for a symmetric stable

Y of index p . Here o’ is the unique measure on the unit sphere S of

B .

By using (3.5.3) and Theorem 1.7. we have supc cp > c) 

for Y symmetric stable. Hence for P  p . From Theorem 2.10 we

get that a symmetric B-valued r. v. X e DA(Y) iff
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(a) nP{IIXII > rb , ! E A) - r p a (A) for r > 0 and
n IIXII

Q (aA) = 0 ,

(3.5.6) 
.

(b) lim lim + ... + = 0 f or some q > 0
~ ~ ~ n

with Zi = Xi Eb ) .

By elementary calculations, using bn ~ ~ and 1 and

(3.5.6) (a) we get

(3.5.7) as t -’ °° .
> t)

i.e., , P{IIXII >.) is regulary varying of index (-p). Also for A with

Q (aA) = 0, as t -’ °°

(3.5.8) P{~~X~~ > t~ X ~ A)/P{IIXII > t) - c(A)/o(S) .
IIXiI

In particular X E DA(Y) inplies  °° for q  p. To obtain

sufficiency we observe using regular variation

~ a s t -’ °° .

P

Put t = b £ and multiply the dominator and numerator by n to obtain from

(3.5.7)

(3.5.9) lim EP-q .

(3.5.9) lim n nb-qn E~Z~q = 
q-p

It is known that if B is of stable type p then for any family

(W ,...,Wn) of symmetric independent B-valued r.v.’s. with  °°

(i = 1,...,n ; q  p) there exists C such that

C E . ( see e. g. Maurey-Pisier) .
1 

i 
i=1 

~
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From this, (3.5.9.),(3.5.6),(3.5.7) and (3.5.8)

3.5.10. THEOREM. Let B be of stable type p  2 . Then X E DA(Y) iff Y

is. stable and X satisfies (3.5.7) and (3.5.8) .

In the "if" part one produ ces bn using (3.5.7) .

3.5.11. THEOREM. The follo wing are equivalent for p  2 .

a) B is of stable type p .

b) Conditions (3.5.7) and (3.5.8) for some o’ are necessary and

sufficient for X E DA(Y) with o being the measure associated with Levy

measure of Y .

c) tP P(IIXII > t) - 0 iff 
X 1 +",+X n 

0

n1/P

Proof : We have proved i) ~ ii) . To prove ii))implies iii) , , choose 0 ,

symmetric, stable, real-valued r.v. independent of X and e E B s.t.

= 1 . Then it is easy to check that P())X + e e)) > .) is regularly varying

of index (-p). Note that 9 s ,) ~ dr X with r(+1) =

r(-1) > 0 and supp r = {+1,-1~ . Hence for X > 0 , , there exists a closed

symmetric interval J with interior of J ? ~-h,~~ and 8 > 0 such that

and E (Jc)03B4)  e , Here 
ð 

denotes 8 neigh-

bourhood of Jc . Now choose 03B4o s.t. [(Je)c]03B4o ~ IR e ~ (Jc)03B4 e. Then since
tp > t) -~ 0 , there exists no(E,Bo) = no such that for n ~ n 

0

> 6  e . Thus

Y ~ Je)  Y ~ Je, Ilxll  6 o nl/p) + nl/p)

 e e E s °) + e
 e E(Jc) 6) + e = 2E .

Thus Y E .)~ is tight outside every neighbourhood of zero. B y one-
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n (X , + 9 , e)
dimensional result £[ y,~ 

1 I >’ ~ £(  y,e e>) for all y E B’ .
1 

Here {03B8i , i = 1,2,...,n} are i.i.d., , with (03B8) . This implies

n P( y,Y> .) ~ F o y 1(.) .

Here dF = X , supp r= ~-e,e~ , , r(e) = r(-e) equals r(1) . Hence

1

This gives (3.5.7) and (3.5.8) for Y. Also by (ii) we get 

constant and

E n X, ~ + e e .

~=1 J J

This gives the result. For (iii) ~ (i) observe that exactly as in the proof

for Proposition 2.14. we get sup 
n 

+ ". + X 
n 

/n1/p~r  °° for r  p. Let

= sup (X + ". + Xn)~r where are i.i.d. B-valued

r.v.s with E~X1~r  ~ and (X1,...,Xn) is independent symmetrization of (X1,..

...,Xn) . Let CL(p,r) _ {X ; X B-valued r.v. and CL(X)  ~} and

... 
n n 
) . Let CL(p,r) = (X ; X B-valued r,v, and CL(X)  m) and

{X ; X B-valued r.v. and Cp P (IIXII > C ) ’’ 0,C ~ ~} .

On define = 

sup C cP P (II X II > C ) for p  1 or [sup c cP

P(IIXII > for p > 1 . Under (iii) , , we can define T on CL(p,r) .

T is def ined everywhere and closed. Thus by closed graph theorem CL ~ Constant

Let K = constant. As in example 2.17.2. we can approximate X E 

by simple functions in Now if Y is a simple function then finite-

dimensional CLT , lim E n = 0 since p  2. Hence range of T

n 1 J

is included in the X is satisfying lim = 0 , giving 

is a super property of B. By Maurey-Pisier-Krivine result (see Maurey-Pisier

cited earlier) one has to show ;~p is not f.r. in B to get (i) .
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It suffices to show that (iii) fails in p . Let be i.i.d.

sequence with i.i.d. symmetric Bernoulli and n) = 
n log 

1 

log n

for n  27 and 1 otherwise, IN+-valued. Define
J

J 
= 

E. J ~ 
N.-N.kN. 2 ,~2 . + N’ ~c
J J J J

{ek} natural basis One can check that nP(IIXII > (2n) 1lP) - 0 and

i.i.d. but {X1 + ... + X is not stochastically bounded.
J 1 n

3.5.11. COROLLARY. Let B be of stable type one (B-convex). Then X satisfies

WLLN iff > t) - 0 .

3.6. Results in the space of continuous functions : : These results are special

case of results in type 2 spaces. = 1,2,...,kn} be a symmetric

triangular array of B-va1ued r.v.’s. Then {F(1)} is tight iff (Xnj1)
kn

tight. Thus one wants to consider E Xnj1; i.e., without loss of generality,

1 . If we assume that B = U n K with : x E for

K compact and the injection i : : B ~ BK is continuous , , i.e., , if B is com-

pactly generated, and R-type 2 , , then

k

° 1)II2 ~ ~ .

k k
n n 

.

