@article{SPS_1979__13__557_0, author = {Carmona, Ren\'e}, title = {Processus de diffusion gouvern\'e par la forme de {Dirichlet} de l'op\'erateur de {Schr\"odinger}}, journal = {S\'eminaire de probabilit\'es de Strasbourg}, pages = {557--569}, publisher = {Springer - Lecture Notes in Mathematics}, volume = {13}, year = {1979}, mrnumber = {544824}, zbl = {0401.60084}, language = {fr}, url = {http://www.numdam.org/item/SPS_1979__13__557_0/} }
TY - JOUR AU - Carmona, René TI - Processus de diffusion gouverné par la forme de Dirichlet de l'opérateur de Schrödinger JO - Séminaire de probabilités de Strasbourg PY - 1979 SP - 557 EP - 569 VL - 13 PB - Springer - Lecture Notes in Mathematics UR - http://www.numdam.org/item/SPS_1979__13__557_0/ LA - fr ID - SPS_1979__13__557_0 ER -
%0 Journal Article %A Carmona, René %T Processus de diffusion gouverné par la forme de Dirichlet de l'opérateur de Schrödinger %J Séminaire de probabilités de Strasbourg %D 1979 %P 557-569 %V 13 %I Springer - Lecture Notes in Mathematics %U http://www.numdam.org/item/SPS_1979__13__557_0/ %G fr %F SPS_1979__13__557_0
Carmona, René. Processus de diffusion gouverné par la forme de Dirichlet de l'opérateur de Schrödinger. Séminaire de probabilités de Strasbourg, Tome 13 (1979), pp. 557-569. http://www.numdam.org/item/SPS_1979__13__557_0/
[1] Energy Forms,Hamiltonians and Distorted Brownian Paths. J.Math.Phys. 18 (1977) 907-917 | MR | Zbl
, and :[2] Critère de Convergence des Fonctionnelles de Kac et Application en Mécanique Quantique et en Géométrie. J.Funct.Analysis 29 (1978) 416-424. | MR | Zbl
et :[3] Criteria for Reccurence and Existence of Invariant Measures for Multidimensional Diffusions. Ann. Proba. 6 (1978) 541-553. | MR | Zbl
:[4] Quadratic Variation of Potentials and Harmonic Functions. Trans. Amer. Math. Soc. 149 (1970) 243-257. | MR | Zbl
:[5] Regularity Properties of Schrödinger and Dirichlet Semigroups. J. Funct. Analysis ( à paraitre ) | MR | Zbl
:[6] Self-Adjoint Operators. Lect. Notes in Math.# 433 (1975) Springer Verlag. | MR | Zbl
:[7] On the Generation of Markov Processes by Symmetric Forms. Proc. 2nd Japan-USSR Symp. Proba. Theory. Lect. Notes in Math.# 330 (1973) 46-79 Springer Verlag. | MR | Zbl
:[8] Local Properties of Dirichlet Forms and Continuity of Sample Paths. Z. Wahrscheinlich. verw. Gebiete 29 (1974) 1-6. | MR | Zbl
:[9] Dirichlet Spaces and Additive Functionals of Finite Energy. Conf. Inter. Math. Helsinki (1978) | Zbl
:[10] On Transforming a Class of Stochastic Processes by Absolutely Continuous Substitution of Measures. Theor. Prob. Appl. 5 (1960) 285-301. | MR | Zbl
:[11] Ergodic Properties of Reccurent Diffusion Processes and Stabilization of the Solution to the Cauchy Problem for Parabolic Equations. Theor. Prob. Appl. 5 (1960) 179-196. | Zbl
:[12] Stochastic Integrals. Academic Press (1969). | MR | Zbl
:[13] La Formule de Ito pour le Mouvement Brownien d'apres G.Brosamler. Sem. Proba. Strasbourg 1976-77 Lect.Notes in Math. # 649 (1978) 763-769 Springer Verlag. | Numdam | MR | Zbl
:[14] Dynamical Theories of Brownian Motion. Princeton Univ. Press (1967) | MR | Zbl
:[15] Conditions for the Absolute Continuity of two Diffusions. Trans. Amer. Math. Soc. 193 (1974) 413-426. | MR | Zbl
:[16] Diffusion Processes with Unbounded Drift Coefficient. Theor. Prob. Appl. 20 (1975) 27-37. | MR | Zbl
:[17] Processus de Diffusion à Valeurs dans et Mesures Quasi-invariantes sur . Astérisque 22-23 (1975) 247-290. | Numdam | MR | Zbl
et :[18] Quantum Mechanics for Hamiltonians Defined as Quadratic Forms. Princeton Series in Physics (1971) Priceton Univ. Press. | MR | Zbl
:[19] Functional Integration and Quantum Mechanics. Academic Press ( livre à paraitre ). | MR
:[20] Diffusion Processes with Continuous Coefficients. Comm. Pure Appl. Math. 22 (1969) 345-400. | MR | Zbl
and :[21] Diffusions avec Explosion Construites à l'aide des Martingales Exponentielles. Rev. Roum. Math. Pures et Appl. 20 (1975) 1187-1199. | MR | Zbl
:[22] Generalized Ito's Formula and Additive Functionals of Brownian Motion. Z.Wahrscheinlich. verw. Gebiete 41 (1977) 153-159. | MR | Zbl
: