SÉminaire de probabilités (Strasbourg)

Richard F. Bass
 Skorokhod imbedding via stochastic integrals

Séminaire de probabilités (Strasbourg), tome 17 (1983), p. 221-224
http://www.numdam.org/item?id=SPS_1983_17__221_0
© Springer-Verlag, Berlin Heidelberg New York, 1983, tous droits réservés.
L'accès aux archives du séminaire de probabilités (Strasbourg) (http://portail. mathdoc.fr/SemProba/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

Article numérisé dans le cadre du programme

Skorokhod Imbedding via Stochastic Integrals

Richard F. Bass
Department of Mathematics University of Washington Seattle, WA 98195

Given a Brownian motion L_{t} and a probability measure μ on \mathbb{R} with mean 0 , a Skorokhod imbedding of μ is a stopping time T adapted to the sigma fields of L_{t} such that L_{T} has distribution μ. We give here a new method of constructing such an imbedding using results from the representation of martingales as stochastic integrals.

We first construct a Brownian motion N_{t} and a stopping time W such that N_{W} has law μ. We then show how, given an arbitrary Brownian motion L_{t}, one can construct a stopping time T such that L_{T} has law μ.

Define $p_{t}(y)=(2 \pi t)^{-1 / 2} e^{-y^{2} / 2 t}, q_{t}(y)=\partial p_{t}(y) / \partial y=-(2 \pi t)^{-1 / 2}(y / t) e^{-y^{2} / 2 t}$.
Let X_{t} be a Brownian motion, ${\underset{F}{t}}^{t}$ its filtration, and g a real-valued function.
Lemma 1. Suppose $E\left|g\left(X_{1}\right)\right|<\infty$. Then
a) $\sup _{|y| \leq y_{0}} \int g(z)|z-y|^{k} e^{-(z-y)^{2} / 2 t} d z<\infty \quad \underline{\text { for }}$ all positive k, all y_{0}, all $t<1$.
b) $g\left(X_{1}\right)=E g\left(X_{1}\right)+\int_{0}^{1} a\left(s, X_{s}\right) d X_{s}$, where $a(s, y)=\int q_{1-s}(z-y) g(z) d z$ for $s<1$; furthermore $\int_{0}^{1} a^{2}\left(s, X_{s}\right) d s<\infty$, a.s.
c) $E\left(g\left(X_{1}\right) \mid \underline{\underline{F}}_{s}\right)=b\left(s, X_{s}\right)$ for $s<1$, where $b(s, y)=\int p_{1-s}(z-y) g(z) d z$.

Proof. a) follows from the formula for the normal density and the fact that $|z-y|^{k} e^{-(z-y)^{2} / 2 t} \leq e^{-z^{2} / 2}$ for z large.
b) Suppose first that g is bounded, has compact support, and is in C^{2}. By Clark's formula [1] applied to the functional $\mathrm{g}\left(\mathrm{X}_{1}\right)$,

$$
g\left(X_{1}\right)=E g\left(X_{1}\right)+\int_{0}^{1} E\left[g^{\prime}\left(X_{1}\right) \mid \underline{E}_{s}\right] d X_{s}
$$

(Another derivation of this representation is to use Ito's lemma to take care of the case $g(x)=e^{i u x}$ and then use linearity and a limiting process.)

By the Markov property, if $\mathrm{s}<1$,

$$
E\left[g^{\prime}\left(X_{1}\right) \mid{\underset{\underline{F}}{s}}\right]=\int g^{\prime}(z) p_{1-s}\left(X_{s}-z\right) d z
$$

An integration by parts gives the result for such g; the result for general g follows by a limit argument.
c) By the Markov property, if $s<1$,

$$
\mathrm{E}\left[g\left(X_{1}\right) \mid \underline{\underline{F}}_{s}\right]=\int g(z) p_{1-s}\left(X_{s}-z\right) d z
$$

Lemma 2. Suppose g is nondecreasing and not identically constant. Then
a) On compact subsets of $[0,1) \times \mathbb{R}, a(s, y)$ is bounded above, bounded below away from 0 , and uniformly Lipschitz in s and y.
b) For each $s<1, b(s, y)$ is continuous and strictly increasing as a function of y.
c) For each $s<1$, let $B(s, \cdot)$ be the inverse of $b(s, \cdot)$; then on compact subsets of its domain, $B(s, y)$ is uniformly Lipschitz in s and jointly continuous in s and y.

