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Strong Existence, Uniqueness and Non-uniqueness

in an Equation Involving Local Time

by

M.T. Barlow and E. Perkins 

1. . Introduction

In [12] Protter and Sznitman proved if ~a~>1 , PeIR

and Bt is a Brownian motion, then

(1.1) X t + B t + 

holds if and only if a=~ and X=B . Here L~(X) is the

symmetric local time of the semimartingale X . They posed the

problem of investigating solutions of (1.1) when The

case 8=0 had already been studied by Harrison and Shepp [4J

who showed that (1.1) has a unique solution, distributed as a

skew Brownian motion. In this paper we study existence,

uniqueness and the structure of solutions of (1.1) for general

and ~a~_1 . 
’

Note first that by replacing (B,X) with (-B,-X) , we

may assume, without loss of generality, that aE(0,17 (recall

that we are working with the symmetric local time). Moreover

it is easy to see that nothing is lost by assuming 

Solutions to (1.1), which are adapted to the natural filtration

of B, fB , are shown to exist for all If

aE(0,1) , the solution is unique if and only if .

or (Theorem 3.4). If a=l, then uniqueness is

established for S-~ , while non-uniqueness is proved for ~
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(Corollary 4.3 and Theorems 4.7 and 4.9). Moreover whenever

non-uniqueness is established, ~B adapted minimal and maximal

solutions of (1.1) are constructed.

A technique of [4J is used to transform (1.1) into an

equation of the form

(1.2) dYt = Q(Yt)d(B + SL(B))t

where a is discontinuous, and also degenerate if a=l .

Due to the particular nature of Q , existence and uniqueness

results for (1.2) may be obtained by studying the simpler

equation

(1.3) dYt = + .

It is the study of these transformed equations that lead to

our interest in (1.1). In Section 2 the weak existence of a

solution to (1.3) is established using nonstandard analysis.

For 0a1 , a technique of LeGall C10~ is used to prove

pathwise uniqueness and hence strong existence for (1.3). A

different method must be used for a=l but strong existence

and pathwise uniqueness still hold in (1.3) even though a may

be degenerate (see Theorem 4.4). The case is studied

in Section 3, while a=l is treated in Section 4. In Section 5

the corresponding results are stated without proof for the

related equation

X t + Bt + 

where denotes the "right local time" of the semi-

martingale X at 0 , i.e.
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L°+(X) t - ~~0+ lim e _ 1 ! t p 1 (Xs E C 0 , ~ J ) dX,X> s

L° t _ (X) - 

L0t(X) = ½(L0+t(X) + L0-t(X)) .

If there is no ambiguity (for example if X=B) we simply

write L°(X) for the local time at zero.

We shall always work on a probability space 

satisfying the usual conditions. Bt will always be an

Ft-Brownian motion with and Lt or will be

its local time at 0 . C will denote a constant whose exact

value may change from line to line.

2. A Weak Existence Theorem

In this section nonstandard analysis is used to prove an

existence theorem for one-dimensional stochastic differential

equations of the form

t

0 l Vt

where V has sample paths of bounded variation and J:lil+lR

may be degenerate and discontinuous. Results of this type

have been proved in d-dimensions by Kosciuk C9J (also using

nonstandard analysis). We give a separate proof here since

the result we need is not quite covered by Kosciuk’s theorem

and because the existence of local time makes the proofs in

one dimension much simpler.

The reader skilled in weak convergence arguments will

undoubtedly be able to give a standard proof but perhaps will

also appreciate the brevity of the nonstandard approach. A good
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introduction to nonstandard probability thoery may be found in

Loeb [llJ, while further material is in Keisler [8J and Hoover

and Perkins [5J. Although specific references to [5J and [8J

are given freely, the proof may well be inaccessible to the

reader who is unfamiliar with nonstandard probability theory.

