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§I . Introduction

1. Notations and assumptions.

Let E be a locally compact, separable metric space, and use  to

denote the Borel field over E. . Suppose that P (x,*) is a sub-Markovian

transition function on (E,~$) satisfying

i) (t,x) ~ is continuous on [0,°°) x E for each

~ E = {}) : }) has compact support} , ,

ii) there exists a 03C80 E C+0(E) such that for each KCC E (i.e. ° K is

a compact subset of E ) there is a t > 0 and an e > 0 for which

°

Let

X - {~ : ~ and Pt are non-negative Radon measures on (E,~) for

each t > 0} . .

We endow X with the vague topology.

For À E R , , we put 
’

5:~ = as t ~ 0}

~h = {~ E ~h ~ I~ # ~} ~ , ~(g) = {~ E ~ : : = 1}

= inf {03BB ~ R : : 03BB ~ !)}

One basic theorem of [9] is the following:

2. Theorem. 03BB03C0 ~ (-~,0] ,

E’03BB03C0 ~ {  ~ X+ : e03BB03C0t  ~ Pt for each t > 0} ~ {0} .

*Partially supporFed by NSF grant MCS 80-07300.
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We note that if  E E’03BB and  ~ 0 , , then v = lim e03BB03C0t Pt satisfies
~ t~O 

- Bt ~ t
e ~ It ~P t-  v . .

From this fact and (l.ii) it is easy to see that 03BD ~ E03BB03C0 and v # 0 , ,

hence ! 03BB03C0 ~ 03C6.

In order to describe the number 03BB03C0 , the second author showed in

[9] that ~,~ is closely related to the rate at which the process exists

from open sets and also to the spectrum of the operators ~P,.~ ’ . His

conclusions confirm that the number ~,~ is a critical point. In some

sense, it is a border between recurrence and transience. These considerations

led him to rephrase a conjecture of D. Sullivan as follows.

3. . Conjecture. [9, (3.1)]. . Under reasonably general hypotheses about

tPt : : t > 0} , , there exists a positive Radon measure  satisfying

e03BB03C0t  = Pt for each t > 0 . .

The second author already proved this conjecture in some cases. One of his

general results is:

- À t
4. Theorem. If {e 03C0 P : : t > 0} is recurrent in the sense that there is no

positive Radon measure v for which j o e-03BB03C0t vP t dt is a Radon measure, then

each  ~ E03BB03C0 satisfies = , t > 0 . . In particular, there is a

positive Radon measure which is {e x : t > 0} invariant.

Unfortunately, this conjecture is not true in general. The original

counterexample was found in the context of Markov chains. This example, along

with other related examples, is given in the next section. Later, S.R.S.

Varadhan suggested a method of producing a counterexample with a diffusion

process. We now present an example based on Varadhan’s idea.

Let A the ordinary Laplacian on R . , Choose a smooth

p : : R3 + (0,") so that the diffusion generated by L = l pA explodes with

positive probability (cf. Exercise 10.3.3 on p. 260 of [10]). Denote by
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{Pt : : t > 0} the minimal Markov semigroup generated by L (i.e.

{Pt : : t > 0} is the semigroup associated with the process which is "killed"

when it explodes). Set m(dy) = 1/p(y)dy . . Then

P  f(x) = j , f where p: (0,°°) x R3 X R~ -~ (0,°°)

is smooth and is symmetric with respect to x and y . . Moreover, if L

denotes the Friedrich’s extension in L2(m) of L|C~0(R3) , then ,

Pt = - 
)

. (These facts can be checked directly or as a consequence

of the results in [6)). Combining these observations with (2.6) in [9] , ,

one concludes that 1~,~ = 
(m) 

: t) and 

L 
2 
(m) 

= 1} . .

But (~,L~) L 2 (m) 
- 

, and so ~x = 0 . Thus, we will

have a counterexample once we show that there is no non-zero Radon measure p

satisfying Pt =  , t > 0 . . But if Pt =  , t > 0 , , then = f(y)dy

where f E C~(R3)+ and A(p’f) = 0 . . Hence, p’f would be constant, and so

we would conclude that mPt = m , , t > 0 . . In particular, we would have

= 

- J’ = 0
R

for all t > 0 and g E Cb(R3) . ° Since this would mean that P t 1 = 1 for

all t > 0 , , we see that no such u exists.

5. Definition. Let 03BB ~ R be given. Each u in E03BB is called a 
.

B-excessive is said to be a B-invariant measure if

e03BB03C4  = Pt for each t > 0 .

