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Skorokhod Imbedding via Stochastic Integrals

Richard F. Bass
Department of Mathematics
University of Washington
Seattle, WA 98195

Given a Brownian motion Lt and a probability measure Y on R with mean O ,
a Skorokhod imbedding of Y 1is a stopping time T adapted to the sigma fields
of Lt such that LT has distribution Y . We give here a new method of
constructing such an imbedding using results from the representation of martin-
gales as stochastic integrals.

We first construct a Brownian motion Nt and a stopping time W such that
Nw has law u . We then show how, given an arbitrary Brownian motion Lt s
one can construct a stopping time T such that L, has law u .
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Define pt(y) = (2mt) s qt(y) = 3Pt(y)/8y - -(Zﬂt)_l/z(y/t)e-y /2t .

Let Xt be a Brownian motion, Et its filtration, and g a real-valued function.

Lemma 1. Suppose Elg(X1)|< ® ., Then
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a)  sup f g(z)|z-y|¥ e

5] dz < » for all positive k , all Yo all t<1.
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b) (X)) = Eg(X)) + Ié a(s,X))dX_, where a(s,y) = fq;__(z-y)g(z)dz for s<1 ;

furthermore Ié az(s,XS)ds < ®© a.s.

©) E(@(X)|E) =b(s,X) for s <l , where b(s,y) = | Py (z-¥)g(2)dz .

Proof. a) follows from the formula for the normal density and the fact that

2 2
Iz—y|k e_(z—Y) /2t <e? /2 for z large.

b) Suppose first that g 1is bounded, has compact support, and is in C2 .

By Clark's formula [1] applied to the functional g(Xl) R
- 1 '
g(X)) = Eg(x)) + [ Elg' (X)|F JdX_ .

(Another derivation of this representation is to use Ito's lemma to take care

ux

i
of the case g(x) = e and then use linearity and a limiting process.)
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By the Markov property, if s <1 ,
(] = 1 -
Elg' XDIE ] = J 8" (2)py_ (X, - z)dz .

An integration by parts gives the result for such g ; the result for general
g follows by a limit argument.

c) By the Markov property, if s <1,
Elg(X)|E] = [ g(2)p, (X - 2)dz . O

Lemma 2. Suppose g 1is nondecreasing and not identically constant. Then

a) On compact subsets of [0,1) X R , a(s,y) is bounded above, bounded

below away from O , and uniformly Lipschitz in s and y .

b) For each s <1, b(s,y) is continuous and strictly increasing as a

function of y .
c) For each s <1, let B(s,*) be the inverse of b(s,*) ; then on

compact subsets of its domain, B(s,y) is uniformly Lipschitz in s

and jointly continuous in s and y .

Proof. a) Suppose |y| < Yo 8 < S <1. a(s,y) is bounded above by lemma la.
An integration by parts argument shows that a(s,y) = I pl_s(y—z)dg(z) , hence
a is bounded below. Using the definition of a(s,y) , appropriate bounds on
Bql_slas and aql_s/By , and lemma la gives the uniformly Lipschitz result.

b) The definition of b shows that b(s,*) is continuous. Since we also
have b(s,y) = | g(y+z)p1_s(z)dz , it follows that b(s,*) 1is nondecreasing,
and in fact, strictly increasing since g is not constant. Note that this
implies that the range of b(s,*) must be an open (possibly infinite) interval.

c¢) Since b(s,*) is continuous and strictly increasing, we can define
its inverse B(s,*) on the range of b(s,*) . B(s,y) will be continuous in y.