Proof. a) Suppose $|y| \leq y_{0}, s \leq s_{0}<1$. $a(s, y)$ is bounded above by lemma 1a. An integration by parts argument shows that $a(s, y)=\int p_{1-s}(y-z) d g(z)$, hence a is bounded below. Using the definition of $a(s, y)$, appropriate bounds on $\partial q_{1-s} / \partial s$ and $\partial q_{1-s} / \partial y$, and lemma la gives the uniformly Lipschitz result.
b) The definition of b shows that $b(s, \cdot)$ is continuous. Since we also have $b(s, y)=\int g(y+z) p_{1-s}(z) d z$, it follows that $b(s, \cdot)$ is nondecreasing, and in fact, strictly increasing since g is not constant. Note that this implies that the range of $b(s, \cdot)$ must be an open (possibly infinite) interval.
c) Since $b(s, \cdot)$ is continuous and strictly increasing, we can define its inverse $B(s, \cdot)$ on the range of $b(s, \cdot)$. $B(s, y)$ will be continuous in y.

Integrating by parts,

$$
\partial b / \partial y=\int p_{1-s}(y-z) d g(z),
$$

which is uniformly >0 for s, y in a compact subset of $[0,1) \times \mathbf{R} \cdot \partial b / \partial s$ is bounded above on compact sets since $\partial p_{1-s} / \partial s$ is, using lemma 1 a again.

We now show that B is uniformly Lipschitz in s, s, y in a compact subset of the domain of B. Let $w=B(s+h, y), x=B(s, y)$, and suppose $w \leq x$,
the other case being similar. Then

$$
0=b(s+h, w)-b(s, x)=b(s+h, w)-b(s, w)+b(s, w)-b(s, x) \leq c|h|-c(x-w)
$$

or $\quad|x-w| \leq c|h| / c$,
where C and c are upper and lower bounds for $\partial b / \partial s$ and $\partial b / \partial y$, respectively.
This proves that B is uniformly Lipschitz in s, and it follows immediately that B is jointly continuous.

Now let μ be a probability measure on \mathbb{R} and suppose $\int\{x \mid d \mu(x)<\infty$ and $\int x \operatorname{d\mu }(x)=0$. Let $F(x)=\mu(-\infty, x]$, let $F^{-1}(y)=\inf \{x: F(x) \geq y\}$, let $\Phi(x)=\int_{-\infty}^{x} p_{1}(y) d y$, and let $g(x)=F^{-1}(\Phi(x))$. Then $g\left(X_{1}\right)$ has distribution μ and $E g\left(X_{1}\right)=0$.

Define $M_{t}=\int_{0}^{t} a\left(s, X_{s}\right) d X_{s}$, where $a(s, y)$ is given by lemma 1 for $s<1$, $a(s, y)=1$ for $s \geq 1$. Note $M_{1}=g\left(X_{1}\right)$ has law μ, and if $s<1$, $M_{s}=b\left(s, X_{s}\right)$. Let $R(t)=\int_{0}^{t} a^{2}\left(s, X_{s}\right)$, define $S(t)=\inf \{r: R(r) \geq t\}$, and let $N_{t}=M_{S(t)}$. Since the quadratic variation of the continuous martingale N is t, N is a Brownian motion.
$N_{R(1)}=M_{1}$, which has law μ. Letting $W=R(1)$, it suffices to show that $R(1)$ is a stopping time of the N_{t} process.

Proposition 3. (cf. Yershov, [2]). ($W \geq u$) is in the right continuous
completion of $\sigma\left(N_{s} ; s \leq u\right)$.

Proof. Since $W=R(1)=\lim _{s \rightarrow 1} R(s)$ by monotone convergence, it suffices to consider $R(s), s<1 .(R(s) \geq u)=(s \geq S(u))$.