Since P( ,E Xnj 1 ~(03BBK)c) = 03BB) ,

by Chebychev’s inequality, we get

3.6.1. THEOREM. Let = 1,2,...,kn~ n = 1,2~... be a triangular array

of B-valued r.v.’s. with B conpactly generated and R-type 2. If ~F(1)~
- n
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is tight and sup n is finite. Then )) is tight.

Remark : :

1) A similar proof shows that e(Fn) is tight as on type 2 space,

S F ( dx) . 
k

2) By one-dimensional result (dx)) tight p i.~( E 
n 

j =1 J

is tight.

3) We note that the above result holds for triplet (v,B,I) of

R-type 2 if v(B) is compactly generated. In this case, {( ~X nj~2)} tight

inplies £( j E =1 tight.

We shall use the last fact to obtain results on the space of continuous

functions.

Let (S,d) be a compact metric space and p a continuous metric on

S . Define

On C(S) , the space of continuous functions with respect to d . Let

Cp(S) = C(S) ,  ~~

lim ~ f (t)-f ( ~ ~ /f (t, s) = 0 , Va) .
" 

(t, 

3.6.2. LEMMA. (Cp(S), III.III ) is a Banach space and is a(closed) sepa-

rable subspace of Cp(S) .

Proof : : As other parts are standard, only proof needed is to show Cp(S) is
closed. Define T on by

(Tf)(t,s) = {f(t)-f(s)/03C1(t,s) if t = s0 if t = s
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Then T is continuous linear operator on to C(S X S) and Sf = (Tf,f)

is an isometry on C (S) into C(S X S) X C(S) with =

+ Hence is separable.

A continuous metric p is called pregaussian if for a centered Gaussian

process t E S~

Cp(t,s) ~ X has continuous sample paths .

If on (S,p) there exists a probability measure X satisfying

1
(3.6.3) lim sup s~S ~0 [log(1 + S : e( s,t)  u}]2 du = 0 .

or for metric entropy H(S,p,x) of (S,p), and some cy > 0

(3.6.3’) ~« 
0

Then it is known (Ferni que : Lecture notes in Math 480 or Dudley :

J. Functional Anal, 1 (1967)) that p is pre-Gaussian.

3.6.4. LEMMA. Let B be a Banach space and v a continuous operator on B into

C(S) . If v(B) ~ for some pregaussian metric p , then (B, C(S),v) is

of R-type 2 .

Proof : : Let v : B ~ (Cp(S),|~ )))) is continuous by the closed graph theorem.

Let E  °° for {xj} ~ B . Then with v(x .) = f., we have

constant 

J=1 J J 
j=l J 

~ 

J

By p being pregaussian we get E Y.f. converges a.s. in C(S) iff

E ( f , (t) - fj(s)|2  C p 2(t, s) . Hence we get E Y.f. converges a. s. in

C(S) completing the proof.
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We now recal l some facts. Under (3.6.3) (or (3.6.3’)), there exists

p’ satisfying (3.6.3) (or (3.6.3’)) and p (t, s) ~ a p’ (t, s) with

lim p(t,s)/p’(t,s) = 0 i.e., if a r.v. lies in CP(s) , , it lies in

~t~ s)’’(a~a)

Co p~ ( s) . Also,
= U n K with K = i.x ; ; BB xBB p  1} conpact .

Thus C03C1’o (S) is compactly generated. We can thus use the remark following

Theorem 3.6.1. to get

3.6.5. THEOREM. Let (S,p) be a compact pseudo-metric space satisfying (3.6.3)

(or (3.6.3’)). Let be a C(S)-valued triangular array of row independent

r.v.’s. Assume

i) converges in (C(S),p) weakly for each

finite subset (tl,...,tk) ~ S . 
k

ii) ~Xnj~03C1  ~ a. s. f or j ,n and £( E 
n 

~Xnj~203C1) is tight. Then

a) converges and {(Sn)} converges .

If in addition (X ., j = 0~...,k ~ are U.I. then lim e(F ) = lim ~(S ) .
nJ n 

n 
n 

n 
n

b) As c is f. r. in C(S) , , we can f ind a triangular array, U.I.

such that the above conditions are not necessary.

3.6.6. COROLLARY. Let (S,p) be a compact pseudo-metric space satisfying (3.6.3)

(or (3.6.3’». If and X symmetric, then X satisfies CLT .

Proof : Xnj = Xj/n , ~Xnj ~203C1 = 1 n  ~Xj~2 .

Hence by WLLN in Ilt we get the result.

One can, of course, study CLP and CLT in cotype 2 spaces. Analogue

of theorem 3.4.1. holds for cotype 2 spaces (involving necessary conditions).

It therefore suffices to study CLT only in cotype 2 spaces. We refer the reader
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for this to (Chobanian and Tarieladze (1977) J. Mult. Analysis 7) .

One should note that original motivation (from the probabilistic point

of view !) for probability on Banach spaces was to study Donsker’s invariance

principle. However theorem 3.6.5. does not include this because in this case,

with

0 0  t  j-1/n

Xnj (t) 
= { 1 j/n  t  1

linear between j-l/n and j/n .

n

and 03BE1 satisfying CLT, one needs to show C( E X . . 03BEj/n) ~ S(W) , , W being~ 
j==l ~ J

the Brownian motion on ~0,1~ . Take p(t,s) = )t-s) . Then n ~~~, J X 
Hence ( I‘X , ~203C1) is not tight with Xnj = 03BEj xnj.//n . Thus, what is the

influence of such C LT on classical p robability theory ?

J. Kuelbs observed that CLT holds in B iff the invariance principle

holds in B , , for B separable. However such invariance princip les are of inte-

rest in non-separable case (empirical processes). Recently, Dudley-Phillips cir-

cumvented the theory on Banach space ex cept for the finite-dimensional approxi-

mation to construct Invariance Principle in probability (to be defined !). In

the meantine , de Acosta extended Kuelbs result and obtained an a.s. Invariance

Princip le for non-Gaussian limit. We shall p resent it next for row i.i.d. trian-

gular array. The theorem is due to de Acosta and the proof is due to Dehling-

Dobrowski-Philipp.
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4. INVARIANCE PRINCIPLES IN SEPARABLE BAN ACH SPACES.