Denote the set of all ~-invariant measures , We also write

3x = 3~ ~ ’ ~(g) _ n ~~ and put

P1~ _ ’ t > 0 . °

Finally, a non-negative -measurable function h is called a 03BB-excessive

function, if

as 
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and h  " a.e. with respect to P (x,*) for each t > 0 and x E E .

In §3 we will give a limit procedure for computing the elements of ~~

by the Dynkin’s machine [5] . As for J03BB when 03BB03C0  0 , we already know

from (4) that it is enough to study non-recurrent ~Pt~ : : t > 0} , and in

that case we are able to reduce the study of J03BB to the study of J0 for a

new transition function.

In §4 , we use the following lemma from [8] :

6. Lemma. Replace (l.i) with the assumption that for each t > ~ , 

is positive everywhere. Let 03BB ~ R Then  ~J03BB if and only

only if there is a T > 0 for which = 

This lemma allows us to focus on the discrete case which is discussed in

§4 . In particular, we will show how to extend a result due to Harris [7]

and Veech [11] .

g2. Counterexamples From Markov Chains

Let E = {0,1,2,’"} . We call P(t) _ (P i~t) : i,j (t > 0) a

sub-Markov transition function, if

Pij(t) ~ 0 , ~, Pij(t)  1 , 
= 

and lim P..(t) = 8.. (S " = 1 , 8.. = 0 (i ~ j)) for any i and j in E

t~0 i~ ~~ m -’

It is well known that the following limits:

P..(t) 
, 1-P (t)

lim .. i L~. = q .. ( i ~ j ) and lim ....,. i i .._ = q .
t 1~ t i

all exist. We set qii 
= Then

(7) 4  q ~ °° , ~ ~ q_ ~ °° (1 ~ j) ~ G q~ ~ q_ i _ - ij j~i 
1~ ’ i

The matrix Q = (qij) is called a Q-matrix. A sub-Markov transition

function with this matrix (qij) is called a Q-process.

In this context, (l.i) and (l.ii) become the assumption that for all

i,j (: E , Pij(t) > 0 . Thus we make this assumption about P(t) . Also, it

is natural to fix
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g(x) = .

8. Theorem. If  E E03BB(g) , then

~ > -q and ( ~+q ) ~. > ~ i i i - 

for each i E E . . In particular, we have

X - > -inf q.. .’ - 
iEE 

~

Proof. Let

(9) , i,j E E
J J Jl I

It is easy to check that P(t) is a Q-process with Q-matix Q = (qij) . :
i = -ii = 03BB03C0 + qi 

, ij 
= jqji/ i (1 ~ j)

hence the assertions follow from (7) and the fact that P(t) > 0 .

In order to remove time from our consideration, we will need the next

lemma.

10. Lemma. Assume that P(t) is a Q-process, totally stable (i.e. qi  ~

for each i E E ), and satisfies the forward Kolmogorov equations:

(11) P’ij(t) = -Pij(t)qj + Pik(t)qkj

Also assume that  = P(t) . Then

(12) = 
~ ~’j E E .

Proof. [8] We have

N N N
(13) ~ -qj,G + G G .

i=0 
~ ~’ i-1 ~ ~’ i=1 k#j 

~ ~~ J

N

The sum ~ is non-negative, continuous in t and it monotonically
i=0 

I lJ

increases to as N ~ ~ . . Similarly, the second sum on the right side

in (13) is non-negative, continuous in t and it monotonically increases to

, which is finite by (8) (cf. [1, IIS3, Theorem 1]). Hence, by
1#J 

~ ~J

Dini’s theorem, these sums converge uniformly for t in a finite interval.

Consequently, differentiation and summation can be interchanged in (13) when
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N = ~ and so (12) follows.

14. Lemma. Equations = L (j E E) have a positive solution

(p..) if and only if the equation v = vP has a positive solution (v.) , ,
where P.. = 0 , , P.. = q../q. (1 # j) . Moreover, we can pass from one to

the other by taking vi 
= iqi (i ~ E) .

Proof. Obvious.

15. Theorem*). Let Q = (q..) be a totally stable, irreducible and

conservative (i.e. q. 
= 

q.. for each i E E ) Q-matrix. Suppose that
~ 

there is precisely one Q-process and that it is transient. Then, in order

that ~~ # 0 , the following condition is necessary: there exists an infinte

subset {i1,i2’...} of distinct integers such that

(16) P.. ~ >0 , , ~ > 0 ~ , ’-,?_ _ . > 0
1211 13i2 1n+l1n

where ? = (P..) is defined in (14) . . In particular, if 03BB03C0 = 0 , , then this

gives a necessary condition for 03BB ~ 03C6 .