Integrating by parts,
9b/3dy = fpl_s(y-z)dg(z) s

which is uniformly > 0 for s,y in a compact subset of [0,1) x R . 3b/ds
is bounded above on compact sets since Bpl_slas is, using lemma la again.
We now show that B is uniformly Lipschitz in s , s,y in a compact sub-

set of the domain of B . Let w = B(s+h,y) , x = B(s,y) , and suppose w < X,
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the other case being similar. Then
0 = b(s+h,w) - b(s,x) = b(s+h,w) - b(s,w) + b(s,w) - b(s,x) < C|h| - c(x-w),
or |xw| =<c|n| /c,

where C and c are upper and lower bounds for 9b/3s and 0b/dy , respectively.
This proves that B 1is uniformly Lipschitz in s , and it follows immediately

that B is jointly continuous. 0

Now let U be a probability measure on R and suppose I{xl du(x) < © and
-1 !
J xdu(x) =0 . Let F(x) = u(- »,x] , let F “(y) = inf{x: F(x)2y} ,let

o(x) = x pl(y)dy , and let g(x) = F_l(é(x)) . Then g(Xl) has distribution
- 00

U and Eg(Xl) =0.

Define Mt = fg a(s,XS)dXS , where a(s,y) is given by lemma 1 for s <1 ,
a(s,y) =1 for s 21 . Note M1 = g(Xl) has law u , and if s <1 ,
M, = b(s,X)) . Let R(t) = fg az(s,XS) » define S(t) = inf{r:R(r) 2t} ,

and let Nt = Since the quadratic variation of the continuous martingale

MS(t) .
N is t , N is a Brownian motion.
NR(l) = Ml , which has law p . Letting W = R(1) , it suffices to show

that R(1) is a stopping time of the Nt process.

Proposition 3. (cf. Yershov, [2]). (W 2 u) is in the right continuous

completion of G(NS; s <u) .

Proof. Since W = R(1) = li? R(s) by monotone convergence, it suffices to
~ s

consider R(s), s <1 . (R(s) 2u) = (s =2 S(u)) .

It is not hard to see that S(t) satisfies the equation

() _ a’z(s(c), X

dt S(t))

if S(t) <1 . But X = B(S(t), MS(t)) = B(S(t), Nt) . Thus, for each w ,

S(t)
S(t) satisfies the ordinary differential equation

@ BO - 2, Bso, N)) .

For each w , {(S(t), Nt): S(t) < s} is contained in a compact subset of

the domain of B . This, lemma 2, and a theorem on uniqueness of solutions of
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differential equations [3, pp.1-6] show that there is a unique solution S(t)
to (1) up to the first t for which S(t) = s . Moreover, this solution may
be constructed via Picard iteration. But then (s 2 S(u)) is in the right
continuous completion of G(NS; s < u) as required. O

Suppose now that L is any Brownian motion. We construct an L-measurable

stopping time T such that L has law u . Let V(t) be the unique solution to

diﬁf) = 2 2(v(t), BEV(L), L))

for each w . (Since Lt has the same law as Nt , {(v(), Lt): v(t) < s}

will be in a compact subset of the domain of B, a.s.) Let U(t) = V_l(t), t <1

and let T = U(1) = sg{ U(s) . Clearly the law of (L,T) is the same as the
s

law of (N,W) , and so L

1
T /2 will satisfy certain moment conditions if u does. For example,

T has distribution u .

suppose ¥: [0,®) » [0,®) is continuous, [ W(|x|)du(x) < o | and for some

€>0, Wl/(1+€) is convex and increasing. By Doob's inequality applied to

Wl/(1+8)

the submartingale (IMSI) ,» E ggg W(|MS|) < o since E W(lMll) <o

Then by Burkholder's inequality, E W(Wl/z) <o,

If Yt is a d-dimensional Brownian motion, d = 2 , it is known that there
are measures | for which one cannot find a stopping time T with u the law
of YT : just take u atomic and recall that d-dimensional Brownian motion
does not hit points. However, one can always find f : R~ Bﬁ such that the
law of f(Xl) is W, Xt a l-dimensional Brownian motion. (The coordinate
functions of f are not assumed to be nondecreasing.) One can then use lemma 1
to find a vector-valued function A:[0,1) X ]R*-]fi such that f(Xl) =
EE(X)) + [ Als, X)X, .
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