Given an i.d. law p on B , , we can write it as Y*e(F) if it is

symmetric, with Y symmetric Gaussian, F a Levy measure. In general, if

is not symmetric, one can write for T > 0 ,  = ’Y*ST e(F)* 6x for xo ~ B

and ST e(F) denotes the probability measure whose c.f. is of the form

exp(i y,x> ) - 1 - i y,x 1(~x~  1)> F(dx) . .

t 
= ’Y 

t 
* S T I 

e(tF) * 8 
txT 

where Y 
t 
= Y(t ~(.)) . Then ~~ ~ t t > 0~ is

well defined (and is in fact a convolution semigroup). Here o 
= so . If

k
n 

is a triangular array of row-independent B-valued r.v.ls. with

lim ~(Sn) _ ~ (i. d. ) then we get the following :
nn

4.1. LEMMA. ~( E ) ~ ~ k = 0,1, ... , 2r
k 1 j 2r
2~ ~ 2

Proof : The proof is by induction on r. If r = 0 , k = 0 then the Lemma

reduces to S(Sn ) ~ ~1 = I~ , , which is given. Assume the conclusion holds for

r - 1 and k be fixed = 0,1,...,2r-1 . Then k or k+1 is divisible by 2 .

First assume k = 2i , , i = 0,1,...,2r 1-1 . Then by induction hypothesis

" 

2 - 
as n 

~ ~ 
°

n 2r-1
Let

~,n = and ~n 
= ~

2 2~ 2 2 2

Then

(4.1.1) 03BBn*03BDn = (1/2r-1 Xnj)  1/ 2r- 1 .

Hence there exists a sequence such that ~~ * a ~ and (V 
n 

* 5 
x 
-n 

)
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is tight. But 03BBn = 03BDn , vn = 03BBn * (Xn1) or 03BBn = 03BDn* (Xn1) and

(Xn1 ) ~ 80 . lim 03BBn* 8x - lim 03BDn * 6x exi st s over a subsequence.

But lim ~n * 6x - s-x )* s2x ’ Hence lim 5x exists and is equal
n n n n n n ~n

to 6x . Hence lim ~,n = all this over the same subsequence. Using
o n n

(4.1.1) , we get using linear functionals that

i.e. ~( 
r 

E 
r Xn ) ~ ~-/2 r ,j /2

Let us now denote by (f or r to cho sen)

Hnk = {j ; k/2r  j /kn ~ k+1/2 j (0 ~ lC  2r)

and by t~ 
= min p~ 

= card. H~ . Then we have proved that with

j = 1,2,...,kn .

4.2. COROLLARY. ~~ =~ 1I 2 r .
Let us denote b ’~ the Prohorov distance and Snk == E Xn ’ , we

nk 
j~k nj

have the continuity of t at zero.

4’3. LEMMA, lim lim sup ’~(~(S~), 80) = 0 .
’rr’~ °° n " ~

Proof : If the Lemma were not true we can find a sequence n  1} of inte-

gers such that jn/kn -’ 0 but 0 in probability. Let an = n*jn and
" "* ~J~ n n

~n ’ ~n ~ then an* ~n ~ ~4 ’ Hence there exists an !~x ) S B such that

k

{ n * 03B4x } is tight. Now [03C6  (y)]n ~ 03C6 (y) uniformly for Ilyll M (M  
n .n 
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Hence [03C6 n (y)] j n-,!1 uniformly on ~y~  M , , noting that log of all c.f.

involved exist. Hence *jnn ~ 8o contradition.

We also note the

4.4. COROLLARY. If j/k ~ 0 , As 
- . n n - o -- 

i 
k 2 r 

I
n

we get that

(4.5) )’’0 as O~k2 . r

Thus we get for n ~ n ,

(4.6)  e 2 -r 0  k 2r .

Re : : In view of Strassen’s theorem,this would say that on each block the points

on the process given , t ~ 0~ are close to the partial sums. But the

process may have jumps.

To take care of this we need the following.

4.7. LEMMA. Let X and Y be independent B-valued random variables, with Y

Gaussian. Then

P(IIX + t)

is continuous.

Proof : : Since X can be approximated arbitrary closely in norm by discrete r.v.

we can assume X discrete. It is enough to show

00

E P(X = x.) ))x. + ~II  0 as E ’~ 0 .

i=l 
~ ~

I t suffice t o p rove + t+E ) - 0 . But ~xi + vt) I = ,

xi + y >; ; ,Iy jII ~ 1 , yj E B~ . Hence this is known.
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4.$. LEMMA. Let i = 1,2,...,n~ be a finite sequence of independenti

identically distributed r.v.’s. and with distribution of ~~Zi~~ continuous.

Then L , def ined by II ZLI) = max i s a well defined r.v. a. e. , uniform
. 

n

on ~1,2,...,n~ and independent of S - E Z .
.... n 

j=1 j

n

Proof: A) = E P(Sn E A, L = j ) = nP(Sn E A, L = 1 ) as the distribu-- n 

j=1 
n n

tion of Sn is permutation invariant. Now

P(L = j) = P(w : Ilz.~~ ~ ~’~ j ~ ~) .

Hence the P(L = j) is independent of j ; i.e. P(L = j) = n giving the result.

Let ?~ be probability measure on integers so that to each integer

in it assigns mass 1/pnk and zero otherwise then (0 6 k  2r ;
n = 1,...) is the distribution of L~ such that XL - max (if

j~Hnk 

~Xnk~ has continuous di stribution). Now we observe that d n  n

( 4 . ) 9 X T 
nk, 4~ 

p nk /kn 
X Tnk)  E/2 r 0 ~ k  2 . r

Using Strassenis Theorem, we obtain, for each n , triangular arrays
= 1,2,...,kn~ and = 1,2,...,kn~ n = 1,2,.., of row-wisenJ n J n

i.i.d. r.v, ts. and triangular arrays 0  j  2r} and {Mn, J’
0  J 2r} n=1,2... with nj = n, (ynj) = w j/k n j = 1,2,...,kn .

S 
nk J 03A3Hnk nj Tnk J . 03A3 Hnk ynj 

0  k  2r for n  no .J 
. E H 

nk 
n 

n. J E H nk 
nJ 0

(4.10) E2 r , or Lnk #  e/2r 0  k  2r ,

We have shown that the sums over the block are close. The assumption of continui-

ty of the distribution of the norm is removed by convolution W and  with
n
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a Gaussian measure of small variance (Lemma 4.7) .

Theorem we want to prove is the following

*k
4.11. THEOREM. be a sequence of prob. measures such that n n ~ 
(k "* o° as n ~ ~). There exists a probability space and two row-wise indepen-

dent triangular arrays of B -valued random variables , 1  j  kn} and

(y nj, 1  j  k ) such that

1 /k
(4.11.1) t(x.) = wn , , ~(ynj) _ ~ 

n 
(1  j  kn)

and

(4.11.2) max I, .E x. - .E y .)t2014~0 a.s.

k  k jk "-’ jk nj

Let sk(n) = 03A3 x . 

, 

T (n)= E y..