It is not hard to see that $S(t)$ satisfies the equation

$$
\begin{gathered}
\frac{d S(t)}{d t}=a^{-2}\left(S(t), X_{S(t)}\right) \\
\text { if } S(t)<1 \text {. But } X_{S(t)}=B\left(S(t), M_{S(t)}\right)=B\left(S(t), N_{t}\right) \text {. Thus, for each } \omega \text {, } \\
S(t) \text { satisfies the ordinary differential equation }
\end{gathered}
$$

(1) $\frac{\mathrm{dS}(\mathrm{t})}{\mathrm{dt}}=\mathrm{a}^{-2}\left(\mathrm{~S}(\mathrm{t}), \mathrm{B}\left(\mathrm{S}(\mathrm{t}), \mathrm{N}_{\mathrm{t}}\right)\right)$.

For each $\omega,\left\{\left(S(t), N_{t}\right): S(t) \leq s\right\}$ is contained in a compact subset of the domain of B. This, lemma 2, and a theorem on uniqueness of solutions of
differential equations [3, pp.1-6] show that there is a unique solution $S(t)$ to (1) up to the first t for which $S(t)=s$. Moreover, this solution may be constructed via Picard iteration. But then $(s \geq S(u))$ is in the right continuous completion of $\sigma\left(N_{s} ; s \leq u\right)$ as required.

Suppose now that L is any Brownian motion. We construct an L-measurable stopping time T such that L has law μ. Let $V(t)$ be the unique solution to

$$
\frac{d V(t)}{d t}=a^{-2}\left(V(t), B\left(V(t), L_{t}\right)\right)
$$

for each ω. (Since L_{t} has the same law as $N_{t},\left\{\left(V(t), L_{t}\right): V(t) \leq s\right\}$ will be in a compact subset of the domain of B, a.s.) Let $U(t)=V^{-1}(t), t<1$ and let $T=U(1)=\sup _{s<1} U(s)$. Clearly the law of (L, T) is the same as the law of (N, W), and so L_{T} has distribution μ.
$\mathrm{T}^{1 / 2}$ will satisfy certain moment conditions if μ does. For example, suppose $\Psi:[0, \infty) \rightarrow[0, \infty)$ is continuous, $\int \Psi(|x|) d \mu(x)<\infty$, and for some $\varepsilon>0, \Psi^{1 /(1+\varepsilon)}$ is convex and increasing. By Doob's inequality applied to the submartingale $\Psi^{1 /(1+\varepsilon)}\left(\left|M_{S}\right|\right), E \sup _{S \leq 1} \Psi\left(\left|M_{S}\right|\right)<\infty$ since $E \Psi\left(\left|M_{1}\right|\right)<\infty$. Then by Burkholder's inequality, $\mathrm{E} \Psi\left(\mathrm{W}^{1 / 2}\right)<\infty$.

If Y_{t} is a d-dimensional Brownian motion, $d \geq 2$, it is known that there are measures μ for which one cannot find a stopping time T with μ the law of Y_{T} : just take μ atomic and recall that d-dimensional Brownian motion does not hit points. However, one can always find $f: \mathbb{R} \rightarrow \mathbb{R}^{\mathrm{d}}$ such that the law of $f\left(X_{1}\right)$ is μ, X_{t} a 1 -dimensional Brownian motion. (The coordinate functions of f are not assumed to be nondecreasing.) One can then use lemma 1 to find a vector-valued function $A:[0,1) \times \mathbb{R} \rightarrow \mathbb{R}^{d}$ such that $f\left(X_{1}\right)=$ $E f\left(X_{1}\right)+\int_{0}^{1} A\left(s, X_{s}\right) d X_{s}$.

REFERENCES

1. J.M.C. Clark, The Representation of Functionals of Brownian Motion by Stochastic Integrals, Ann. Math Stat 41 (1970) 1282-1295.
2. M.P. Yershov, On Stochastic Equations, Proceedings 2nd Japan-USSR Symposium on Probability Theory. Lec. Notes in Math. 330, 527-530, Springer-Verlag, Berlin, 1973.
3. K. Yosida, Lectures on Differential and Integral Equations, Interscience, New York, 1960.