Proof. Because of (10) and (14) , , we need only consider the solutions

to v = vP . . But now our condition comes from Harris’ observation [7,

Theorem 1].
m

17. Example. Take P00 = 0 ; 0i = Pi > 0 (i _ > 1) , Pi  1 ; Pi0 = 1

(i > 1). It is clear that this ? does not satisfy the condition (16) . .

So the equation v = vP has no positive solution. This fact is also very

easy to check directly.

We now take 0  0 as ’ qij 
= -~ ’ ° With this

Q-matrix, the Q-process is unique (since Q = (q..) is bounded). Hence the

unique Q-process P(t) satisfies the Kolmogorov forward equations.

Moreover, P(t) is transient since P is. Finally, (8) implies that

~,~ = 0 since 0 . . We therefore see that ~~ # ~0 = ~ . .

We will give a more general result later (see (32) ).
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Notice that P(t) is symmetric, because P is symmetric with respect to

{~ 1 ’ ~i Pi , i > 1} and therefore Q=(q..) is symmetric with

respect to = i E E) which, by uniqueness, means that P(t) is. On

the other hand, E P..(t)  1 (yi E E) , , hence, we now have a counterexample

which is symmetric but also a stopped Q-process.

To get an example of a non-stopped (conservative) Q-process for which

the conjecture fails, we proceed as follows.

18. Example [2]. Take " Pi > 0 ’ , Pi0 " ~ " 

easy to see that there is a (unique) positive solution to v = vP (v0 = 1)
n n

if and only if lim lI 0 . . We now take (P.) satisfying lim II 0
n-~k=0 

~ 
n-~k=0

and take 0  0 as i ~ ~ . . By (10) , (14) and (8) we see that

~,~ = 0 and .‘~ = ~0 = ~ . .
~c

We note that if we take p0 
= 1 then 

’

P(t) is non-stopped, since Q = (q..) is conservative and bounded.

Before moving on from Markov chains, we note that in the chain setting

Theorem (4) can be improved. Namely,

19. Theorem. If {e - Bt: P..(t)} is recurrent in the sense that
1J

P..(t)dt = ~ for each i E E , , then there is precisely one  ~ J03BB03C0 (g)

and  satisfies:

(20) i = lim[ P(r)0ie- 03BB03C0r]/[ P(r)00e- 03BB03C0r]
for each i ~ E ,

where (P~r)) _ (P..(1))r . .1J 1J

Proof. The existence comes from (4) . . To prove the uniqueness and

(20) notice that if p E ~ ~ (g) then the corresponding P(t) defined in
7C

(9) is a recurrent process and

i0(rt) 00(rt) = 1 i . P(r)0i(t)e P(r)00(t)e03BBntr 
(~i, ~t)
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Hence

i = r=I 0 i 
e 

-À ((r)i0-1 (r)00 ) , ~i

But lim ( E P(r)) = 1 by [1; I.§9. Theorem S).
n-~ r=1 

lo 
r=o 

00

§3. Minimal 03BB03C0-invariant Measures

We begin this section with a description of the minimal elements of 3.

Fix a strictly positive function g E ~ . Denote the set of all extreme

points of (~~(g) by (~~(g) . As in [4] or [5] , we can endow a convex

measurable structure to (~~(g) : the ~-algebra in is generated by the

sets ~~ E (~~(g) : ~(B)  u} , B E ~ , u E R . A measurable subset

~ C ~(g) is called a face if for every probability measure on the

measure ~,~ given by

(21 ) w,~(B) = j e ~(B)~1(dN~) , B E ~
T’) 

is in  when and only when ~ is concentrated on J .

22. Lemma. ~~(g) is a face of .

Proof. By (6) , we have for any t > 0 :

J0(g) = n {  E g) : (03C6) = PT(03C6)}
~ C o(E)

Hence ~~(g) is measurable in (~(g) . It is clear that ~,~ def ined in

(21) belongs to SD(g) if ~ is concentrated on J0(g) . We now assume

that defined in (21) belongs to . Then

(03C6) = 

e0(g) (03C6)~(d) 
= 

e0(g)PT(03C6)~(d)
hence

(23) ~ (N(~)-NPT(~))~1(dN) = 0 , ~ ~ E CC(E) .
~(g)~,‘~(g)
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Put

~~ ’ ~(g)~ 

~~ _ { (~ E ~~ : !~ ( ~ ) - l~PT ( ~ ) > 0 }

then, by (23) , we have

ri(~ _ ~1( U ~)

 ~ ~,(~~) = o- 

Therefore t~ is concentrated on ~ .