Define X 
n 
(t) = t = k/k 

n 
0  k  k 

n 
and linear in between and

Y (t) t = k/k (0  k  k ) and linear in between.
n k n n

Then Z = X - Y are and Z --a0 in distribution. Therefore
n n n 

~ ~ ~ 
n

by Skorokhod’s theorem B Z’ 3 (Z’n) = (Zn) and a. s. Thus it
’ 

n n n n

P

suffices to prove (4.11.2) with ----~ 0 .

To do this on the same probability space one needs the following lemma.

4.12. LEMMA. Let S,S1,S2,.... be Polish spaces with distribution 03BBn on

S X S such that marginals of X on S are identical. Then there exists a
n 2014201420142014201420142014201420142014220142014201420142014 n - 20142014201420142014201420142014201420142014201420142014201420142014201420142014201420142014201420142014

sequence of random variables X,X1,X2~... taking values in S X S1 X...

such that £((X, n)) _ 03BBn .
Proof : : Let 03A6m = S X S1 X ... X Sm . First we observe that for m = 2 we have

the measure

A2 X A3) = A1 03BB1(A2|x) 03BB2(A3|x)03BB(dx)
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where X is the marginal on S and ~1(.Ix) and ~(.Ix) are conditional

distributions (which exist). Suppose that the lemma is p roved for 03A6 (j ~ m) .

Apply the case m = 2 to tm and on S X to get the result.

Reduction of the theorem : It suffi ces to prove that given e > 0 ~ two trian-

gular array’s and satisfying (4.11.1) such that

(4.13) lim sup P( max I~S(n) - > e)  e .

k ~ k 
k k

n

Suppose for each m, , we can find two triangular arrays ku} ,

( f y(m) , j 5 k J such that f or n ~ n
nj n m

k~n 
k k m m

We can and do assume that that for different m’s {(x(m), y(m)), 1 ~ j ~ k}
nJ ivj n

are independent. The arrays defined by x , = x(m), y . = y(m) nm ~ n ~ n

satisfy (4.11.1) and (4.11.2) with 0 . Thus the problem is to prove
(4.13) . This is what we have essentially shown except the maximum is within

blocks. To get maximum otherwise we need Shorokhod’s inequality.

Let D (~ ;B) be the space of "cadlag" functions on ~ 0,1~ into

B and ~ be a process with independent increments which with probability one

is 

~P(c,8) = sup > 6; 8)

and
= sup min (II~(t) - 3 II~(t2) - ~(t)~~)

the supremum is taken over all (t,tl,t2) (0 ~ t ~ 1 , ’ 5t-~-c ,

The following lemma can be found in (Theory of Prob. Appl. 1956) .

SKOROHOD LEMMA. Let 0  c ~ 1 be such that OP(c,8/20)  4 . Then for any
positive integer l ~ 3/c

P(A(1/,2) s 103 ~P(3/;~,8/12)/c .
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P(D(1/~) > 8) s 103 DP(3/;~,8/12)/c .

Let ~ ~ (t) = xni and and be defined as

n

above Lemma 4.3.

4.14. COROLLARY. Let e > 0 . Then

lim lim sup = 0 .

c-0 
~

Now using Skorohod Lemma we get for e > 0 ~ such that for

n ~ 

(4.15) > e)  e .

Using this r we can define H nk and from (4.10) and (4.15) we get

get with S(m) _ ~ xi’ T(m) - ~ yni and n ~ 

iTn 
~ 

i~m 
n

max 
 e

 E

and 
E Lnk = Mnk
k2r

except on a set E of probability  3e .

and kn be given choose k sotthat tnk m s: 

we want to show that

II5 (m) -  8E .

Suppose first that 5e. If for all  e, then

+ + IIT(m) 

Note : : + ~nk~ such similary for T(m) but

~Tnk~  e as IIT(m) -  e) .~ e + e + + ~ ~ 8e .
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If jump in the 1st process at is tn k+1 and the second at tnk then

there is problem ! .

If IIT (m) - then we can write

+ 

+ 

as above. (Here S has jump at tn k) .
It remains to prove the above if > 5e . By {4.1S) and

sup n kn > g ) = c(E )  ~ , which f ollows from Theorem 2.16., we get

E r ~ > c(e)2’’ {pn./k )2 S c(E>~ ~ ~ n

s c(E) 2’’ (P ./k )2 S c(E) 2 rl-1  E

(by choosing r in {4,15) large) .

Thus we can discard the set E1 on which at least two ~xni~ or ~yni~ with

in Hnk exceed 2s . Thus if cu E Ec1 then in each block exactly one of ~xni~
exceeds 2e and this happens at i == Lnk and similary for ~yni~ at i = Mnk.
Hence on E c f l E 1 we have f or all k , 0 s k  2 r .

and

Analogously for + h) , Hence 1 S m S kn ~ ~ k such that

IIS(m) - = + h) - + h)II  3E

using  E on a) E Ec fl Ei for n Z Hence we

have proved (4.13) . By the reduction of the problem we get (4.11.2) holds

with ~ 0 ,
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4.16. COROLLARY. Let = l~...,k ) be triangular array of row wise

i.i.d. r.v.’s. Let X (t) = ,E Xnj , t = k/k ~ s k 5 kn {Xn(~) _ 0)~ ~ ~

with linearly interpolated in between. Then converges to a process

~Y{t)~ of stationary independent increments associated with the semigroup ~wt~
on iff .~(Sn) ~ ~ .

In particular, CLT holds in B iff invariance Principle holds.

We note that necessary and sufficient condition for CLT to hold is

that X be approximated by a simple function in CL(X) norm (Proposition 2.14).

Hence if one assumes that in non-separable case one has finite-dimensional ap-

proximation in outer measure P* , , then does the CLT hold ? We shall answer this

in the next section, but we first want to show that in separable case CLT holds

in outer measure implies measurability of X (at least under completion).

Thus the problem studied next is a proper generalization of the work on separa-

ble case and reduces to it under su ch hypothesis.

Let us first explain the set up in the non-separable case. Let (A,G~,

Q) be a probability space and (A ,C~ ,Q ) , the countable product of (A,û,Q)

with elements {xj} and denote by

(03A9,J,P) = ([0,1],03B2[0,1],leb.) X (A~,G~,Q~) .

Here G is assumed to be included in the completion under Q of a countably

generated a-algebra of G . Let

P* (A) = A, C E ~ ~

C ~ A, C E ~~ .

