Un principe de sous-suites dans la théorie des probabilités
Séminaire de probabilités de Strasbourg, Tome 6 (1972), pp. 72-89.
@article{SPS_1972__6__72_0,
     author = {Chatterji, Shrishti Dhav},
     title = {Un principe de sous-suites dans la th\'eorie des probabilit\'es},
     journal = {S\'eminaire de probabilit\'es de Strasbourg},
     pages = {72--89},
     publisher = {Springer - Lecture Notes in Mathematics},
     volume = {6},
     year = {1972},
     mrnumber = {394810},
     zbl = {0231.60023},
     language = {fr},
     url = {http://www.numdam.org/item/SPS_1972__6__72_0/}
}
TY  - JOUR
AU  - Chatterji, Shrishti Dhav
TI  - Un principe de sous-suites dans la théorie des probabilités
JO  - Séminaire de probabilités de Strasbourg
PY  - 1972
SP  - 72
EP  - 89
VL  - 6
PB  - Springer - Lecture Notes in Mathematics
UR  - http://www.numdam.org/item/SPS_1972__6__72_0/
LA  - fr
ID  - SPS_1972__6__72_0
ER  - 
%0 Journal Article
%A Chatterji, Shrishti Dhav
%T Un principe de sous-suites dans la théorie des probabilités
%J Séminaire de probabilités de Strasbourg
%D 1972
%P 72-89
%V 6
%I Springer - Lecture Notes in Mathematics
%U http://www.numdam.org/item/SPS_1972__6__72_0/
%G fr
%F SPS_1972__6__72_0
Chatterji, Shrishti Dhav. Un principe de sous-suites dans la théorie des probabilités. Séminaire de probabilités de Strasbourg, Tome 6 (1972), pp. 72-89. http://www.numdam.org/item/SPS_1972__6__72_0/

[1] Banach, S. et Saks, S. (1930) Sur la convergence forte dans les champs Lp Studia Math. 2, 51-67. | JFM

[2] Burkholder, D.L. (1966) Martingales transforms. Ann. Math. Statist. 37, 1494-1504. | MR | Zbl

[3] Burkholder, D.L. et Gundy R.F. (1970) Extrapolation and interpolation of quasi-linear operators on martingales. Acta Math. 124, 249-304. | MR | Zbl

[4] Chatterji, S.D. (1969) An Lp - convergence theorem. Ann. Math. Statist. 40, 1068-1070. | MR | Zbl

[5] Chatterji, S.D. (1969) Un théorème général de type ergodique. Colloque C.N.R.S. Probabilités sur les structures algébriques. | MR | Zbl

[6] Chatterji, S.D. (1970) A général strong law. Inventiones Math. 9, 235-245. | MR | Zbl

[7] Davis, B. (1970) On the integrability of the martingale square function. Israel J. Math. 8, 187-190. | MR | Zbl

[8] Hartman, P. et Wintner, A. (1941) On the law of the iteratad logarithm. Amer. J. Math. 63, 169-176. | JFM | MR | Zbl

[9] Komlòs, J. (1967) A generalization of a problem of Stainhaus. Acta Math. Acad. Sci. Hung. 18, 217-229. | MR | Zbl

[10] Morgenthaler, G. (1955) A central limit theorem for uniformly bounded orthonormal systems. Trans. Amer. Math. Soc. 79, 281-311. | MR | Zbl

[11] Révész, P. (1965) On a problem of Steinhaus. Acta Math. Acad. Sci. Hung. 16, 310-318. | MR | Zbl

[12] Salem, R. et Zygmund, A. (1947) On lacunary trigonometric series I. Proc. Nat. Acad. Sci. 33, 333-33 | MR | Zbl

[13] Salem, R. et Zygmund, A. (1954) Some properties of trigonometric series whose terms have random signs. Acta Math. 91, 245-301. | MR | Zbl

[14] Stout, W.F. (1970) A martingale analogue of Kolmogorov's law of the iterated logarithm. Z. Wahr. verw. Geb. 15, 279-290. | MR | Zbl

[15] Strassen, V. (1966) A converse to the law of the iterated logarithm. Z. Wahr. verw. Geb. 4, 265-268. | MR | Zbl

[16] Weiss Mary, (1959) On the law of the iterated logarith for uniformly bounded orthonormal systems. Trans. Amer. Math. Soc. 92, 531-553. | MR | Zbl