Let W denote Wiener measure on the space of

continuous functions on with its Borel sets for the

compact-open topology, and let Ct denote the a-algebra

generated by the coordinate mappings up to t and the W-null

sets.

Definition An ~t adapted process of finite variation with

continuous paths is a measurable mapping 

such that V(’)(t) is Ct-measurable for all t and t-~V (t)

has finite variation on compacts W-a.s.

If V is as above, then a weak solution of

t

(2.1) Yt = 0 j6 (Ys)dBs + Vt(B)

is a probability space (St,~,~t,P) , satisfying the usual

conditions, that carries an Ft Brownian motion B and an

optional process Y for which (2.1) holds.

Theorem 2.1 Assume is bounded, has limits from the

left and right, and whenever ( =0 .

Let V be an ~t adapted process of finite variation with

continuous paths. Then there is a weak solution of (2.1).

Proof. Let be an adapted Loeb space carrying an

Ft-Brownian motion, B (see [5, Def. 3.1J). Let At be a

positive infinitesimal and define T = Points

in T are denoted by s , t , etc. By [5, Th.7.6J, there is

an internal filtration, {Bt’ tET} , and a {Bt}-semimartingale
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lifting of (Vt(B) ,Bt) which we denote by (Vt,Bt) . We define

an internal process Yt inductively by

(2.2) ,~ 

st ~ ~ " - 
,

where is the nonstandard extension of 6 . . If

M (t) - Y (t) - V (t) then M is a Bt-martingale and has S-
continuous paths by the continuity theorem for internal

martingales (see [5, Th.8.5a). . Therefore we may define a

continuous local martingale, M, , by M=st(M) (see [5, Th.5.2J)

and a semimartingale, Y, , by Y=st{Y) = M+V. . Here st is

the standard part map on the space of continuous functions with

the compact-open topology (see Keisler C8, Prop.1.17]). .

Let

(B (s+~t) -B (s) ) 2 , ,
~ 

st 
~ 

let L([B,BJ) be the Loeb measure on T induced by this

internal increasing process, and define and 

in a similar way. If H is the countable set of discontinuities

of 03C3 , then

00

0 = j I (Y(s) EH)dCM,MJ (s)
0

= j (by [5, , Lemma 2.7 and Th.6.7J)
ns(T) 

Therefore

(2.3) 0 = j .

ns (T)

Note that since Y = oYs for all sEs(T) a.s. , ,
Og s 

-
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(T) I(03C3(Yos) ~ o*03C3(Ys))dL([B,B])
(2.4) =  I (Y ~H,03C3(oY) ~ o*(Y)03C3(Y))dL([B,B]) .

ns (T) °s s s

The hypotheses on Q imply that ~°*a(Ys)~>0 whenever

Q(oY ) ~ °*Q(Y ) and hence (2.3) shows that (2.4) is zero.

This means that *Q (Ys) > is a B-lif ting of Q (Ys ) > 
Def. 7.4~). Therefore we may take standard parts in (2.2) and

use the nonstandard characterization of the stochastic integral

(E5, Def. 7.14 and Th. 7.15(b)~) to see that Y is a solution

of (2 .1 ) . D

Remarks (1) By making only minor changes in the above one can

prove weak existence for solutions of

t t

(2.5) Yt = 03C3(Ys)dBs + f(Ys)dVs

where f is bounded and continuous, Q is as above and V

is an ~B adapted process of bounded variation with right-

continuous paths. Indeed the above method will show the existence

of a class of rich probability spaces, on which

there are solutions of (2.5) for every ~t Brownian motion, B .

The assumption that Q (x+) exist may also be

weakened (see [9]).

(2) The hypotheses of the above theorem are satisfied by

but not by 62 (x)=I (x>_0) . Indeed, it is easy

to see that no weak solution of (2.1) can exist if and

V=0 .
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3. . The Case 0ql.

As in [4] we transform (1.1) into a stochastic differential

equation. In the applications of the following theorem, the

semimartingale Z will be B + 03B2~IR.