Let (03A9,F,P) = {f : f : 0 ~ [-~,+~], f measurable) . For any

f : 03A9 ~ [-~,+~] , define

f* = ess inf !.j E ~°(~,~,P), j z f~

f* _ -((-f )*) = ess sup{g ; g-f. , g~o(03A9,J,P)}.
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4.17. LEMMA. The function f* exists ans is J-measurable. Moreover, we can

take everywhere, for all g : 03A9~[-~,+~], (f+g)
* 

s f * + g * a.s.

* * *

and (f-g) a.s. if both sides are defined a.s.

Proof : Define o(~,~,P) ~ the equivalence classes in ~o(~,~,P) with metric

d(f,g) = tan-1g| >E)  } .

Then ( o(~,~,P),d) is a separable metric space and hence ess inf (~9) for

~ ~ Lo(03A9,J,P) can be written as min k~n jk ~ ess inf (c9) with {jk} dense

subset of Lo(5~,~,P) . Thus f* is measurable and by construction, the other

properties follow.

Let I~ ) be aBanach sp ace and h be a map ( not necessarly mea-

surable) of (A ~~ ~Q ) into S . We call Xj 
= h(xj) a sequence of independent

identically formed (i.i.f.) elements .

4.18. THEOREM. Let Xn = n = 1,2,... be i.i.f. elements. Let

lim 

= 03B3(-~,t] d t E IR .

where 03B3 is N(0,1) r.v. Then h is measurable for the completion of 

under ~(xl) . So Xi are measurable and EXi = 0 ~ EXi = 1 .
For this we need the following lemma. Its proof is presented in the

appendix.

4.19. LEMMA. Let (Aj,Gj,Pj) be probability spaces such that Gj is the comple-

tion of a contably generated a-algebra. Let f j : Aj ~ [0,~] beany functions

j = 1, 2, ..., n . Then on 03C0 (Aj,Gj,Pj) with co-ordinate functions (x j )- 

j=1 J J J -2014201420142014201420142014201420142014201420142014201420142014201420142014 j

( ’ f,(x~)~= ~ f*(x ) a.s.

j=i J J

where = 0 . If n = 2, f 1 = 1 then the same holds for f 2 .
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Proof of theorem 4.18. As X are non-measurable we consider

*

*
Let D = {X*1 = ~} then D is measurable. If P(D) > 0 then P‘D is mn-

atomic, as

{X*1 + ... +X*n/n ~ t} ~ {X1 + ... Xn/n ~ t}.

Define on D , 0 (finite-valued) such that nMn + 2n) z n "2 ,1 1 n

where M t °° are chosen so that M ) s n 3 . This is possible as

X 1 > - °° . Since P(min 
J .S n X. * J 5 -Mn) s n 

- 2 
, by Borel-Cantelli we get for

n large, -M for a11 j ~ n . Thus E -nM . We define off D ,
J n 

ls j sn J n

Y = X - 1 . Repeatedly, we can define Y, from X. , then they are indepen-
dent. 

P{max 
1s J . sn Yj ~ nMn + 2n}~ 1- ( 1 - n-½)n~ 1 .

Hence for n large, there exists a j with nM + 2n . Thus on D (by
n *

non-negatively) and of f D (as E -~In) we get
j=1 J n

n

E Yj >- n .

j=1

*
But Yj 

 Xj and hence by Lemma 4.19. and independence

Yj , j - 1,2,...) 
= 1

*X +...+X B
Hence P (=1 i 

n z ri ) = 1 , contraditing the assumption unless
n

P(D) = 0 . Let D(j) _ X, - 2 J ~ . . Then P*( D( j )) = 1 . Apply Lemma 4.19.

with P. _ (xj) , f . _ j 1_ .. J Then P*( fl n D( j )) = 1 . On n D(j)
J j J J .-1 j=1

* *

X 
1 

* *

Hence X1 satisfies CLT giving EX1 
= 0 . Similar arguments give EX1* = 0 .

Now X - X * z 0 gives X1 = X1* = X1 a.e. completing the proof.



483

4.20 COROLLARY. If S = B is a separable Banach space and X, = h(x,) satisfy
- - J J

CLT as above then are completion measurable for Borel subsets of B .

Proof : Since > satisfies CLT with ’Y = N(O,o’2) ~ (62 > 0) for
_~ 

J y y

y E B~ ’ we get that  y,. > are measurable with respect to

~o = ; h 1(C) is measurable for ~(xi) completion 

But B is separable, = Q~  y~. > ; ; y E B ~~, , giving the conclusion.

APPENDIX- _-----_

n 
* 

n 
*

Proof of Lemma 4.19. Clearly, ( ’~ f , ) s ’~ f , . For the converse, take
j=1 J j=1 J

n = 2 and suppose g is measurable on A1 X AZ and for E > 0

C(E) _ ~(x~y) ~ + e  f*(x) f*(y)~ .
Suppose (P1 X P2) (C(4))> 0 . Then for some e > 0 (P1 X P2) (C(e)) > 0 .

Fix such E . For m = 1,2,...~ let B~ _ : m  f2(y)  Then for some

m , such m and let

X 
= ~y ; (x~y) E D~ and H = ~x ; ’ > 0~ . Suppose fi(x)f2(y) s 

everywhere. Let x E H , if f (x) _ + ~ , then f 
2 
z 0 and P2-almost all

y E f (x) f2(y)  f*(x) f*(y) so f (y) = 0 = f*(y) , a contradiction. If
0  f 1(x)  ~ , then for all y E f*(y) 5 so

f*(y)  (f*(x) f*(y) - E )/f (x)).2 1 2 1

Then  + ~ , so f*(y) s m . If f (y) 5 0 , we get a contradiction since
f 1(x) Z f (x) > 0 . So for any such y , 0  f*(y) s m and f (x)  f*(x) -/m /.1 2 1 1

If fi = 1 this is a contradiction and finishes proof for this case. In case

f j z 0 ~ j = 1, 2, ... ~ we hgve

f 1(x) s m~(0~ f 1(x) - 
for all x E H . If f1 > 0 on some subset J of H with P1(J) > 0 ~ this
al lows f * 1 to be chosen smaller, a contradiction. So f 

1 
= f 1 = 0 a,e, on H ,

then 0 5 g  0 on D again a contradiction. For n Z 3 ~ use indution.
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5. CLT AND INVARIANCE PRINCIPIES F(R SUMS OF BANACH SPACE VALUED RANDOM ELEMENTS

AND EMPIRICAL PROCESSES.

Throughout the section we shall use the notations f*,f*,P*~P* as in

the last Section. In order to induce the reader to familiarise with these, we

state the following Lemma whis is immediate from Lemma 4.17.