O,g

It was shown in [4; 6.1] that the set of all extreme points of a face

is just D fl e0(g) . Hence the set of all extreme points of J0(g) ,
denoted by Je0(g) ,is the subset Je0(g) ~ e0(g) of e0(g) .

Let M be the class of non-negative measures. We say that m E M is

minimal, if the relation m = ml + m2 , ml,m2 E M implies that ml and m2
are proportional to m . It is now easy to see that  is a minimal

elements of 0 if and only if  is an extreme point of for some g

Thus, we may use [5; Lemma 2.2, Theorem 2.1 and Theorem 2.2] to give some

limit procedures for computing the minimal elements of 0 .
Set

Ec = {x E E : j 0 Ptg(x)dt = ~}

Ed = {x E E : jOPtg(x)dt  ~}

wc 
= 

~ 
= 

~ I~ E ~O
c d

J0, c = {  E 0 : .  = c } ,

= {  E 0 :  = d} .

24. Theorem. Let  be a minimal element of 0 .
i) If ~t(g)  ~ , then either ~ belongs to ‘~~ ’ c or ~t belongs to ~~ ’ d ’ ;

ii) If  E J0.c , 03C6,03C8 E L1 ( u) and (03C8) ~ 0 , then
,c
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(03C6) (03C6) = 0Pt(03C6(x)dt u0Pt03C6(x)dt