Let

1 x>0

sign(x) = 0 x=0~ - 1 x0

s(x) = x + a~x~

f(x) = 1 + asign(x) (the symmetric derivative of s).

Theorem 3.1 Let 0al , and let Z be a continuous semi-

martingale with Then a semimartingale X. satisfies

(3.1) Xt + = Zt

if and only if X~ = satisfies

t

(3.2) Xt = f(Xs)dZs.

If X satisfies (3.1) and in addition

I (Xs=0)dzs=0 ,

then

L0t(X) = 1 1-03B1 L0+t(X) = 1 1+03B1 L0-t(X)

Proof. The generalized Ito formula shows that (since 
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Xt = f(Xs)dXs+ 03B1L0t(X)

(3.3) = f(X s)d(Xs + 03B1L0s (X))

Suppose first that X satisfies (3.1). . Using (3.3) )

and the f act that , we have

t

If Xt satisfies (3.2), then

f (Xs) dZs = Xt = f (Xs) d (X + 03B1L0(X))s ,

the last by (3.3), , and as f(Xs) does not vanish it follows that

Z - X~ + .

t
The condition = 0 implies that

- 

½ (L0+t+(X) - L0-t(X)) = T(Xs =0) dXs (see [14, p. 29 ])

= 

= - 03B1 2(L0+t(X ) + L0-t(X)) .

Rearranging, we have that

L~+ (X) - L~- (X) - 0

Theorem 3.2 Let be measurable , positive, , bounded and

bounded away from 0 , and have finite quadratic variation on

compacts . Let , Vt be ~B adapted processes of finite
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variation with continuous paths, and V~=V~=0 .
(a) There exist unique solutions Yt to the equations

. t.
(3.4.i) X1t = 03C3(Xls)dBs + Vit(B) .

Moreover the Xt are FBt-adapted.

(b) 0 .

If, in addition, is non-decreasing, then

(c) ~1 ? X2 ,

(d) 0 .
~ 

s s

Proof. In [10, Lemma 2.1~ Le Gall has shown that if X~ and X2
are solutions to (3.4) with then L~(X~-X~)=0 . (His

result is actually more general than this.) Only minor alterations

are needed to deal with general Vl , proving (b).

For (a) it is enough to consider the first equation. By

Theorem 2.1 there is a Brownian motion B and a solution X1

of (3.4.1) defined on some If Y~ is another

solution of (3.4.1), then 0 by (b), and so, as

is a martingale null at 0 , it follows that Xl=yl .

Therefore there is pathwise uniqueness in (3.4.1) and hence X~
is F~ adapted by an extension of the Yamada-Watanabe theorem
C13~ - see Jacod and Memin [7, T2.25J.

Now let be non-decreasing. By Tanaka’s formula

(X1t-X2t)- = - I(X1sX2s)d(X1-X2)s ,
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so that

E((X~-X~)") > = - 

~ 0 .

Therefore X~X~ , and by (b)

0 = ~(L~(X’-X’) -~-(X’-X’))

= =0)d(X~-X~)
0 s s s

= 
. 0

0 s s s

Now set Z~ = B~ + 6L~(B) . By Theorem 3.1, to study solutions

of (1.1) it suffices to consider

t
(3.5) > Y = Jf(Y )d(B + PL(B)) > .

Let B~ = s(B~) . Theorem 3.1 implies that

(3.6) B t = + aL(B)) 
s

= 

so that B is a solution of (3.5) with a=P , and is the unique
solution of (3.4) with Vt = 03B1Lt(B) . More generally, we suppress
the dependence on a , and let Y~ , yclR , denote the unique

F~ adapted solution of (3.4) with V~ = yL~(B) . in particular,
B = Y" .
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Theorem 3 . 3 Let 0  a 1 .
~ 

Yi Y~ Yi Y~
’a’ If then Y 5Y . If YiY2 then Y ~Y2 .