5.1. IEMMA. Let (S, II I~ ) be a vector space with n~orm ~I.~~ . Then for,

IIX + (~X~ + + ~Y~* a.s.

and
~ 

= I c I ‘~XI~* a. s. f or all 

Also we st ate the following con sequence o f Lemma 4.19,

(~,~,P)=(~1X~2X~3,~1X~2X~3,P1XP2XP3) and denote

the projections : = 1,2,3) . Then for any bounded non-negative

function f ,

= E{f*(cu 1 ,u~3>~ ’ ~-1 1 C~ 1 >~

a.s. P

*
Proof : By Lemma 4.19 (with f2(w2) = 1), equals P-a.e. a measurable

function not depending on w2 and thus is independent of 

For not necessarily measurable real-valued functions gn we

say that g2  0 if lim P*(|gn| B > E ) = 0 , d E > 0 and in L

if there exists {fn, n Z 1} , f me asurab le f z , |gu| and f ~ 0 in L .

5 ,3 . LEMMA. Let X : 03A9 -i R . Then f or all t E R and e > 0 ,

P*(X ~ t) ~ P(X* ~ t) ~ P*(X Z t-E ) .

In particular, for any X : n : ~~R , 0 or in L 
p 

iff 

or in p , respectivelly.
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Proof: Since t~ ~ ~X * >- t~, it remains to prove the last inequality. Let

for j E Z

Cj 
= X z and Dj ? Cj

be measurable such that = PCDj) . W log , Dj in non-increasing. Since

XC~)>-~ we get U D,= 
j J j J

= C j + 1) E on for j E Z .

_ + °° on ~ D ..
j J

We claim that X To prove the claim,we observe that the result is

true f or YCuu ) _ + ~} . If 03C9 ~ D j/ D 
j+1 

f or some j, then 03C9 ~ C j+1 .
Hence YCcu) _ ( j+1)e exceeds XCcu)  C j+1)e . Thus YCw) and Y measu-

*

rable giving X Y(w) . Given t E ~.t ~ there exists unique j E Z such

that

j E S t  C j+1) E .

Thu s * *

js) .

But je~ = Dj - 1 . Thus

P(D. ) = = P*CX > Cj-1)E)J-1 J-

The following lemma is an immediate extension of the classical theorem. Hence

we indicate only the changes needed in the cl assical proof as is given for

example in Breiman.

5.4. LEMMA. (Ott avi ani Inequality) Let ~X, , n~ be an independent^---. J

sequence of random elements where Xj takes values in a normed-vector space

H) . Write Sn = E X and suppose that max .s pCIIS -S.II* >«) = c  1.- n Jsn j J n n J

Then P(max J .Sn ~Sj~* > 2 « ) 5 ( 1-C) 1 P(IIS n~* > a ) .
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Proof : In the classical proof, replace I ~ by (~ using Lemmas 4.17. and

5.1. One really needs ~S j~* ~ ~Sn ~* + ~Sn - S 3 ~* . To complete the argument
involving independence we argue as follows.

Let wl = (xj+1,...,xn) and ~2 = (xl,...,xj). Then 

depends only on and by Lemma 4.21., S . ( I * depends only on wand
is thus independent of { j * - j) ( j * stopping time in the usual way ). The remai-

ning parts are as before.

The following lemma is also technical and hence we defer the proof to

the ap pendix.

5.5. LEMMA. Let S and T be Polish spaces and 03BB be a 1aw on S X T with

marginal w on S . Let (~,~,P) be a probability space and X a r.v. on Q

with values in S and (X) =  . Assume that  a r.v. U on 03A9 independent

of X with values in a separable metric space R and (U) on R being atom-

less. Then there exists Y : : a r.v. such that (X,Y) = 03BB.

5.6. THE OREM. Let 1} be a sequence of independent identically formed
- J

S-valued random element s Xj 
= 1 ). Suppo se that for each

m z 1 there is a mapping : S--1S with the following properties

(5.6.1) The linear span LmS of ^mS is finite-dimensional

(5.6.2) For each m z 1 ~ ~ a 
= 

o (m) so that for all n z no

P*~n-~ I) ~ (X - ~ X. )LI Z 1 ~ s ~
jn j m m

(5.6.3) For each m z 1 , the mapping ^m o h is measurable from (A,G) into

L S .
m

(5.6.4) E ~ 
m 

X 
1 
= 0 ,  ~ , d m Z 1 .

Let T be the completion of the linear span of U ~m~S) , so that
~1 

’~

T is a separable Banach space. Then there exists a sequence ~Y 1~ of
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i.i.d. T-valued Gaussian defined on (~,3,P) such that

(5.6.5) EY1 = 0

(5.6.6) Ey, ~(X1) > yt~ ~(X1) > ~ 

as 

(5.6.7) n-½ max ~ 03A3 (X, - Y. )‘I ~ 0 in Probability and in Lp for p  2 .
ksn jsk J -~

Proof : We first show the desired Gaussian limit. Let 1 . Consider

i.i.d. vectors ~(~X.~~~ ,~rX,), j ~ 1~ . Let 0  E  2 fixed by (5.6.2)

we get f or 6/ e and d n z o (k ) V o (m)

(5.6.8) ~~ ~ (~ X, - ~ > E/2~  e/2 .
jsn k J m -!

Let 
U = n~ E (( X,,~ X,,~ X ) .

and for (u,v,w) 
K m r

= ~u~ + + 

By CLT there exists on i~S X LmS X L S centered Gaussian so that

(5..6.9)  E/2 , n z 

Let km,, kr , mr , k , m , r be the marginals of kmr . Now

~k ~ W~ , regarded as Borel probability measures on T,T X T and

T X T X T . Now (5.6.8) for m,r implies

(5.6.10) ~~ ~ (v,w) E T X T ; 3 ~Iv - wll > g~  e , m,r > E .
On T X T we take = ~~u~~ + We rewrite the above as

kmr {(u,v,w) :~(u,w)~ > }  6/e , k z 1
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and obtain that

E ’ 6/e k ~ 1 .

Hence ~~~ ~1 and each k ~ 1 is a Cauchy seuqence for the Prohorov metric.

Hence ~ P~.~ on T X T such that

as m -’ °° .

By (5.6.10) ,

(5.6.11) ~~ ~(u,v); > e , V k ~ 6/e .

As marginal of is m , we get that there exists )JL, " on T such that

m oo

Further, km has marginals k and we conclude that k ~ is

Gaussian with marginals ~ and ~ .

For k ~ 1, fixed, Iet ~ ( ?~ j ~ Zj ) j z 1~ be a sequence of i.i.d.

random vectors on 0’ with values in T X T

~( Zk j, Zj ) _ ~k~ j ~ 1 (Note depends on e) .