for p-almost all x , ,

iii) If  E 3 , then there exists a probability measure P on the

space E of all sequences in E " such that if

03C6,03C8 ~ L1( ) and (03C8) ~ 0 , then

(03C6) = lim ~0Pt(xk)dt
~~~’~ 

and

~0Pt03C6(xk)dt ~0Pt03C6(xk)dt = 0

for P-almost all sequences and s E (0,°°) .

In order to use these results to study 03BB03C0 , we now reduce the general

case to the case where 03BB03C0 = 0 .

Let f be a B -excessive function which is finite and trictly

positive everywhere. Then we may define

(25) t(x,dy) = f(x)-1 Pt(x,dy)f(y)

It is easy to check that Pt(x,.) is a sub-Markovian transition function.

Denote the set of all non-trivial invariant measures for {Pt: : t > 0}

by 0 .

26. Theorem. ~ # ~ is equivalent to ~~ ~ ~ . . In detail, the

~t ~

corresponding between  E J03BB03C0 and v E J0 is the following:

v(dx) = f(x) (dx)

Proof. If v E ~~ and v(dx) = f(x)~(dx) , , then
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Bf(x) (dx) = v(B) = v(dx)t(x,B)
B

= B Ptx(x,dy)f(y)
X

= j for each B ~S . .

B

Hence  = Pt03C0 , that is  E 03BB . The converse can be proved similarly.
n

Since we have a complete answer to the problem "~~ # ~ ?" in case that

X ’

: t > 0} is recurrent, it is important to construct a B -excessive
function only when {P03BB03C0t : t > 0} is non-recurrent. We will assume slightly

more than non-recurrence. Namely, we assume that

(27) ~0P03BBt03C003C80(x)dt  ~ for each x ~ E .

In many cases (cf. [8]) , , (27) is equivalent to non-recurrence.

28. Lemma. Under the condition (27), , the function f defined by

f(x) = ~0P03BBt03C003C80(x)dt

is a B -excessive, finite and positive everywhere function.

Proof. The positive property comes from (l.i) and (l.ii) . . The

B -excessive property follows from

- 

co B
= 1~ f(x) as t + 0 .

Sometimes it is convenient to use the following decomposition:

For a strictly positive function g ~ B , put

c = {x ~ E : ~0P03BBt03C0g(x)dt = ~}

. B

Ed = {x ~ E : 0Pt03C0g(x)dt  ~}

c = |c , d = |d ,  ~ 03BB03C0
By [5; Theorem 3.2] , we have the following:



216

29. Theorem. , (g)  ~ and d =0 , then  ~ 03BB .

~ Tt

p

This is an improvement of (4) . . Indeed, for each p ’ we may
’n:

choose a strictly positive function g ~ C(E) (for example,

g(x) ~ ~0P03BBt03C80(x)dt (B > 0) ), such that  °° 
. Suppose that

{P. : t > 0} is recurrent and (d) ~ 0 , then there exists

0c.~c-°° and a compact subset K such that if

- ~

then 0  p(G)  °° . . Put v = , then v is a Radon measure and

~vP03BB03C0gdt {~ c1 (G) > 0

0 ~ ~c~~(K)oo . .

For each 03C6 E C..(E) , we have

vP03BBt03C003C6dt ~ ~03C6~ a ~0vP03BBt03C0gdt
~03C6~c2 (K)  ~
’**’ 

a

m X

where a = inf g(x) > 0 . Hence J vP 03C0dt is a Radon measure. This

xesupp«) 0 ~

is a contradiction.

In particular, we have

30. Corollary. If pet) is recurrent, then B = 0 and 0 ~ 0 . . In fact,

for each  ~ 0 , d = 0 .

§4. Markov Chains

We first discuss the discrete time case.

31. Theorem. Suppose that P = (P..) is an irreducible matrix on E and

satisfies

m

n=0

Define
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HP(0)ij = 03B4ij

HP(n)ij = k1,..., Pik1 Pk1k2 ... Pkn-1,j (n ~ 1)

Lki(j) = iP(n)krPri + Pkikl 
r= j n=11 

kr ri ki

where H c E . Then the equation p = p,P has a positive solution if and

only if there exists an inf inite subset K of E such that

lim lim = 0
1 1

Proof. This theorem was proved by Harris [7] and Veech [11] in the

case that P is a strictly stochastic matrix. Their arguments are also

available for us. We have need only to point out some changes.

Define

Q = Pn

03C6ij = ( P(n)ij )-1
i J m

i’ - ~ {i ’} P(n) i’ (i # j)
J n=1 ’J J

Then, it is easy to see that 0  03B8ij,03C6ij  ~ and that

HP(n)ij = HP(m)il HP(n-m)li (i,j ~ E , 0 ~ m ~ n)H J ~ ~"H u H ~, J _ _

iP(n)ij = {i,j) P(m)ijiP(n-m)jj

03B8ij = 03B8ij( iP(n)jj) 03B8

= {i,j} P(m)ij i P(n)jj03C6ji

= { i,j} P(m)ijiP(n-m)jj03C6ji
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= ( iP(n)ij)03C6ji , i ~ j
 i~{k , ... , kn-1

}Pkk1 Pk1 k2 
... Pkn-1

j

= P
kk1 Pk1k2 ... Pkm-1 i .

2022km+1 ...,kn-1~i Pikm+1 ... Pkn-1

j

- ~ ~"l 1 

p(m),p(n-m) 
B

= 

P(m)kiiP(n-m)ij

= P(m)ki iP(n)ij

= QkiiP(n)ij
and

Qkj =  
i~{k1 kn-1}

P
kk1

P

k1k2 
... P

kn-1j+iP(n)kj

= QkiiP(n)ij + iP(n)kj

= Qki 03B8ij/03C6ji + iP(n)kj , i ~ j
We now arrive at the same decomposition as in [7] : :

i 
QkQ r=O Qk0 

rl Qk0 QkO 
’

We can now state the last result.

32. Theorem. Let Q = (q..) be a totally stable and irreducible Q-matrix,

P(t) a Q-process such that P 03BB03C0(t) is non-recurrent. Define

fi = P03BB03C0ij(t)dt  ~

ij(t) = f-1iP03BB03C0ij(t)fj
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ii 
= 0 , ij 

= f-1iq ijf j( 03BB03C0 +q i)-1 (i ~ j )

then P is a Q-process with Q-matrix Q = (q..) : :

i = 03BB03C0 + qi , ij = f-1iqijfj (i ~ j)

P(t) satisfies the forward Kolmogorov equations with Q if and only if P(t)

satisfies the forward Kolmogorov equations with Q . . Finally, if P(t)

satisfies the equations, then, in order that 3. ~ ~ the following condition
n

is necessary: there exists an infinite subset K of E such that

ki (j)/k i(0) = 0

where for fixed i and j , L .(j) is the minimal non-negative solution to

xk 
= Pklxl + 03B4krPri , k ~ E

This can be obtained by the formula

ki(j) = x(n)k
where

~’= . ~ ~
r=j

x(n+1)k = klx(n)l , n ~ 1 , k ~ E

Proof, 1 . As mentioned in (8) , , it is easy to check the first

assertion.

2 . We now prove the second assertion.

ik(t)kj = f-1iP03BB03C0ik(t)qkjfj - f-1ie-03BB03C0tPij(t)fj .
. (03BB03C0 + qj)

~~’j~i~~kj-~~XB~j)) ’

= f-1ie-03BB03C0cfj(P’ij(t) - 

03BB03C0Pij(t))
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A

- P~ .(t) .

30 . . By (26) , , 03BB ~ Ø ~ 0# Ø . Thus, if 03BB ~ Ø , then by
n An A

(10) and (14) , , there is a positive solution to v = vP . Notice that P

is transient, it is not hard to prove that the condition given here is

equivalent to the one given in (31) . .
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