’~’ ’~ ~ ~°~ ~~~ °

c > I f then Y03B2(1-03B1) i S the UniqUe solution °f  3 . 5 ’ ,

and satisfies Y03B2(1-03B1) ~B .

d > I f then Y03B2(1+03B1) i s the unique soiution of  3 . 5 > ,

and satisfies Y03B2(1+03B1)~B .

e> If h S h , then

 I > and are both solutions of  3 . 5 > ,

and if a=S § is also a solution of 3.5> ,

it> 5 § 5 
, and these three processes

are distinct.

iii> If Y is any solution of 3.5> , Y 5 Y03B2(1+03B1).

Proof We write Lt for a> is immediate from

Theorem 3 . 2  c > . By 3 . 2 d > , setting V1=03B3Lt , and V2 = 03B1Lt ,
if ya

0 = 1(Y03B3s=Bs)d( 03B3- 03B1) L)s

t
" ’Y~~’ [ 

which proves b> in the case ya; the case y>a is exactly

the same. If ya then as Y03B1 = § , and as
t t

{B=0} = {B=0} , f(Y03B3s)dLs = (1-03B1)Lt + 03B1 1(Y03B3s=0) = (1-03B1)Lt

by b> . Thus

Y03B3t = f(Y03B3s)d(Bs+03B2Ls) + (03B3-03B2(1-03B1))Lt ,

and similarly if y>a
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Yt - t jf (YS)d (B + } + 

Hence Yy satisfies (3.5) if and only if either

(i) ya and 

or (ii) y>a and 

Thus if the only possible value of y is S(1-a) ,

and if then while if a/ (1+a) Sa/ (1-a) ,

To establish uniqueness in (c), let Y be any

solution to (3.5). Then since by Theorem

3.2 (c) , Hence by 3.2 (d) ,

t
0 = J 1 (Y =B) (f(Ys)03B2-03B1)dLs0 s s

t

- j 0 1(y s 
and so

t t

Yt = !f p (ys)dBs + + 

t
= + 

Uniqueness in (d) is proved in the same manner. As for (e),

(i) and (ii) have already been proved, while if Y is any

solution of (3.5) then Y is also a solution of (3.4) with
t

Vt Therefore, as is non-decreasing,
by Theorem 3.2(c) , and similarly 

The following theorem is an immediate consequence of 3.1

and 3.3.
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Theorem 3.4 Let 0a 1 , and X = s 1 (Yt) .
(a) If then . If 

(b) for Y~a

(c) If then is the unique solution of (1.1),

and satisfies XS(1 a)-B .

(d) If then is the unique solution of (1.1),

and satisfies 

(e) If 

(i) and are solutions of (1.1), , and

if a=B , B is also a solution.

(ii) and these three processes are

distinct.

(iii) If X is any solution of (1.1), 

4. . The case a=l.

If a==l , Theorem 3.1 breaks down as s (x) is no longer

one to one. Nonetheless, it is still useful to consider Xt
separately, where Xt is a solution of (1.1).

Proposition 4.1 Let Z=M+V be the canonical decomposition

of a continuous semimartingale satisfying If X is

a solution of

(4.1) Xt + Lt(X) = Z~ ,
then

(4.2) = j t 0 + ~~ t 0 T (XS=0)dVs
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and

(4.3) Xt = Zt - sup(ZS-XS) .s s

Proof. Apply Tanaka’s formula to (4.1) to obtain

t t

X+ - j t = ~ I(X s >0)dZ s + ~ j ~ I(X s =0)dZ - s + 

t 
+ 

t

= I(X+s>0)dZs + ½ I (Xs=0)dVs .

To prove ( 4 . 3 ) note f ir st that by ( 4 .1 ) ,

X-t = -Zt + X+t + L0t(X) .

