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Skorokhod Imbedding via Stochastic Integrals

Richard F. Bass

Department of Mathematics
University of Washington
Seattle, WA 98195

Given a Brownian motion Lt and a probability measure u on IR with mean 0 ,

a Skorokhod imbedding of  is a stopping time T adapted to the sigma fields

of Lt such that LT has distribution ~ . We give here a new method of

constructing such an imbedding using results from the representation of martin-

gales as stochastic integrals.

We first construct a Brownian motion Nt and a stopping time W such that

NW has law v . We then show how, given an arbitrary Brownian motion L ,
one can construct a 

stopping time 
T such that LT has law  . 

Define p (y) = y /2t ~ , q (y) = aP (Y)/ay = -(2~rt) 1/2(ylt)e Y /2t . .t t t

Let Xt be a Brownian motion, Ft its filtration, and g a real-valued function.

Lemma 1. Suppose . Then

a) sup  g(z)|z-y|k e-(z-y)2/2t dz  ~ for all positive k , all y0, all t 1 .
~~ ~ 0

b) g(X1) = Eg(X1) + where = for s1 ; i

furthermore 10 a2(s,Xs)ds  ~ , a.s.

c) = for s 1 , where = j 

Proof. a) follows from the formula for the normal density and the fact that

for z large.

b) Suppose first that g is bounded, has compact support, and is in CZ .

By Clark’s formula [1] applied to the functional 

g(X1) = Eg(X1) + 

(Another derivation of this representation is to use Ito’s lemma to take care

of the case g(x) = eiux and then use linearity and a limiting process.)
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By the Markov property, if s  1 ,

] = j z)dz .

An integration by parts gives the result for such g ; the result for general

g follows by a limit argument.

c) By the Markov property, if s  1 , ,

= J g(z)P1-s(Xs - z)dz . . 0

Lemma 2. Suppose g is nondecreasing and not identically constant. Then

a) On compact subsets of [0,1) X lR , a(s,y) is bounded above, bounded

below away from 0 , and uniformly Lipschitz in s and y .

b) For each s  1, b(s,y) is continuous and strictly increasing as a

function of y .

c) For each s  1 , let B(s,’) be the inverse of b(s,’) ; then on

compact subsets of its domain, B(s,y) is uniformly Lipschitz in s

and jointly continuous in s and y .

Proof. a) Suppose So 
 1. a(s,y) is bounded above by lemma la.

An integration by parts argument shows that a(s,y) = j pl-s(y-z)dg(z) , hence

a is bounded below. Using the definition of a(s,y) , appropriate bounds on

3q /3s and 3q- /3y , and lemma la gives the uniformly Lipschitz result..

b) The definition of b shows that b(s,’) is continuous. Since we also

have b(s,y) = J g(y+z)pl-s(z)dz , it follows that b(s,’) is nondecreasing,

and in fact, strictly increasing since g is not constant. Note that this

implies that the range of b(s,’) must be an open (possibly infinite) interval.

c) Since b(s,’) is continuous and strictly increasing, we can define

its inverse B(s,’) on the range of b(s,’) . B(s,y) will be continuous in y.

Integrating by parts,

~b/~y = P1-s(y-z)dg(z) ,

which is uniformly > 0 for s,y in a compact subset of [0,1) x R . 3b/3s

is bounded above on compact sets since is, using lemma la again.

We now show that B is uniformly Lipschitz in s , s,y in a compact sub-

set of the domain of B . Let w = B(s+h,y) , x = B(s,y) , and suppose w _ x ,
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the other case being similar. Then

0 = b(s+h,w) - b(s,x) = b(s+h,w) - b(s,w) + b(s,w) - b(s,x) ~ c(x-w),

or /c ,

where C and c are upper and lower bounds for ab/as and ab/ay , respectively.

This proves that B is uniformly Lipschitz in s , and it follows immediately

that B is jointly continuous. Q

Now let p be a probability measure on R and suppose and

I x = 0 . Let F(x) = u(- °o,x] , let F 1(y) = inf{x: ,let

03A6(x) = jx and let g(x) = F-1(03A6(x)) . Then g(X ) has distribution

v and Eg(X1) = 0 .

Define Mt = j~ a(s,X )dX , where a(s,y) is given by lemma 1 for s  1 ,

a(s,y) = 1 for s > 1. Note M1 = g(X1) has law p , and if s  1 ,

Ms = b(s,Xs) . Let R(t) = jQ a2(s,Xs) , define S(t) = inf{r:R(r) ~ t} ,

and let Nt = Since the quadratic variation of the continuous martingale

N is t , N is a Brownian motion.

M1 , which has law . Letting W = R(l) , it suffices to show

that R(l) is a stopping time of the Nt process.

Proposition 3. (cf. Yershov, [2]). (W ? u) is in the right continuous

completion of Q(Ns; s s u) .

Proof. Since W = R(l) = lim R(s) by monotone convergence, it suffices to

consider R(s), s  1. (R(s) >_ u) = (s ~ S{u)) . .

It is not hard to see that S(t) satisfies the equation

d dt = a 2 (S {t) ~ X S(t) )
if S(t)  1 . But XS(t) = B(S(t), MS(t)) = B(S(t), Nt) . ° Thus, for each w, ,

S(t) satisfies the ordinary differential equation

(1) 2(S(t), N t )) . °

For each 0) , {(S(t), S(t) ~ s} is contained in a compact subset of

the domain of B . This, lemma 2, and a theorem on uniqueness of solutions of
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differential equations [3, pp.1-6] show that there is a unique solution S(t)

to (1) up to the first t for which S(t) = s . Moreover, this solution may

be constructed via Picard iteration. But then (s z S(u)) is in the right

continuous completion of Q(Ns; s ~ u) as required. 0

Suppose now that L is any Brownian motion. We construct an L-measurable

stopping time T such that L has law u . Let V(t) be the unique solution to

= a 2(V(t)~ Lt))

for each w . . (Since L has the same law as N , {(V(t), L ): V(t)  s}

will be in a compact subset of the domain of B, a.s.) Let U(t) = t  1

and let T = J(l) = sup U(s) . Clearly the law of (L,T) is the same as the
sl

law of (N,W), and so LT has distribution p .

will satisfy certain moment conditions if  does. For example,

suppose ’Y: [0,oo) + [0,oo) is continuous, J  oo , and for some

e > 0 , ~Y1~(1+~) is convex and increasing. By Doob’s inequality applied to

the submartingale E sup I )  ~ since E  oo 
.

Then by Burkholder’s inequality, E 03A8(W1/2)  ~ .
If Y is a d-dimensional Brownian motion, d > 2 , it is known that there

are measures p for which one cannot find a stopping time T with ~ the law

of YT : just take p atomic and recall that d-dimensional Brownian motion

does not hit points. However, one can always find f : lRd such that the

law of f(Xl) is P , Xt a 1-dimensional Brownian motion. (The coordinate

functions of f are not assumed to be nondecreasing.) One can then use lemma 1

to find a vector-valued function A:[0,1) x lR+ Rd such that f(Xl) =
+ A(s, Xs)dXs .
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