Now k ~ is centered Gaussian gives by (5.6.11)

P{n-½~(Zkj - Zj)~ > } ~  k z 6/e .

By Levy inequality n ~ 1

max II ~ (Z~. - Z. )II > 2e .~J J

Let k > 6/e , then 1~ satisfies CLT with limit ~ . Hence by

Section 4, there exists ~" and a sequence 1~ of independent

r.v.’s., having the sane distribution as 1’! and a sequence

of i.i.d. r.v.’s. with common di stribution ~ such that
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n-½ max II 03A3 cv . . p 0 .
msn kJ kJ

By Lemma 4.12 (m = 2) , we can assume 0 r = 03A9" and = 

Wkj for all j .

Hence we get ° some n2( e ~k ) z no (k) and n z n2( e ~k ) ~

max (V , - > 3}  3e .
m~n jsm kJ J

(Note that Zj depends on k Z 6/ , i.e. on s). 

Let us overcome this problem. Choose e = E - 2~~ p = 1,2~...
P

and k = k(p) = 2p~ > 6/e + 1. By what has been proved we obtain two sequences
P

1~ and 1~
J J

with the following properties

= V . j z 1 ~ ~(~Z~p)~ j ~ 1~) - Z 1~) and for

some n3 (p ) z 2~ 6 ~ k (p ) ) 

(5.6.12) max ~~ E > 2~~  2~ .
J J

We can assume V-sequences are independent of each others and Z-sequences.

Put r(p ) _ ~ n3 ( q) .
q~P

Define

(5.6.13) V.. = and Z! = if r(p)  j s r(p+1) .
J J J J

Then 1~ ~ ~ Zj ~ j z 1~ are sequences of independent r.v. rs.

Moreover, for e > 0 , there exists n4(e) such that

(5.6.14) max ~ E (V - Z’j)~ > 4e )  4E ,

We now prove (5.6.14) to get rid of dependence of Zj on e .

Let s be such that 2-s  e and o = be so large that for

all n Z No ’ ( as s i s fixed)
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P~ n~ ma~ II ) ~ V . > e ~  e

jzm J

and 
P~n~. ’ ma~ II ~ Z.ll > E~  E .

msr(s) jsm J

Let n Z ( o, n3 ( s)) = n4(e ) . Choose M so that r(M)  n s r(M+l).

Then n ~ n3(p) , p s M by definition of r(M). By (5.6.12) and (5,6.13) ,

we get

max ~~ ~ (~. - s ~~ jj z v,ii
msn J J J

+ m#X )) £ Zt))

m-1 m

+ 

m

+ m~ r(M) m sn (Vj - 

s 2e ri + E M 2~ ri = 4e n’
p=s .

by (5.6.12) . This holds except on a set of measure  4e giving (5.6.14) .

Now we want to show that {Xj , j ~ 1} and { Z’j, j ~ 1} are def i ned on

on the same probability space. For this we need Lemma 5.5. For j ~ 1 , define

p(j) such that j E (r(p),r{p+1) ~ and p(j) = 2p( J ~6 . Then

~(~nP ( ’ ) 2 1~) ~(~Vj ’ J Z 1~ )

by construction. In Lemma 5.5.

03BB = ({Vj, j ~ 1}, {Z’j , j ~ 1}), X = {^03C1(j) Xj , j ~ 1}

and U uniform. Then by the above equality of the 1aw and independence of uni-

form and X, we getexistence of 1} defined on 03A9 such that

03BB = ({^03C1(j)Xj, j ~ 1} , {Yj , j ~ 1}) .
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Thus by (5.6.14) we get as n -~ °°

(5.6.15) n-½ max ~ 03A3 (^03C1(j) X. ’ Yj)~ P 0 .

Since n3 (p) z n (e , k(p)) ~ n o(2p+6) for p z 1 . By (5.6.2) we have
.j 2 p o

P*{n-½ ~ 03A3 Xj - ^k(p) Xj~ ~ 2-p-6} ~ 
2-p-6 .

By Ottavani Inequality and Lemma 5.3., for n ~

max II 03A3 (Xj - ^k(p) )~ > 2-p}  2-p .

This is analogue of (5.6.12). Following proof as for (5.6.14), we get for

e > 0 and some n5 ( e ) and n ~ n5(e)

n-½ max ~ 03A3 (Xj - ^p(j) Xj)~ 0 , as 

Combining with (5.6.15) we get the result in terms of convergence in probability.

As in the proof of Proposition 2.14., sup. ~. 2 P~n~ > ~ ~  oo .

Since

S II* > ~ ~ Z ~~ max n’~ 
n 

k~n 
k

with Sk = E X. , we get for p  2 . Using Fernique’s theorem

n-½ max (X . - y, )I,*p
ksn jsk J J

is uniformly integrable. Hence convergence in L follows for p  2 .

Also E{ s, X. J > 2} 
= E{  

kl 

> 2} , s ~ T’ , as satisfies

CLT with limit . As k ~ ~ Gaussian, we have E  s, Z k1 >2 ~ Es, Z1>2 as

proving (5.6.5) and (5.6.6).

Let us now apply the theorem to empirical processes. Let be a

sequence of i.i.d. uniform r.v.’s. and h be a map on ~
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given by s’(.) - s for 0 S s S 1 . Then = s) - sand

n

F (s) = n 1 E 1(X, s s) is called empirical distribution function. We get
n 

j=1 
J

n 
_~ E n X,(s) = ri (F (s) - s) .

j=1 J n

The classical result says that (n½(Fn(.) - .)) ~ (Wo) in the supremum mrm

on D[ 0,1] where o( s) = W( s) - s W( 1) , the Brownian Bridge, W being Wiener

process.

In general, if are i.i.d. r.v. and we can define empi-

rical measure by

= n 1 E 1(x. . E B)
j=1 

J

and the following gives analogue of the above result.

5.7. THEOREM. Let  ~ L2(A,,Q) be a class of functions so that

(5.7.1) ~ is totally bounded in ~2 .

For every e > 0 , there exists s > 0 such that for all n z no ’

(5.7.2) : f,g E ~ ~ s2~ > E) ~ E .

Then there exists a sequence {Yj , j ~ 1} of i.i.d. Gaussian processes defined
J 

indexed by f ~  and sample functions of Y1 are a.s. uniformly conti-

nuous on Q. in ! 2-norm such that

Y1(f) = 0 for 

b) EE Y2(f) fgdQ -  fdQ  gdQ for all f,g E  .

and as n - °’ .

c) n-½ max sup |03A3 [f(xj) -  fdQ - Y.(f)]|  0.
kSn jsk 

J J

as well as in L , p  2 .P

We observe now how Theorem 5.7. can be put in the form of Theorem 5.6.