Since and only increases on the zero set of X ,

it follows that is the unique solution of the

reflection problem for -Zt+Xt (see E1 Karoui and Chaleyat-

Maurel f_ 1 J ) . Therefore

X-t = -Zt + X+t + sup(Zs - X+s)s s

and (4.3) is immediate. 0

We construct solutions to (4.1) with Z - B+SL(B) by

first finding a candidate, X+ , for a solution to (4.2), then

def ining X by ( 4 . 3 ) and f inal ly checking that X is in f act

a solution of (4.1). Our first candidate for X+ is 0 .

Theorem 4.2 Let Z - M+V be the canonical decomposition of a

continuous semimartingale satisfying z0=0 . Let St = sup Zs ,
o 

s_t

Xt = Zt - St and assume that
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(4.4) I(St=Zt)dVt = 0 .

(a) X is the unique non-positive solution of (4.1).

Moreover, X is the minimal solution of (4.1),

i.e., if X is any solution of (4.1) then 

(b) If V is non-increasing, then XO is the unique

solution of (4.1). .

Proof. (a) As (-XO,S) is the unique solution of the reflection

problem for -Z , Prop.I.2.1 of [1] implies that

St = 

= (by (4.4) )

=L;;(X°) . .

Therefore

X~ + 

It is clear from (4.3) that XO is the minimal, and unique

non-positive solution of (4.1).

(b) If V is non-increasing, it follows easily from

(4.2) that E (Xt) - 0 , for any solution of (4.1). Therefore

by (a). C)

Corollary 4.3 Let

X0t = Bt + 03B2Lt(B) - sup(Bs + 03B2Ls(B)) .

Then is the minimal, and unique non-positive solution of
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(4.5) x t + L° t (x) - B t + 

Moreover if S_0 , X~ is the unique solution of ~(4_.5) .

Proof. We must prove that (4.4) holds with Z = B + 

Let Tt be the right-continuous inverse of and set

~Zu=0 for u0 . Then, by an argument in Emery and Perkins

[:3, Prop.l ], if t is fixed, is equal in

law to (B) ) . . Therefore

(4.6) P(S03C4t =Z03C4t) = P(sup Z(03C4t-u)=03B2t)

= P (sup B(u)-03B2Lu (B)=0) .

A simple scaling argument shows that

P(sup B - SL ( B ) = 0)
use 

U U

is independent of e and hence must be zero by the 0-1 law.

It follows from (4.6) that P(S ~t = Z ~t ) = 0 for each t and

therefore

00 00

I(Su=Zu)dLu(B) = I(S03C4 t = Z03C4 t)dt = 0 a.s.

Hence (4.4) holds with Z = B + SL(B) and Theorem 4.2 implies

the required result. D

In order to obtain a maximal solution of (4.5) for 

we construct another candidate for X+ .

Theorem 4.4 Let There is a unique solution Y of
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t

(4.7) Yt = j 0 + 

Y is ~t adapted,

L0+t(Y) = 203B2 I(Ys=0)dLs(B) = 0 ,

and if Y is a solution of

" t

(4.8) Yt = j 0 + Vt ,

where is adapted , continuous and non-decreasing,

then YsY . If in addition is non-decreasing,

then 

Note that (4.7) is not covered by the classical existence

and uniqueness results, as the diffusion coefficient is dis-

continuous and degenerate. Before proving the theorem, we

establish two lemmas, the first of which is interesting in its

own right.

Lemma 4.5. For S>0 , let

T03B2 = inf{t: Bt + 03B2Lt --- -1}.

(a) (B)>t) - (1 + for t>_0 .

