@article{SPHM_1980___2_A1_0, author = {Van Dalen, D.}, title = {La philosophie intuitionniste et ses cons\'equences math\'ematiques}, journal = {S\'eminaire de Philosophie et Math\'ematiques}, pages = {1--17}, publisher = {IREM Paris-Nord~; \'Ecole Normale Sup\'erieure}, number = {2}, year = {1980}, language = {fr}, url = {http://www.numdam.org/item/SPHM_1980___2_A1_0/} }
TY - JOUR AU - Van Dalen, D. TI - La philosophie intuitionniste et ses conséquences mathématiques JO - Séminaire de Philosophie et Mathématiques PY - 1980 SP - 1 EP - 17 IS - 2 PB - IREM Paris-Nord ; École Normale Supérieure UR - http://www.numdam.org/item/SPHM_1980___2_A1_0/ LA - fr ID - SPHM_1980___2_A1_0 ER -
Van Dalen, D. La philosophie intuitionniste et ses conséquences mathématiques. Séminaire de Philosophie et Mathématiques, no. 2 (1980), pp. 1-17. http://www.numdam.org/item/SPHM_1980___2_A1_0/
A Theory of Constructions and Proofs. Department of Mathem. Utrecht, preprint no.134
1979Foundations of Constructive Mathematics.New-York.
1967Leven, Kunst en Mystiek. Delft.
1905Over de Grondslagen der Wiskunde. (Sur les fondements de mathématique). Collected Works I, pp 11-101. | JFM | MR
1907Beweis dass jede volle Funktion gleichmässig stetig ist.Cf. Collection Works, Vol.I, pp.286-290
1924Consciousness, Philosophy and Mathematics. Proc. 10th Intern. Congress of Philosophy, Amsterdam pp 1235-1249. | MR
1948Sur la possibilité d'ordonner le continu. C.R.Ac. Sci. Paris. pp 349-350. | MR | Zbl
1950Historical background, principles and methods of intuitionism. South African Journal of Science pp 139-146. | MR
1952 bThe use of Kripke's Schema as a reduction Principle. Journal of Symbol Logic, pp 238-240. | MR | Zbl
1977Brouwer : the genesis of his intuitionism. Dialectica, pp 291-303. | MR
1978An interpretation of intuitionistic analysis. Ann. Math. Logic. pp 1-43. | MR | Zbl
1978 aConstructive theories of functions and classes. Logic Colloqium' 78 (eds. M. Boffa, D. van Dalen, K. McAloon) pp 159-224, Amsterdam. | MR | Zbl
1979A theory of constructions equivalent to arithmetic. Intuitionism and Proof Theory, (eds. A. Kins, J. Myhill, R.E. Vesley) pp 100-120. Noth-Holland Publ. Co., Amsterdam. | MR | Zbl
1970Introduction to Metamathematics. North-Holland. Publ. Co., Amsterdam. | MR | Zbl
1952Principles of Intuitionism. Springer Lecture Notes 95. | MR | Zbl
1969Metamathematical investigation of intuitionistic arithmetic and analysis, (ed.) Springer Lecture Notes 344. | MR | Zbl
1973Choice Sequences. Oxford University Press. | MR | Zbl
1977Axioms for intuitionistic mathematics incompatible with classical logic. in Logic, Foundations of Mathematics and Computability theory. Reidel, Dordrecht pp 59-84. | MR | Zbl
1977 aIntuitionistic extensions of the reals. Nieuw Archief voor Wiskunde. pp 63-113. | MR | Zbl
1980