@article{SPS_1976__10__235_0, author = {Williams, David}, title = {On a stopped brownian motion formula of {H.} {M.} {Taylor}}, journal = {S\'eminaire de probabilit\'es de Strasbourg}, pages = {235--239}, publisher = {Springer - Lecture Notes in Mathematics}, volume = {10}, year = {1976}, mrnumber = {461687}, zbl = {0368.60056}, language = {en}, url = {http://www.numdam.org/item/SPS_1976__10__235_0/} }
TY - JOUR AU - Williams, David TI - On a stopped brownian motion formula of H. M. Taylor JO - Séminaire de probabilités de Strasbourg PY - 1976 SP - 235 EP - 239 VL - 10 PB - Springer - Lecture Notes in Mathematics UR - http://www.numdam.org/item/SPS_1976__10__235_0/ LA - en ID - SPS_1976__10__235_0 ER -
Williams, David. On a stopped brownian motion formula of H. M. Taylor. Séminaire de probabilités de Strasbourg, Tome 10 (1976), pp. 235-239. http://www.numdam.org/item/SPS_1976__10__235_0/
[1] Probability. Addison-Wesley, Reading, Mass.. | MR | Zbl
. (1968).[2] Diffusion processes and their sample paths. Springer, Berlin. | Zbl
and , (1965).[3] Random walks and a sojourn density process of Brownian motion. Trans. Amer. Math. Soc. 109 56-86. | MR | Zbl
(1963).[4] ---- (1969). Brownian local times and taboo processes. ibid. 143 173-85. | MR | Zbl
[5] Stochastic integrals. Academic Press, New York. | MR | Zbl
(1969).[6] ---- (1975). Brownian local times. Advances in Math. 15 91-111. | MR | Zbl
[7] Sojourn times of diffusion processes. Illinois J. Math. 7 615-30. | MR | Zbl
, (1963).[8] A stopped Brownian motion formula. Ann. Probability 3 234-246. | MR | Zbl
(1975).[9] Markov properties of Brownian local time. Bull. Amer. Math. Soc. 75 1035-36. | MR | Zbl
(1969).[10] ---- (1970). Decomposing the Brownian path. ibid. 76 871-73. | MR | Zbl
[11] ---- (1974). Path decomposition and continuity of local time for one-dimensional diffusions, I. Proc. London Math. Soc. (3) 28 738-68. | MR | Zbl