(b) If 03B3>(403B2)-1 , there is a C >0 such that(b) - y>(4p) , there is a Y >0 such that

for 

Proof. Let Tt be the right-continuous inverse of Lt , and

define a Poisson point process with state space by
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su p Bu if Tt-Tt and this sup is >0

~~ ~

E(t) =-

S otherwise

(see Ito C6J). Using the fact that has an exponential

law with mean 2x (here T(-x) = inf{t: Bt=-x}) , it is easily

shown that the characteristic measure of E , ~ , satisfies

u (Cx,~) ) - (2x) 1 for x>0 . Therefore if 

and N(A) denotes the cardinality of {t: then

N(A) has a Poisson distribution with parameter where

m denotes Lebesgue measure. In particular, since

LT - inf{u: 
-- inf{u: 

one has

P(LT >t) - P (N (~ (u,x) : u-t, 

t
= exp{- 

= exp{- 1 2(1+03B2u) du}

= exp{- 2 s ’

= (1+st) ~~s .

If ~r> (4~) _ 1 and t>1 , then

>_ P (L TS >t2 ~Y ) - 
~ - 
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Therefore D

Lemma 4.6 Let H be a non-negative previsible process, , and

Y be a solution of

t t
°

Then

(a) Y ? 0

(b) If Dt = B =0, then on 

for ° 
.

(c) Let Tt 
= sup{st: Then on {Yt>O}

t

Yt = Bt + HsdLs .
~t

(d) If H = 03B2>½ , then L0+(Y-B+) = 0 , Y?B+ and Y~B+ .

Proof. (a) By Tanaka’s formula, ,

.

Thus Y" is of integrable variation, and therefore

L~(Y ) - L~ (Y) - o . Hence, as H is non-negative, 0 ,

so that Y = 0 .

(b) As Y~0 it is enough to show that for each s>t ,

E 1 (Yt=0)Ys^Dt = 0. However, DttHsdLs(B) = 0 on {Yt=0} ,

and so

E 1(Yt=0)Ys^Dt = E 1 (Yt
=0) s^Dt1(Ys>0)dBs.

= 0 .
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(c) Fix t>0 , and enlarge to make the random time Tt a

stopping time. As Tt is honest (the end of an optional set)

stochastic integrals take the same value in both f iltrations.

Hence, as B03C4 = 0 by (b) ,
~t

t t

Yt = Y03C4t + t 1 (Ys>0)dBs 
+ 

Hs dLs
= Bt + Hs dLs .

(d ) > 0 , T~-=0 , and

yt 

T~n = inf{t>S~n ; Yt - B+t=0} .

Writing T(Sn) for TS£ - sup{sSn: YS=0} , by (c), since
n 

n 
n s

YS~ > 0
n

(4.9) YS£ - BS~ _ -BSE + LT S£))
n n n n (n

It follows that 0 , for if R = 

by (c ) ; YR - BR = YS~- BS~ ~ YS~ - BS E , so that R = Sn .
n n n n 

n

Let Bt = be a Brownian motion, and

Vn (E) - inf{t: Bt + SLt (Bn) - -s~.

We have, therefore, for S~n - t s Te

Yt = YS~n + Bt - BS~n + n 

n 

n 

n 

n

- c + Bt - S£ n + SLt - Se(Bn) , n
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so that T~n = S~n + Vn(~) . Let

N(~,t) = I(S~j~t) ,
i=l 

then for e>~ ,

t+1 ~ E( 03A3((T~i-S~i)^1)I(S~1~t))

= E(03A3I(S~i~t)E(Vi(~)^1|FS~i))

= E(N(~,t))E(V1(~)^1)

= ~2E(N(~,t))E(V1(1)^~-2) 
(scaling)

~ C~2E(N(~,t)) t-03B3dt , 
where 03B3~(1 403B2,½) by Lemma 4.5

1

~ .

in particular it follows 
that lim ~E(N(~,t))=0 

for

all f.O . The downcrossing characterization 
of local time

( see El Karoui[2]) implies that

½L0+t(Y-B+)=lim~N (~,t) (in L1)

= 0 .