Let m z 1 and e = m . Choose 8 and no according to (5.7.2). Let
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= ~,~ f~g .

Since C~ is totally bounded in ~~ there exist fk = fkm E ~. ! 1 s k s N(s)

such that for f E ~ ~ there exists a k(f ) , with  S . Choose

k = k(f) minimal. Hence by (5.7.2) and definition of empirical measure, we

get

sup f~ 03A3 (f-fk) (xj) - (f-fk) dQ > 1/m}  1 .f~ 
jsn 

k J k m

Now set S as the space of all bounded real-valued functions on C

Def ine for 03C8 E S

ii~~~ _ ~ I~ (f) I 3 f E ~~ .

Then (S,II.II) is a Banach space necessarily separable).

Define h : : A.~S by h(x)(f) = f(x) - ~ fdQ for x E A and

m ; S -~ S by setting

~m’~(f) =’~(fk) .
Let Xj = h(xj) . Then

(~m Xj )(f ) _ (~m f 

Now dim Lm(S) = N(8)  ~ and WLOG assume 8(e) 1 as Clearly 

sumptions of Theorem 5.6. are satisfied. Now (T,I~.I~) be as in that theorem.

Then there exist i.i.d. Gaussian T-valued Yj , satisfying a)~b),c), of

Theorem 5.7, by Theorem 5.6., , if we show Y1 has uniformly continuous sample

C~ for II  ° a),b)) .

Let Zn = n (Y1 + ... + Yn) ~ then ~( n) _ ~(Y1) and

IIZn - Given e > 0, take 6(e) > 0 and n 
o 

from t 5.7.2 ) s.t.

for n z n
o

n n

For Y E S, let

p 03B4(03C8) = sup{ I’Y(f ) - 03C8(g)|, f , g E q , Ilf-gll 
2, Q 

 6)
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Then ps is a seminorm on S with 2~03C8~ for a11 03C8 E S and by

(5.7.2).

for 

Thus

> 3g~  2e .

But p 6 is continuous and hence measurable on T. As ~( Zn) _ ~(Y1) ’
a, = 03B4(2-k) and M. (03C8)3.2-k}.

Then

P(Y ~W)21-k(s=2.~c).
Let W = U n Then W is a Borel set in T ~ consisting of functions

jZ1 k~j

uniformly cont inuous on C~ and E W) = 1 by Borel-Cantelli lemma.

A class Q of functions satisfying (5.7.1) and (5.7.2) is called

a Donsker Class of sets for Q. In C E we call C a

Donsker Class of sets . Our purpose now is to give conditions on C and Q in

order that C is a Donsker Class 

For 8 > 0 and C ~ G , a clas s of sets, we define, NI( 8 ) = 

to be the smallest number d of sets satisfying.

For each C E C, there exist A r and As ( 1 S d) such that

A CI C CI A and P(As/Ar)  s . We call a metric entropy with

inclusion. It is shown by Dudley (Ann. Prob. 6 (1g18)) that

(5.8) 1 dx  m
0 

.

implies (5.7.1) and (5.7.2) . Hence we get

5.9. THEOREM. Let C° be a class of sets for which (5.8) holds. Then there

exists a sequence 1~ of i.i.d. Gaussian processes defined on the

sane probability space indexed by C E C with sample functions of Y1 a.s.
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uniformly continuous on C in the d (C,D) = Q(C à D) on a . :The processes

Y j have following properties.

a) EY 1 (C) = 0 for al l C E C .

b) EY 1 (C) Y (D) = P(C D D) - for all C,D 6 C and as n -~ oo ,

c) n ~ max sup ~ ~ l(x. ~ E ~ ) - Q( C) - Y, (C) ~ ) -~ 0

j~k 

in probability as well as L2.
Note 1C S 1 ~ one gets uniform integrability ~> » in the proof of

Theorem 5.6.

A collection C is called Vapnik-Cervonerkis class (VCC) if for

some n  ~° ~ m set D with n elements has all it s subsets of the form

The Vapnik-Cervonenkis mmber V(C) demtes smallest such n .

5.10. DE FINITION.

a) If (A,G) and (C ~s) are measurable spaces w~ith C ~ we call

(Af~ ; ~ ~~) a chair.

b) A chair is called admissible iff {(x~C) : x E C~ E C~ ® S for all

CEC .

c) A chair is called a-Suslin iff it is admissible and (A~~) ~ (~~g)

are Suslin spaces.

d) A chair is called Qa-Suslin iff it is a-Suslin and d-open
subsets of C belong to a .

If C i s a VCC and f or some 03C3-algebra ’ ~ C and 03C3-algebra.

8 of C s.t. (A~~~ ; ~~~) is Qa-Suslin then C satisfies (S.?.1) and

(5.7.2) .

For proof see Dudley (cited before).

Thus one can produce large class of examples for which approximation

condition (5.6.2) holds and also Theorem 5.9. holds.
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Appendix : Proof of Lemma 5.5. : :

Proof : We may assume R complete, hence Polish. Any uncountable Polish space is

Borel isomorphic to [0,1] (Parthasarathy, p. 14). Every Polish space is Borel-

isomorphic to some compact subset of [0,1] .. Thus there is no loss of generality

in assuming S = T = R = [ 0, 1] with the usual topology, metric and Borel

structure. Next, we take disintegration of 03BB on [0,1] X [0, 1] (N. Bourbaki,

VI~ Integration p. 58-59). There exists a map ~s from s into the set of all

probability measures on T s.t.  f(s,t) d03BB = for all bounded,
00 

Borel measure functions f on ~ 0~ 1~ X (,0~ 1~ . For each s , let F be the
s

distribution function F-1(t) = inf{ z ; ; F (z) z t} for 0 S t s 1 .
s s s

We may as sume U has unif orm distribution over [ 0,1] . For each t , the map

s is measurable. Since 1) is mn-decreasing and left-continuous.

= lim 
na~ ,E n t s 

~ ~ 
J~ 

Hence is jointly measurable in (s~t) . Let Y(w) = (U(u~)) ,

then Y i s a r ,v. Moreover, fo r any bounded Borel function g on ( 0, 1] X (, 0, 1]

using Fubini Theorem and the fact leb.0(F-1)-1 = ~
s s

gd03BB = 1010g(s,t) d03BB sd  = 1010g(s,f-1s 1(t)) dt d
00 0 0 

s

= 11g(s,F-1s(t)) d(  ® leb.)
0 00 

= E = Eg(X,Y) .
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