It remains only to show 
that q Apply Tanaka’s

formula to (4.8) to obta in

~- = ~ (~)~~(B) . .
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As S>~ , we see that Finally Y~B+ is

obvious. D

Proof of Theorem 4.4. . Let ~~~ and assume Y is a solution

of (4.7). Let Vt be an adapted non-decreasing

process and suppose that Y is a solution of (4.8) (with

respect to the same Brownian motion). Then

lim E _ 1 -Y6(0,e))(I(Y t 
e:0+ 0 

s s 
~ 

- lim e t jI(Y 
0 

s s

s lim e _ I t JI (Y E (O,E) )ds
0 

S

= L0+t(Y)

= L0+t(Y) - L0-t(Y) (as Y~0)

Therefore

(4.9) L0+t(Y-) ~ 203B2I(Ys=0)dLs(B) (by Yor [14]).t 
0 

s s

As Y~B by Lemma 4.6, we also have

o = L~ (Y-B ) - L~+(Y-B+) - L~-(Y-B+) >

t
= (03B2-½)I(Ys=0)dLs (B)

~ (03B2-½) (203B2)-1L0+t(Y-Y) (by (4.9)).

So L0+t (Y-Y)=0 and by using Tanaka’s formula one can easily

see that Y>_Y , just as in the proof of Y>_B+ (see Lemma 4.6 (c) ) .
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In particular, if Y and Y are both solutions of (4.7) then

Y?Y?Y and so pathwise uniqueness holds in (4.7). By Theorem

2.1 there is a weak solution, and so by Theorem 2.25 of ~7~,

Y is ~t adapted.
Finally, let be non-decreasing. Then if, for

, YS is the unique solution to ( 4.7 ), when

since is non-decreasing. Similarly,

YsYs , so that Also, for each 03B2>½ , as

(03B2-½)Lt (B) is non-decreasing, and = 

" 
. ~~~ ~ ~ ~ ~

- 0 . lim 

Theorem 4.7 Let S>~ , and YS be the unique solution of

(4.7). . Let

X1t = Bt + 03B2Lt - sup (Bs + 03B2Ls - Y03B2s).

Then

(a) X1 is the maximal solution of (4.5), , and is distinct

from the minimal solution, X6 , constructed in Corollary
4.3, and from B , which if S=1 , is also a solution.

(b) X1 is ~B adapted.

(c) (X1)+ - (X1)+>-B+>-(XO)+=~ , and these three

processes are distinct.

Proof We fix S > ~ , and write Y for Y~ , X for X~ .

We show first that X+=Y . By Lemma 4.6(b), if Yt>0 , then
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Yt=Bt + ’ and so Xt-Yt 

=PL -sup(B +8L -Y ) . By Theorem 4.4, Y>B , , and therefore,

if s  03B2Ls s . Therefore

if , and as it is clear from the definition of

X that , it follows that The remainder of (c)

follows immediately.

(b) is an immediate consequence of Theorem 4.4.

For (a), let , and note that, by (4.7), M

is a martingale. We have

Xt = supM - Mt ’" sst S ’

and therefore, by Prop. 1.2.1 of ½L0+t(X-) = sup Ms. Now

L0+ (X) -- L0+ (X+) = 0 , by Theorem 4 , 4 , and L0_ (X) S t = - (-X ) - )

= LO+(X-) ; § therefore L0(X) = ½L0+(X) + ½L0- (X) = sup MS ,and
s~t

X t + Y t + Mt - sup M + sup M
s 

= Bt + 03B2Lt .

If Z is another solution of (4.5), by (4.2) and Theorem 4.4

X+>_Z+ , and so X>Z by (4.3).

We now turn to the case 0~~~ . The following result

is in part a refinement of the estimate used to prove (4 ~ ~ ) .

Lemma 4.8. Let

A(6) = ~t>o: for "

Then for , A(S)=~ a.s.
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Proof. As for S  ~ , it is enough to prove the

result for A () . " If (~) (w) , ’ then (w) +Lt (B,w) _
(B,w) for and 

‘ 

for u>_t , so that t is a point of increase

of B~ (w)+~L‘ (B,w) .
We shall now show that B++~L(B) has no (non-zero) points

of increase. Let W denote a Brownian motion, with 

Points of increase are not removed by time-change, so, time-

changing B++½L(B) by the inverse it follows

that B++~L (B) has points of increase if and only if
) does. Now ½L0+(|W|)=L0(W) , and, if S =sup r

(W)) is equal in law to (S-W,S) , and so 

is equal in law to 2S-W ,which, by Pitman’s result (see [16J)

is a 3-dimensional Bessel process. Thus for t>0 , the law of

is absolutely continuous with that of Brownian

motion, and hence, by the result of Dvoretsky, Erdos and

Kakutani C 15 ~ , ) has no non-zero points of increar

Theorem 4.9. Let C~s~ . Then (4.5) has a unique solution.

Proof. Let X be a solution of (4.5). By Corollary 4.3 it

is sufficient to prove that X is non-positive. Let 

by Proposition 4.1

t t

Yt = + ~ 0 (1 (Y s ~~~ + .

t

Thus, as ½Lt(B) - (1(Ys>0) + is non-

decreasing, by the final part of Theorem 4.4 Q Y

therefore satisfies

t t

Yt = .
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Let t>0 , and Tt 
= sup{st: Ys=0} . By Lemma 4.6(b), on

{Ttt} B03C4t =0 , and by (c), using the fact that B S >0 for

Ttst , we have

on 

However, if S = inf{t: then so that

S=0 a.s. Therefore, by the section theorem, for any E>0

there exists a stopping time T such that and

0Te , on {Too} . Let R~inf{s>T: Y s >0 } .
By Lemma 4.6(b), on so that, by (4.3), on

0 = BR + ~LR (B) - sup(B + ~Ls (B) - Ys)R R ~ ~

~ sup (B_, + .

" ~

Therefore on 

~ (LR (B) - sup (Bs + SLT (B) ) . .’" ’ 

Ts~R 
s s T

Now let U = inf{s>T: then XU s - BT , so that R>U.

Hence is in the set for the Brownian motion

BU+, , and so by Lemma 4.8, R=oo. Thus 

and as s is arbitrary, Y=0 , completing the proof of the

theorem.

5. . X+ .- B+ SL (B)

If instead of (1.1) we consider the equation

(5.1) Xt + aL~+(X) _ B~ + SL (B)
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the results are slightly different. In fact, the same proofs

go through with some minor changes and we only state the theorem.

Suppressing dependence on a , we define

(203B1+1)x , if x>0

r(x) = x , if x50x , if x_0

2a+1, if x>0

g {x) _ l , if xK01 , if x_0

If a>-~ , the proofs of Theorems 3.2 and 3.3 go through without

change to show the existence of a unique, and F~ adapted

solution, 03B3 of

Yt = + yLt(B) 

In particular, Y Aa = r(Bt) by Tanaka’s formula. For 03B2-½ ,

let Z~ denote the unique, and F~ adapted solution of

Z03B2t = - I(Zs>0)dBs - 03B2Lt(B)

(apply Theorem 4.4 to -B).

Theorem 5.1. (a) If a-~ , then (5.1) holds if and only if

S=a and X=B .

(b) Let a>-~ .

(i) If then r-1 ) and

are the (distinct) maximal and minimal

solutions of (5.1), , respectively.

(ii) If S>a , X = r-1(ys{2a+1)) is the unique

solution of (5.1).
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(iii) If , is the unique solution

of (5.1) . .

(c) Let a=-~ .

(i) X~ - Bt + + SL (B) ) is the
t " " sst s s 20142014201420142014

maximal and unique non-negative solution of (5.1).

(ii) IjF S>-~ , X~ is the unique solution of (5.1).

(iii) If S_-~ then

X1 - B. + inf(B + ~L (B) + 7S)t t t s s

is the minimal solution of (5.1), and satisfies

(X1) - ZS. In particular X1 is distinct

from X~ .
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